
Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4446

THE SHORTEST PATH FROM SHORTEST DISTANCE ON A
POLYGON MESH

JINHYUNG CHOI, BO ZHANG, KYOUNGSU OH

Soongsil University, 369 Sangdo-ro, Dongjak-gu Seoul, Department of Media, South Korea

E-mail: jinham2049@gmail.com, zhangbo0037@qq.com, oks@ssu.ac.kr

ABSTRACT

We can use a Dijkstra algorithm to calculate shortest paths on a polygon mesh. However, if the number of
vertices of a polygon mesh is large, the efficiency of conventional path searching method that using
Dijkstra algorithm is low. In order to solve this problem, this paper proposes a method to search shortest
distance and path by using the A* algorithm. According to an experiment with the bunny model with 2,503
vertices, the efficiency of searching the shortest path is improved approximately 80% than conventional
methods.

Keywords: A* algorithm, Dijkstra algorithm, Polygon Mesh, Shortest Distance, Shortest Path.

1. INTRODUCTION

With the development of computers these days,
most of case are processing calculations quickly.
However, if the processing of the most basic mesh
in 3D is slow, perhaps it will improve other areas
without solving the most important problems. So
we tried to figure out how to handle the best
possible speed when process with the most basic
polygon mesh in 3D. Recently, the field of
computer graphics modeling has attracted many
people. For example, in paper [1], presented a new
approach that how to using a signal processing
ideas, marked some specific vertices, to efficiently
smooth and editing surfaces of polygon mesh. This
research significantly improves the existing
fairness-norm optimization approaches of editing
3D mesh. In paper [2], author Highly summarized
about searching moving path on 3D space by using
A* and Dijkstra algorithm[3], this novel work
shows that A* algorithm is more efficient and better
than Dijkstra in path searching problem, and
indicated that A* algorithm is the best solution in
solving the shortest pathfinding problem.

We find the shortest and shortest path of two
points in a triangular mesh in 3D space. When
looking at Daikstra, we found that many
unnecessary calculations are performed on
inadequate parts, such as open spaces in
triangulated meshes. Therefore, we propose an
optimized algorithm using A * algorithm.

 This paper presents a method for finding the
shortest path in a polygon mesh. This is useful for
areas such as polygon mesh surface texture

mapping, editing, and more recently developed
computer graphics techniques [4, 5, 6] and methods
for shortest path search in artificial intelligence.
Shortest path on a polygon mesh will be useful for
fields such as computer graphics or artificial
intelligence.

For example, when we divide a polygon mesh
from two user selected position, the shortest path
between those points is a good option for division
path. In addition, it will be useful for 3D game AI
functions such as character automatic walking,
obstacle avoidance, auto driving, and automatic
maze escape and so on.

Melvær’et al suggested a shortest path algorithm
on polygon mesh [7]. They used Dijkstra algorithm
to find the shortest path from one source point to all
vertices. However, because they used using Dijkstra
algorithm, there performance have limitation.

We present a shortest path finding algorithm
based on A* algorithm. Instead of finding a path
from one source position to all destination points,
we find a path between one source position and one
destination point.

This method is divided into two steps as a whole.
The first step is the forward process, which allows
to calculate the shortest distance. Then, the second
step is backward process, which allows to calculate
the shortest path. This method have more advantage
than the previous method when the number of
vertices of the polygon mesh is high.

In the second section of this paper we will look at
the outline of research. The third section will
explain how to find the shortest distance and path.

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4447

And in the fourth paragraph we will compare and
show our experimental results with Dijkstra
algorithm. The last five paragraphs present our
conclusion and discussion.

2. RESEARCH OUTLINE

We want to find the shortest distance and path
between two vertices on a polygon mesh. Polygon
mesh is the most basic representation to represent
objects in computer graphics. In 3D games,
characters and various 3D objects are represented
by various polygon meshes [8]. A polygon mesh
consists of a number of vertices. An edge connect
two vertices and a face is composed of three or
more edges. Figs. 1 and Figs. 2 are polygon mesh
Bunny with 2,503 and 35,947 vertices respectively.
It is the same rabbit shape. With more number of
vertices, we can represent original shape more
accurately but operations or calculations on polygon
mesh become more expensive.

