
Journal of Theoretical and Applied Information Technology 
30th September 2017. Vol.95. No.18 

 © 2005 - Ongoing JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
4797 

 

PLATFORM MODEL COMPOSITION FRAMEWORK FOR 
THE DEVELOPMENT OF REAL-TIME CONTROL SYSTEMS 

 

1SANGSOO PARK 
1 Dept. of Computer Science & Engineering, Ewha Womans University, Seoul 03760, South Korea 

E-mail:  1sangsoo.park@ewha.ac.kr  
 
 

ABSTRACT 
 

Recent trend imposes stringent requirements on the design of embedded systems, differentiating them from 
general-purpose computer systems such as power consumption, timeliness, reliability, etc. Traditional 
platform models based on a single view of the underlying support software and hardware are not adequate 
for modeling all of the interference between the run-time tasks, resources, and services within a system 
caused by their behaviors and properties. This is mainly due to the fact that application software is tightly 
tuned to a particular platform, or it is designed and developed to be platform-specific. To overcome this 
limitation, a platform modeling framework for model-based software development is proposed by 
identifying the ranges of acceptable platform properties for application software and by specifying the 
models of computation with respect to the nonfunctional constraints on the underlying execution platform. 
Specifically, the focus is a multicore-based compositional platform model with fault tolerance for the 
developed framework. As a case study, a multicore real-time scheduling algorithm is applied to the 
framework, and the simulation results demonstrate the efficacy of the usability of the framework for 
supporting fault tolerance. Our proposed approach outperforms by 8.5% even for very heavy loaded system 
compared to the existing method. 

Keywords: Platform model, Model composition, Multicore, Model-based development, Embedded control 
system, Nonfunctional property 

 
1. INTRODUCTION  
 

Computing and networking have become an 
essential part of everyone’s daily life and business 
and have been deeply embedded in personal 
electronic devices such as cell phones and digital 
cameras as well as industry and military equipment 
such as robots, autonomous vehicles, and airplanes. 
Diverse modern devices and equipment, however, 
demand far more capabilities and functions from 
embedded systems than their predecessors. This 
trend imposes stringent requirements on the design 
of embedded systems, differentiating them from 
general-purpose computer systems. In particular, 
embedded systems must meet many 
“nonfunctional” constraints such as timing and 
resource (e.g., power consumption and memory 
capacity) constraints, a low manufacturing cost, and 
a short time-to-market. 

Application software designers often overlook 
the effects of the underlying support software (i.e., 
operating system and/or middleware) as well as 
hardware such as on-board processors and 
communication devices, which are collectively 
called an execution platform or a platform. A 

platform typically has capabilities for data 
processing and storage and communication with 
external processors and physical devices such as 
sensors and actuators. On the other hand, 
application software is usually mapped to a set of 
run-time tasks, corresponding to threads or 
processes, which are well-known abstractions of 
concurrently executing applications in operating-
system design [1]. A platform is therefore capable 
of simultaneously executing one or more 
application tasks. At the same time, the individual 
“system” services provided by the platform may be 
used by multiple application tasks. 

The hardware in an embedded system also has 
obvious effects on the system’s performance. As the 
underlying support software intervenes between 
hardware and application software, the 
functionalities and performance of the system 
software also have significant effects on the system 
performance. For application software in general-
purpose computer systems, changes in the platform, 
especially with faster or slower hardware, may 
affect the “application responsiveness” without 
modifying the application software. However, for 
applications that are critical or sensitive to time 



Journal of Theoretical and Applied Information Technology 
30th September 2017. Vol.95. No.18 

 © 2005 - Ongoing JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
4798 

 

(real-time constraints) or resources (memory size or 
power consumption), the entire system must often 
be redesigned or recalibrated to meet such 
nonfunctional constraints. For this reason, safety-
critical systems such as automotive and flight 
controls often have to use outdated processor 
technologies that had been verified or certified for 
the operating environments in which the 
applications execute. 

This is mainly due to the fact that application 
software is tightly tuned to a particular platform, or 
it is designed and developed to be platform-specific. 
Such application software will require extensive 
rewrites of platform-dependent code, recalibration, 
or tuning parameters when the platform is changed; 
this is very expensive in both time and cost. 
Moreover, platform-specific software can also 
increase the design complexity, as the application 
software tends to depend on a vast majority of 
platform-specific services or technologies. Ideally, 
platform-independent software design, in which the 
irrelevant details of the underlying platform can be 
disregarded, would enable simpler and more 
portable application software [2]. However, this is 
difficult to achieve in real-time embedded systems 
with today’s rapidly changing technologies. 

In order to enable software modularity to avoid 
extensive rewrites of platform-dependent code, 
there have been many research efforts to define a 
standard modular software infrastructure for 
application software. For example, the AUTOSAR 
partnership, an alliance of automotive 
manufacturers and suppliers, has recognized the 
problem of software integration as a major 
challenge such that a number of open industry 
standards for automotive software frameworks have 
been developed [3]. However, these efforts are 
limited to the modularity of software components 
among different software developers/vendors and 
have not addressed how to deal with nonfunctional 
constraints such as timing and resource constraints.  

Other than the modularity, the dynamic 
interactions among software components that result 
from various nonfunctional dependencies due to 
task scheduling, IPC, I/Os, and so on must be 
defined and modeled. The concurrent interactions 
among software components complicate the 
analysis of nonfunctional properties, and there is no 
obvious solution for these problems because 
platforms are often shared by multiple applications 
that contend for the same resources (e.g., CPU and 
memory), thereby interfering with each other. It is 
very difficult to predict the effects of this 
interference for all cases that might occur. 

In this paper, to remedy or alleviate the above 
problem, a platform that can be analyzed in terms of 
the nonfunctional properties and a compositional 
model for the platform that exploits the dynamic 
and concurrent interactions are proposed. The 
usability of the developed platform model will be 
significantly enhanced by minimizing/eliminating 
the need for calibrating and/or redesigning 
application software when embedded systems are 
developed and/or transferred to a new platform. 
This will, in turn, reduce the time and cost for 
developing embedded application software.  

In this study, the ranges of acceptable platform 
properties for application software are identified, 
and models for computation with respect to 
nonfunctional constraints are specified on the basis 
of a multicore platform model. The relationship 
between the application software and the execution 
platform is examined to develop a method for 
analyzing the nonfunctional properties more 
accurately to account for the platform effects on the 
design and execution of application software. To 
achieve this, application software and its 
nonfunctional requirements will be used to build a 
software model, which will then be automatically 
integrated with the constructed platform model by 
capturing the run-time properties of an entire 
system. Finally, the design and prototyping of a 
platform model are proposed, and its usability and 
efficacy are demonstrated with a case study, which 
applies the platform model to support fault 
tolerance in the system. 

This paper is organized as follows. Section 2 
describes the main components of the proposed 
framework for application-specific platform model 
generation and their integration based on model-
based software development [4]. Section 3 presents 
a case study to demonstrate the usability efficacy of 
the developed platform model prototype to support 
fault tolerance. The paper concludes with Section 4. 

 

2. PLATFORM MODEL FRAMEWORK  
 

The proposed platform model is intended to 
provide software designers with a systematic way 
of dealing with design and run-time complexities 
resulting from both hardware and system software 
for real-time embedded applications. Current and 
future embedded system designs require the 
involvement of multiple stages, multiple groups of 
people, multiple disciplines, and multiple aspects 
[5]. Each may add complexity to the system. The 
representation of a design while limiting the 



Journal of Theoretical and Applied Information Technology 
30th September 2017. Vol.95. No.18 

 © 2005 - Ongoing JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
4799 

 

information exposed to a group, which focuses on 
only a single discipline and system aspect, and 
sharing a design among different groups and stages 
to allow collaboration are great challenges. Further, 
methods of identifying and assessing the 
information that is needed at which stage, regarding 
which aspect, and for which group are necessary so 
that a lean process can be maintained and 
unnecessary complexity can be avoided. For 
example, a common set of APIs for the services 
provided by a platform with a resource budget may 
be provided to software component developers. 