	
Figure	1:	Rabbit	model	with	35947	Vertices.	

	

	

	
Figure	2:	Rabbit	model	with	2503	Vertices	

	
For example, in the case of Figs. 3, there are two

vertices on the surface of a polygon mesh Bunny.
We want to find shortest path on surface of polygon
mesh between two points. This paper discusses how
to find the shortest distance and shortest path
between two vertices S and D on a polygon mesh
by using the A * algorithm.

S

D

d & p

	
Figure	3:	Two	points	on	polygon	mesh	

The A * algorithm is a general graph search
algorithm that finds the shortest path consisting of
nodes and edges [9]. In our problem, the graph is
defined by each vertex as a node and the edge on
the mesh (the line connecting the two vertices) as
the edge. This expresses the shortest path length
(price) through a node n in the A * algorithm.

 (2.1)

 is the length of the calculated shortest path

from the starting vertex to the n, is the estimate
of the shortest distance from the n to the target
vertex, and is the sum of and . A* algorithm
starts from source node. Candidate set is set of
nodes to be selected next. At first, souce node is
added to candidate set. In each iteration, a node in
open set with minimum F value is selected and
move to visited set. Then neighbor of selected node
is added to candidate set. The iteration continue
until destination node is selected from candidate set.		

Figs. 4 shows a simplified representation of the A
* algorithm compared with the Dijkstra algorithm.
The Dijkstra algorithm proceeds all the way from
the starting vertex when searching for the shortest
distance, but A * is a more efficient algorithm
because it looks toward the target vertex like the
black arrows in Figs. 4. The overview of our
algorithm is as shown in Fig. 5.

D
S

	
Figure	4:	Comparison	of	A*	and	Dijkstra	Algorithms	

	

	

	

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4448

	

3. SHORTEST DISTANCE AND PATH

Let us assume that there are two vertices
(starting vertex) and (target vertex) on a polygon
mesh . If the -th point on the polygon mesh is ,
its coordinates and other information can be defined
as follows.

, (3.1)

 are the three-dimensional coordinate

values of the vertex , is the length of the
shortest path between and the starting vertex
on polygon mesh , is the straight line distance
between, and the target vertex . Then
information of and are as follows. is the
three-dimensional straight line distance between
and .

Starting vertex:

Target vertex:

3.1 Start search from the starting vertex

	
We start search from starting vertex S. Get

neighbor vertices around the start vertex S,
calculates each coordinates and information on
them, and stores them in the candidate set . In this
paper, is calculated as follows.

 (3.1.1)

 can be easily obtained by the distance formula
between two points in 3D space. The vertex with
the smallest value is selected.

(3.1.2)

For example, in Figs. 6 there are five vertices
 around the start vertex . is smallest

among values (, the vertex
 is selected as next vertex. Herein, (The

shortest distance on polygon mesh) which is the
information of the vertex , is the straight line
distance between the starting vertex and itself.

are calculated in the same way.

 (3.1.3)

After performing the neighbor search, the visited
set P and the candidate set Q are as follows. S who
has already visited does not visit again.

 , (3.1.4)

S & D

distance
&

path

A* Algorithm

Input

Output

Navigate towards
goal

Search
Shortest
distance

Search Shortest path

Search around the
starting vertex

Figure 5: Research	composition	diagram

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4449

3.2 Navigate towards goal
	

If the selected vertex is calculated after the
search of the start vertex is completed, the vertex

becomes the new center point. Again, A *
algorithm is applied to search for the final target
vertex.

In Figs. 7, there are five vertices around :
vertices . The value of the
vertex and the value of should be newly
calculated. If is the smallest among the values
(, the vertex is selected as
next node. This is repeated until we arrive at the
final target point D.

 In Figs. 8, It shows the process of step 3 in the
same way as the above. As a result, we go ahead
and search for .	