To ensure the satisfaction of nonfunctional 
requirements, however, a system-level analysis of 
the run-time properties, which are difficult to obtain 
or predict at the time of design, must be performed. 
Traditionally, nonfunctional constraints are handled 
by addressing them one-by-one via code-level 
optimization. However, current model-based 
software development often requires a high-level 
decision on design alternatives during the process 
of integrating the software model with the platform 
model [6]. The size and diversity of embedded 
systems are growing to meet the demand for an 
increasing number of functions, which in turn 
introduces design complexity. The run-time 
complexity mainly originates from dynamic 
environments and service expectations. This paper 
focuses on the development and integration of a 
platform model that provides fault tolerance at run-

time with a low overhead for multicore-based real-
time embedded systems. 

2.1 Automatic Platform Model Generation 
The platform in an embedded system is shared by 

multiple applications and tasks, frequently 
contending at run-time for the resources and 
services that the platform provides. This makes a 
single instance of the platform model reflect only a 
single view of its behaviors and properties, as all of 
the run-time tasks, resources, and services interfere 
with each other’s behaviors and properties. To 
obtain a comprehensive view of the platform, a 
platform may be modeled “manually” by dealing 
with all types of interference one by one, but it is 
not practical or possible in many cases. There 
should be a way to generate a platform model 
automatically, which analyzes a given set of 
applications and then combines resource and/or 
service models that contain their independent 
behaviors and nonfunctional properties that the 
tasks make use of at run-time so that the 
constructed platform model models the possible 
interference that might occur simultaneously. 
Therefore, an “automatic platform model generation 
framework,” which will be used as an appropriate 
representation for the functional and nonfunctional 
models of a platform, is developed in this study. 
This representation should be sufficiently 
expressive to contain resources and services 
together with their dependencies and interactions. 

Figure	1:	Framework	for	Automatic	Platform	Model	Generation

 



Journal of Theoretical and Applied Information Technology 
30th September 2017. Vol.95. No.18 

 © 2005 - Ongoing JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
4800 

 

Although the framework itself will be domain-
specific, the methods used to construct such a 
framework should be generic for any type of 
system. 

 

Figure	2:	An	Example	of	Glue‐Code	Generation	for	the	
uC/OS	Real‐Time	Kernel	

 

As depicted in Figure 1, the framework is 
composed of several components: (i) the generation 
of an application run-time task model, (ii) an 
analysis of run-time tasks and platform 
dependencies, (iii) a repository of the behaviors and 
nonfunctional properties of the resource/service 
models, (iv) the generation of a platform model by 
composing resource/service models from the 
repository with the dependency analysis results, and 
(v) a system-level analysis of the integrated 
application run-time tasks and platform model. 
These components are essential for the model-based 
software development process to proceed from an 
early design stage to a sequence of refinements of 
its design. 

To support the run-time analysis, the application 
structure with nonfunctional requirements is refined 
to a set of run-time tasks, which correspond to a 
process or thread in general operating systems. The 
run-time properties are automatically assigned to 
each task on the basis of a given platform model in 
order to avoid violating the nonfunctional 
constraints. Note that the constructed run-time tasks 
must confirm the concurrency or serialization of 
their execution. 

It is possible to manually integrate models 
according to each run-time task. However, it is 
highly desirable to analyze the dependencies 
between run-time tasks and resources/services for 
the model integrations automatically for fast and 
error-prone processes. For this, the novel method 

shown in Figure 2, which was presented in a 
previous work, is used to automatically generate 
glue code, which fits into the APIs that the 
underlying support software provides, by analyzing 
the run-time tasks and integrating them into the 
platform [5]. This method can be converted for the 
proposed framework to analyze the dependencies 
from the run-time tasks to the platform. This is 
considered a key benefit since the automatically 
built models will significantly help designers to 
obtain the complex dependencies and interactions in 
the system, and it will enable a significantly fast 
and accurate system-level run-time analysis. 

2.2 Composition of the Application Run-Time 
Model and Generated Platform Model 

To design and develop a real-time embedded 
system while meeting all nonfunctional 
requirements, the design and/or run-time properties 
of both the “application model” and “platform 
model” where the applications will run must be 
captured. A system-level analysis can then be 
performed to verify and ensure the satisfaction of 
the nonfunctional requirements. To this end, a 
compositional model [7] must be generated with the 
results of a dependency analysis using the resources 
and/or services provided by the underlying platform 
for each application task. As shown in Figure 3, a 
separate model for the computations and 
nonfunctional properties can be generated to 
schedule a task on one CPU in the proposed 
platform model framework for each entity, such as 
the timer interrupt and bus contention. 

In this approach, an output of a resource or 
service entity is turned into an input of another 
compositional model. The system-level run-time 
analysis can be obtained with the execution flow of 
the models that are solved iteratively. To do so, 
sub-model integration of the multiple inputs and the 
propagation of the intermediate models to the 
subsequent models along with the execution flow 
must be carefully defined by the high-level 
abstraction. 

Moreover, the system considered in this proposed 
framework consists of N tasks running on an M-
core system. All cores are assumed to have identical 
CPUs with synchronized clocks. Each core behaves 
as a single processor and can run at most one task at 
any given time. To reduce the analysis complexity, 
it is assumed that the execution of tasks is 
synchronized with the periodic timer ticks so that 
the CPU time is allocated in a time slot, which will 
be referred as the time quantum t representing the 
time interval [t, t + 1] [8]. 



Journal of Theoretical and Applied Information Technology 
30th September 2017. Vol.95. No.18 

 © 2005 - Ongoing JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
4801 

 

For example, the compositional models for a run-
time task, Task1, in Figure 3 can be defined by logic 
operations, i.e., the AND, OR, and NOR operations. 
The inputs to Task1 include one synchronous event 
by a timer and asynchronous data by another task.  

Thus, it must pend until a timer event is active, 
though it may proceed regardless of data 
availability in the buffer. The timer event is the 
output of a semaphore model driven by timer 
interrupts, whereas the asynchronous data solely 
depend on a memory buffer model. Then, as soon 
as a CPU scheduling model grants a time quantum 
t, Task1 starts its execution. However, the execution 
of Task1 may be suspended by the event of bus 
contentions or any interrupts to CPU1, where the 
time quantum is assigned. 

 

3. CASE STUDY: FAULT-TOLERANCE 
SUPPORT  

 

For mission-critical applications such as flight 
automotive controls, fault-tolerance is the most 
important nonfunctional property in the system, 
although it may be less critical to other applications, 
such as smartphones and consumer electronics. To 
provide high reliability in mission-critical real-time 
control systems, each realized on a multi-core SoC, 
the functional or nonfunctional constraints should 
be met even in the event of transient or permanent 
failures.  

To show the effectiveness and applicability of the 
proposed approach in this paper, a case study to 

fulfill the fault-tolerance of a system using the 
characteristics of multi-core SoC. That is a task can 
be duplicated before an occurrence of a fault or 
migrated in the event of a fault and then be 
switched to ready core immediately with low 

overhead. This type of task migration or duplication 
may not be feasible on a network of multiple 
controllers with single CPUs due to the long delay 
in migrating tasks between separate CPUs, and also 
communicating between controllers, as opposed to 
within a single chip. 

This enables scheduling multiple versions of each 
task on different cores to provide fault-tolerance [9, 
10, 11]. For periodic real-time tasks, static 
allocation and scheduling can be used [9], where 
tasks are allocated and scheduled on different cores 
prior to their execution.  