3.3 Calculate shortest distance

Let’s think about calculating vertex . We want
to calculate shorted distance from S to vertex on
polygon mesh. We started from S and currently
selected vertex is . There are two triangles

 and . The shortest path is from
to through one of these triangles

S
(0,hS)

N5
(g5,h5)

N2
(g2,h2)

N3
(g3,h3)

N4
(g4,h4)

N1
(g1,h1)

D
(gD,0)

Figure	6: Navigate	around	the	starting	point

N3

N4

N1

N6
(g6,h6)

N7
(g7,h7)

N5
(g5,h5)

N2
(g2,h2)

D
(gD,0)

S
(0,hS)

Figure 7: Step	of	A	*	algorithm	search

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4450

Let’s think about the shortest path through
. The two triangles and

on the polygon mesh have a common edge ,
and the two triangles are fixed on the mesh and
their shapes do not change. Therefore, if we rotate
any one of two triangles around edge they can
be in a same plane. Then is a rectangle.
Using this rectangle, the distance) of the
shortest path between the two vertices and can
be calculated.

This situation is expressed like in Figs.9. can
be obtained by using the cosine law. Here, letting

 be the straight line distance between the vertices
 and . The calculation formula thereof is as

follows.

,	ሺ 	 (3.3.1)	

The shortest distance is as follows.

 (3.3.2)

The is the angle of the edges and ,
and is the angle of the edges and . The
calculation is like this.

 (3.3.3)

 (3.3.4)

Applying equations (3.3.3) and to
, we can compute the value of .

S

N1

N7

N2

ߚ
ߙ

	

Figure	9:	Calculating	rectangle	diagonal	(1)	

 After calculating the shortest distance , the
visited set P and the candidate set Q are the same as
follows.

 , (3.3.5)

Figure 8: Step 3 of	A	*	algorithm	search

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4451

3.4 Calculate shortest distance
	

Now, we have obtained the shortest distance
value through the Forward process, but the shortest
path is not yet accurate, so a backward process is
needed. The backward process is the process of
approaching from the target vertex to the start
vertex by using the information that calculated in
the forwarding process. Through this step, we can
know the exact shortest path.

First, finding the key point (the last vertex
entered the set) closest to the target vertex
through the set . Assuming it is , so there is a
unique edge between and the target vertex

. The two triangles sharing this edge are
and . In this paper, we use the half-edge
data structure, so we know which direction that the
shortest path actually comes from. If the shortest
path actually comes from as shown in Figs.
10, we need to calculate the exact position of the
intersection of the diagonal lines on the rectangle

. We can see that the actual shortest path
comes from to . The location of can be
calculated by computing the intersection of the
rectangle like the method of section 3.3 in
this paper.

Y

Nj (gj,hj)

S (0,H)

Ni (gi,hi)

Nk (gk,hk)

D(gD,0)

Figure	10:	Calculating	rectangle	diagonal	intersection	

(1)	

Then, in Figs. 11, the intersection is at the edge
, the two triangles that sharing it are

and . Since is a triangle that has
already been used, it is not considered. Therefore,
the shortest path should come from the other two
edges and except for edge in

. Compute (The front vertex of on
the shortest path) of the two possibilities, then
select the one with the shorter distance. Repeat
these steps until the start vertex is reached.
Finally, we can get the final shortest path by
connecting all the intersections.

YYn-1S (0,H)

Ni (gi,hi)

Nk (gk,hk)

Nj (gj,hj)

Nq (gq,hq)

S’(0,H)

Y’n-1

D(gD,0)

Figure	11:	Calculating	rectangle	diagonal	intersection	

(2)	

In Code 1 shows the Pseudocode code of the A*
algorithm.