 

3.1 Software Component and Task Duplications 
on Idle Cores for Fault Detection 

In this paper, duplication approach on multi-core 
SoC at task level is applied to provide fault-
tolerance. The system model assumes a Real-time 
Operating System (RTOS) is running on a multi-
core configured as a symmetric multiprocessor and 
core failures do not occur during the execution of 
the fault-tolerant method, because the execution of 
the proposed methods will take much less time than 
the the MTBF (Mean Time Between Failures) of a 
core [12]. 

In the proposed method, one global scheduler 
exists where all jobs of tasks arrive and each core 

Figure	3:	An	Example	of	Model	Composition	for	Scheduling	Task1 on	CPU1 



Journal of Theoretical and Applied Information Technology 
30th September 2017. Vol.95. No.18 

 © 2005 - Ongoing JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
4802 

 

receives tasks from the global scheduler. When a 
job of task is released, the global scheduler 
determines whether to create a redundant task to 
continue to run in case of task failure on the original 
task. Once the redundant task is created the 
scheduler determines how to allocate the original 
task with a redundant task onto available cores. 
Note that different versions of the same task cannot 
be allocated to the same core to provide fault-
tolerance. Also, once a task is allocated on a core 
then it must execute entirely on the core and its 
context is maintained on that core. However, 
different jobs of the same task may execute on 
different cores.  

To provide fault-detection methods in the 
platform model framework, two duplication 
methods are applied at the time of design and run-
time. In the application structure, any software 
components can be duplicated—most likely, the 
ones that are more dependent (or have more inputs) 
so that the selection would increase the fault-
detection coverage or those that are as early as 
possible in order to minimize the fault-detection 
time—at the time of design, as long as the 
duplications do not violate the resource constraints. 
As shown in Figure 4(a), the software component 
C10 can be duplicated as C’10. However, it should be 
noted that all inputs must be duplicated as well in 
the context of C’10 in order to maintain the data 
integrity in the original software component. Note 
that Table 1 summarized notations used in Figure 4. 

Table	1:	Notations 

Ci Software component 

ri Invocation rate 

oi Release offset 

Di Deadline 

di Data 

Corei CPU core number 

i Task 

mi Message 

     
Synchronous input (precedence 
relation) 

 Asynchronous input (data / message) 

 

Then, the outputs of C10 and C’10 would be 
compared afterwards so that the platform detects 
any faults. This approach has the advantage that the 
timing and resource properties may be guaranteed 
at the time of design time; however, all procedures 
must be statically assigned in the platform. Thus, 
some resources must be reserved for fault detection. 

 

(a) Software	Run‐Time	Model 

 
(b) Task	Model 

Figure	4:	An	Example	of	Fault	Detection	in	the	
Proposed	Platform	Model	

 

In contrast, any tasks can be duplicated at run-
time, as shown in Figure 4(b). A CPU scheduler 
may detect an idle cycle on some of cores; then, it 
would fork an instance of a task for duplication to 
detect faults. Though the context of a duplicated 
task is independent of the original one, the inputs to 
the task delivered by external messages or IPCs 
must be re-sent or multi-casted at run-time. This 
approach has the advantage of fully utilizing the 
idle time on multicore processors; however, the 
support software in the platform must provide 
features such as detecting idle cycles and 
duplicating inputs. 

However, models and algorithms should be 
developed to choose the component or task that is 
about to be duplicated to minimize fault-detection 
latencies and/or maximize the detection coverage of 
a fault. In this study, the primitives are devised and 
evaluated which are required to detect the idle time 



Journal of Theoretical and Applied Information Technology 
30th September 2017. Vol.95. No.18 

 © 2005 - Ongoing JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
4803 

 

quantum in the proposed platform model and to 
duplicate the software component and run-time 
task, including their inputs and the basic logic to 
compare the outputs that determine any occurrence 
of faults. 