Code 1: A* Algorithm Pseudocode

function A*(start, goal)

open_list = set containing start
closed_list = empty set
start.g = 0
start.f = start.g + heuristic(start, goal)
while open_list is not empty

current = open_list element with lowest f cost
if current = goal

return construct_path(goal) // path found
remove current from open_list
add current to closed_list

for each neighbor in neighbors(current)

if neighbor not in closed_list
neighbor.f = neighbor.g
+ distance(neighbor, goal)
if neighbor is not in open_list

add neighbor to open_list
else

openneighbor = neighbor in open_list
if neighbor.g < openneighbor.g

 openneighbor.g = neighbor.g
 openneighbor.parent

= neighbor.parent
return false // no path exists

function neighbors(node)

neighbors = set of valid neighbors to node
for each neighbor in neighbors

if neighbor is diagonal
neighbor.g = node.g + diagonal_cost

else
neighbor.g = node.g + normal_cost

neighbor.parent = node
return neighbors

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4452

function construct_path(node)

path = set containing node
while node.parent exists

node = node.parent
add node to path

return path

	

4. EXPERIMENT
	

This	 experiment	 is	 performed	 by	 using	 the	
Bunny	 model	 with	 a	 total	 of	 2,503	 vertices	 to	
compare	the	results	of	Dijkstra	and	A*	algorithm,	
and	 set	 starting	vertex	 to	 the	 first	 vertex	of	 the	
Bunny	 model.	 The	 target	 vertex	 is	 calculated	
from	 the	 second	vertex	 to	 the	 last	 vertex	of	 the	
mesh,	and	 the	experimental	 result	 is	as	 follows.	
Therefore,	this	experiment	is	to	find	the	shortest	
path	and	the	shortest	path	from	the	mesh	to	all	
the	 vertices.	 As	 a	 result,	 we	 have	 found	 the	
distance	 of	 the	 vertices,	 the	 number	 of	
calculations.	

In	 Figs.	 12,	 the	 X‐axis	 of	 the	 graph	 is	 the	
shortest	 path’s	 value	 between	 the	 start	 vertex	
and	 the	 target	vertex,	and	 it	 is	 sorted	according	
to	 the	 size.	 The	 Y‐axis	 means	 that	 dividing	 A*	
and	Dijkstra	algorithm’s	Push	Count	values,	and	
multiplying	 100	 to	 them.	 The	 results	
demonstrate	that	the	A*	algorithm	improves	the	
searching	 efficiency	 about	 80%	 on	 average,	

compared	with	the	results	of	Dijkstra	algorithm.	

Next,	In	Figs.	13,	the	X‐axis	value	of	this	graph	
is	the	same	with	Figs.	12,	and	the	Y	axis	means	a	
push	count	value	when	the	shortest	distance	test	
is	 completed.	 As	 a	 result,	 it	 can	 be	 seen	 once	
again	 that	 the	 number	 of	 calculations	 of	
searching	the	shortest	distance	and	path	of	2,503	
vertices	on	polygon	mesh	 is	 improved	by	about	
80%	 compared	 with	 the	 A*	 and	 Dijkstra	
algorithm.	

	

5. CONCLUSION & DISCUSSION

In	this	paper,	we	propose	a	method	to	find	the	

shortest	distance	and	the	path	between	with	two	
vertices	 on	 a	 polygon	 mesh	 by	 using	 the	 A*	
algorithm.	 Experimental	 results	 show	 that	 the	
proposed	 method	 improves	 the	 path	 searching	
efficiency	 by	 about	 80%	 compared	 with	 the	
conventional	 method	 by	 using	 the	 Dijkstra	
algorithm.	 Therefore,	 when	 calculating	 the	
shortest	distance	and	the	path	of	a	polygon	mesh	
with	 a	 large	 number	 of	 vertices,	 using	 this	
method	 can	 be	 calculated	more	 efficiently	 than	
the	conventional	method.		

Our	 method	 is	 faster	 than	 using	 Dijkstra's	
algorithm.	 But	 we	 have	 a	 trivial	 problem	 from	
the	results	of	the	experiment.	It	is	sometimes	the	
case	 that	 the	 value	 of	 the	 calculated	 shortest	

Figure	12: Comparison of	A* and Dijkstra algorithms	

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4453

distance	is	not	the	same	as	that	of	the	Dijkstra’s	
method.		

When	 using	 the	 A	 *	 algorithm,	 since	 we	
calculate	 the	 	values	 by	 measure	 the	
distance	of	two	points,	this	cases	are	sometimes	
occurred.	The	assumptions	about	how	to	find	the	
shortest	distance	of	our	algorithm	are	as	follows.	
The	 	in	Eq.	(2.1)	must	always	be	equal	to	or	
less	than	the	distance	between	two	points	on	the	
actual	 3d	 polygon	mesh,	 but	 occasionally	 there	
are	 occasions	 when	 it	 is	 not.	 That's	 why	 this	
happens.