 

3.2 Implementations and Simulation Results 
A discrete-time simulator is built to evaluate the 

applicability and effectiveness of the proposed 
platform model framework in terms of the fault 
tolerance. The resource/service model for CPU 
scheduling described in Section 2 is implemented 
on top of the simulator. In addition to the simulator, 
the proposed platform is ported to an embedded 
multicore chip that is configured with four cores, 
operates at 100 MHz, and is simulated by the 
RealView system-level hardware system simulator 
[13]. This simulator is known to require only a 
moderate amount of simulation time, thus making it 
suitable for embedded real-time multicore systems. 
The simulator can mimic various multicore CPUs 
and model different types of memory and a range of 
cache architectures and external peripherals that can 
be customized. 

In this paper, two different simulations are 
performed to show the effectiveness and 
applicability of the proposed framework. The one is 
to estimate the proportion of idle cycles that can be 
used for fault detection and the other is to estimate 
number of necessary cores to guarantee all task 
timing deadlines in the case of one core failure. 

To measure the core CPU scheduling algorithm, 
Pfair was used as the baseline for comparison. The 
Pfair scheduler allows tasks to migrate from one 
core to another within the chip, achieving full 

utilization compared to the partitioned scheduler 
[14]. Note that throughout the experiments with the 
simulator and implementation, the time quantum of 
the scheduler was set to 1 ms. 

An extensive set of experiments is performed 
based on randomly generated tasks. In each 

experiment, tasks were generated with randomly 
chosen parameters that are representative of those 
in an automotive control application. In these 
experiments, task sets are randomly generated using 
the GNU Scientific Library (GSL) [15], with the 
total utilization ranging from 2.0 to 4.0 with a step 
size of 0.1. Note that the base utilization bound of 
50% (i.e., U = 2.0, where M is the number of cores 
on the chip [14]) was chosen on the basis of a real 
application—the electronic throttle control (ETC) in 
the powertrain control system presented in [16]. 

The experimental results for the proportion of 
idle cycles that can be used for fault detection are 
presented to show the applicability of the proposed 
framework. To detect software/hardware faults, an 
instance of a software component or run-time task 
is duplicated upon detecting idle cycles by the CPU 
scheduler. The outputs generated by the original 
software component or run-time task are then 
compared with the outputs of the duplicated one, 
which is executed on idle cores [8]. The 
performance, e.g., the latency or coverage, of this 
fault-detection service highly depends on how the 
idle time quanta are distributed over time. 
Therefore, the probability that an idle time quantum 
exists with respect to the total utilization bound of 
the randomly generated task sets on a four-core 
processor is measured 

Figure	5:	Probability	that	a	Time	Quantum	is	Idle	when	U=50%,	70%,	and	90% 

 



Journal of Theoretical and Applied Information Technology 
30th September 2017. Vol.95. No.18 

 © 2005 - Ongoing JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
4804 

 

As shown in Figure 5, the probability that a time 
quantum is idle is 100% when the task utilization is 
50%. Full duplicate copy of a system can be 
executed in this case, similar to the primary and 
backup approach. However, our proposed platform 
still has idle cores with a probability of 40% for 
very heavy loaded system, i.e., when U = 70% and 
90%. The proposed platform always outperforms 
Pfair. 

On the other hand, since multiple versions of 
each task are created, stored separately in memory 
and run in parallel, meaningful amount of 
computing and storage resources can then be 
inevitably increased in terms of financial and power 
costs. Therefore, the number of necessary cores to 
guarantee all task timing deadline in the case of one 
core failure is also measured to estimate the 
overhead due to the support of fault-tolerance. 

For this, a heuristic suboptimal task allocation 
algorithm when one core failure occurs and the 
corresponding scheduling algorithm to account for 
task duplications is developed. In the experiments 
the period of each task are uniformly distributed 
between 5ms and 100ms. The maximum task 
utilization within a given task set is set to be 0.2 and 
0.5.  

 

Figure	6:	The	Number	of	Necessary	Cores	in	case	of	One	
Core	Failure	when	U=20%	

 

Figure	7:	The	Number	of	Necessary	Cores	in	case	of	One	
Core	Failure	when	U=50%	

 

As shown in Figure 6 and 7, the number of cores 
required to meet all the timing deadline even though 
one core is failed is always less than the case if 
Pfair is used. 

The experimental results show that although the 
proposed approach inevitably requires additional 
redundant resources such as CPU cores, memory 
space, and so on, however, it efficiently provides 
fault-tolerance compared to the existing approaches. 

 

4. CONCLUSIONS  
 

This paper presented the development, 
implementation, and evaluation of an automatic 
platform model generation framework that 
examines the relationship between the application 
software and the execution platform and deploys a 
method for the accurate analysis of the 
nonfunctional properties to account for the platform 
effects on the design and execution of application 
software. To achieve this, the application software 
and its nonfunctional requirements are used to build 
a software model, which will then be automatically 
integrated with the constructed platform model by 
capturing the run-time properties of an entire 
system.  

The proposed platform model is intended to 
provide software designers with a systematic way 
of dealing with design and run-time complexities 
resulting from both hardware and system software 
for real-time embedded applications. The key 
components of the platform model framework are 
the generation of an application run-time task 
model, the analysis of run-time tasks and platform 
dependencies, the building of a repository for the 
behaviors and nonfunctional properties of the 



Journal of Theoretical and Applied Information Technology 
30th September 2017. Vol.95. No.18 

 © 2005 - Ongoing JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
4805 

 

resource/service models, the integration of a 
platform model by composing resource/service 
models from the repository with the dependency 
analysis results, and the deployment of a system-
level analysis of the integrated application run-time 
tasks and platform model. A resource service model 
that supports fault tolerance is deployed to evaluate 
the proposed framework, and the simulation results 
demonstrate its usability and efficacy in supporting 
fault tolerance in a multicore real-time control 
system. Our proposed approach outperforms for 
very heavy loaded system compared to the existing 
approach, e.g. by 4.4% when the CPU utilization is 
70% and 8.5% when the CPU utilization is 90%. 

In the proposed approach, since multiple versions 
of each task are created, stored separately in 
memory and run in parallel, meaningful amount of 
computing and storage resources can then be 
inevitably increased in terms of financial and power 
costs. However, the experimental results shows that 
multicore scheduling algorithm can be applied to 
support fault-tolerance with higher probability to 
detect a fault and to continue running an assign task 
and with smaller number of cores to tolerate the 
failure compare to the previous work. 

While this paper has demonstrated the usability 
of the thus-developed platform model, many 
opportunities for extending the scope of this paper 
remain such as minimizing the need for calibrating 
nonfunctional properties of application software as 
well as underlying hardware and system software 
when embedded systems are developed and 
transferred to a new platform. 

ACKNOWLEDGMENTS: 
This article is an extension of the following 

paper: Sangsoo Park, “A Platform Model 
Framework for the Development of Real-Time 
Control Systems”, International Conference on 
Computing Convergence and Applications 
(ICCCA’16), Busan, 2016, pp.109-112. This work 
was supported by the National Research Foundation 
of Korea funded by the Korean Government (NRF-
2017R1D1A1B03030393). 

REFRENCES:  
 

 [1] Park, S., Olds, W., Shin, K. G., and Wang, S., 
“Integrating Virtual Execution Platform for 
Accurate Analysis in Distributed Real-Time 
Control System Development”, International 
Real-Time Systems Symposium (RTSS '07), 
IEEE, Tucson, 2007, pp. 61-72. 

[2] Selic, B., “Accounting for Platform Effects in the 
Design of Real-Time Software Using Model-
Based Methods”, IBM Systems Journal, Vol. 
47, No. 2, 2008, pp. 309-320. 