However,	 this	 case	 is	 very	 rare.	 In	 our	
experiment,	 this	 cases	 are	 two	 out	 of	 2503	
results.	We	have	found	that	the	distance	error	is	
less	than	about	0.1%	of	the	distance	of	Dijkstra’s	
method.	 Therefore,	 we	 purpose	 our	 algorithm	
better	 than	 dijkstra's	method,	 because	 of	 faster	
than	 dijkstra's	 method	 although	 this	 method	
rarely	occurred	error.	

Recently,	 artificial	 intelligence	 has	 been	
developed	in	various	ways	in	the	field	of	graphic	
arts.	Among	them,	areas	that	can	utilize	various	
3D	 space	 shortest	 path	 and	 distances	 such	 as	
automatic	 3D	 modeling	 field,	 user	 input	 based	
mesh	 generation,	 and	 3D	 texture	 mapping	 are	
being	 developed.	We	 believe	 our	 algorithm	 can	
be	used	more	efficiently	in	this	area.	

In	 terms	 of	 future	work,	 firstly,	we	 decide	 to	
study	 and	 compare	with	 another	 good	 shortest	
pathfinding	algorithm	on	3D	polygon	mesh,	then	
obtain	 the	 results	 of	 the	 advantages	 and	
disadvantages	 of	 each	 algorithm.	 Secondly,	 we	
plan	 to	 improve	 our	 Algorithm	on	 its	 efficiency	
and	 accuracy	 by	 using	 technique	 of	 artificial	
intelligence,	such	as	BP	neural	network	or	SVM.	
Thirdly,	 we	 are	 considering	 an	 artificial	
intelligence	 framework	 that	 can	 improve	 the	
algorithm	 of	 our	 algorithm	 and	 automatically	
generate	 the	 shortest	 distance	 in	 the	 polygon	
mesh	model	as	preprocessing.	

REFRENCES:

[1] Gabriel Taubin., “A Signal Processing Approach

to Fair Surface Design”, In Proceedings of the
22nd annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’95,
ACM, 1995, pp.351-358

[2] Moh. Zikky., “Review of A* (A Star) Navigation
Mesh Pathfinding as the Alternative of
Artificial Intelligent for Ghosts Agent on the
Pacman Game”, EMITTER International
Journal of Engineering Technology, Vol. 4, No.
1, 2016, pp. 141-149

[3] Addison-Wesley, “Dijkstra’s algorithm”,
Implementing discrete mathematics:
Combinatorics and graph theory with
mathematica, Reading, MA (1990), pp. 225–
227

Figure	13:	Comparison	of	A*	and	Dijkstra	algorithms’	Push	Count

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4454

[4] Varady T., Martin R R., and Cox J., “Reverse
engineering of geometric models—an
introduction”, Computer-Aided Design, 29(4),
1997, pp. 255-268

[5] Jinsuk Yang, Kyoungsu Oh, Hyung-Il Choi.,
“Mesh Editing with an Intuitive User Interface”.
ICSCME'16, April 12-13, 2016, pp. 47-53

[6] Schmidt R., Grimm C., Wyvill B., “Interactive
Decal Compositing with Discrete Exponential
Maps”, ACM Trans, Graph, 25, 2006, pp. 605–
613.

[7] Melvær E., Reimers M., “Geodesic Polar
Coordinates on Polygonal Meshes”, Computer
Graphics Forum, Volume 31, number 8, 2012,
pp. 2423–2435

[8] Colin Smith, “On Vertex-Vertex Systems and
Their Use in Geometric and Biological
Modeling”, Doctoral Dissertation, 2006.

[9] Delling D., Sanders P., Schultes D., Wagner, D.,
“Engineering route planning algorithms”,
Algorithmics of Large and Complex Networks:
Design, Analysis, and Simulation. Springer,
2009, pp. 117–139