[3] Fürst, S. and Bechter, M., “AUTOSAR for 
Connected and Autonomous Vehicles: The 
AUTOSAR Adaptive Platform”, International 
Conference on Dependable Systems and 
Networks Workshop (DSN '16), IEEE/IFIP, 
Toulouse, 2016, pp. 215-217. 

[4] Goswami, D., Lukasiewycz, M., Steinhorst, S., 
Masrur, A., Chakraborty S., and Ramesh, S., 
“Model-Based Development and Verification of 
Control Software for Electric Vehicles”, Proc. 
of Design Automation Conference (DAC '13), 
ACM, Austin, 2013, pp. 1-9. 

[5] Park, S., Shin, K. G., and Wang, S., “Integration 
of Collaborative Analyses for Development of 
Embedded Control Software”, Proceedings of 
the IEEE, Vol. 98, No. 4, 2010, pp. 546-461. 

[6] Zaki, M. Z. M., Jawawi, D. N. A., and Isa, M. 
A., “Integrated MARTE-Based Model for 
Designing Component-Based Embedded Real-
Time Software”, International Journal of 
Software Engineering and Its Applications, Vol. 
9, No. 3, 2015, pp. 154-174. 

[7] Henia, R., Hamann, A., Jersak, M., Racu, R., 
Richter, K., and Ernst, R., “System Level 
Performance Analysis – the SymTA/S 
Approach.”, IEE Proceedings Computers and 
Digital Techniques, Vol. 152, No. 2, 2005, pp. 
148-166. 

[8] Park, S., “Robust Scheduling of Dynamic Real-
Time Tasks with Low Overhead for Multi-Core 
Systems”, International Conference on 
Algorithms and Architectures for Parallel 
Processing (ICA3PP'13), Vietri sul Mare, 2013, 
pp. 69-76. 

[9] Beitollahi, H., and Deconinck, G, “Fault-
Tolerant Partitioning Scheduling Algorithms in 
Real-Time Multiprocessor Systems”, The 12th 
Pacific Rim International Symposium on 
Dependable Computing, IEEE, Washington, 
2006, pp. 296–304. 

[10] Ghosh, S., and Melhem, R., “Fault-Tolerant 
Scheduling on a Hard Real-Time 
Multiprocessor System”, International Parallel 
Processing Symposium, IEEE, Cancun, 1994, 
pp. 775–782. 

[11] Krishna, C. M., and Shin, K. G., “On 
Scheduling Tasks with a Quick Recovery from 
Failure”, IEEE Transactions on Computers, Vol. 
35, No 5, 1986, pp. 448-455. 



Journal of Theoretical and Applied Information Technology 
30th September 2017. Vol.95. No.18 

 © 2005 - Ongoing JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
4806 

 

[12] Srinivasan, J, Adve, S. V., Bose, P., and Rivers, 
J. A., “The Impact of Technology Scaling on 
Lifetime Reliability”, International Conference 
on Dependable Systems and Networks (DSN’04), 
IEEE, Florence, 2004, pp. 177-187. 

 [13] ARM, Design Simulation Model User Guide 
http://infocenter.arm.com/help/topic/com.arm.d
oc.dui0302d/index.html, 2015. 

[14] Carpenter, J., Funk, S., Holman, P., Srinivasan, 
A., Anderson, A., and Baruah, S., “A 
Categorization of Real-Time Multiprocessor 
Scheduling Problems and Algorithms”, in the 
Handbook of Scheduling: Algorithms, Models, 
and Performance Analysis, Chapman and 
Hall/CRC, 2004. 

[15] GNU, GNU Scientific Library, 
http://www.gnu.org/software/gsl/. 

[16] Ishikawa, M., McCune, D. J., and Saikalis, G., 
“CPU Model-Based Hardware/Software Co-
Design for Real-Time Embedded Control 
Systems”, Proc. of the SAE World Congress 
(SAE '07), Detroit, 2007, p. 2007–01–0776. 


