
Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4132

A NEW APPROACH FOR MEASURING SEMANTIC
SIMILARITY OF ONTOLOGY CONCEPTS USING DYNAMIC

PROGRAMMING

1ABDELHADI DAOUI, 2NOREDDINE GHERABI AND 3ABDERRAHIM MARZOUK
13 Hassan 1st University, FSTS,,IR2M Laboratory, Settat, Morocco

2 Hassan 1st University, ENSAK, LIPOSI Laboratory, Khouribga, Morocco
E-mail: 1abdo.daoui@gmail.com, 2gherabi@gmail.com, 3amarzouk2004@yahoo.fr

ABSTRACT

Today, with the emergence of semantic web technologies and increasing of information quantity, searching
for information based on the semantic web has become a fertile area of research. For this reason, a large
number of studies are performed based on the measure of semantic similarity. Therefore, in this paper, we
propose a new method of semantic similarity measuring which uses the dynamic programming to compute
the semantic distance between any two concepts defined in the same hierarchy of ontology. Then, we base
on this result to compute the semantic similarity. Finally, we present an experimental comparison between
our method and other methods of similarity measuring. Where we will show the limits of these methods
and how we avoid them with our method. This one bases on a function of weight allocation, which allows
finding different rate of semantic similarity between a given concept and two other sibling concepts which
is impossible using the other methods.

Keywords: Semantic Web, Ontologies, Similarity Measuring, Dynamic Programming, Semantic Similarity,

Semantic Distance.

1. INTRODUCTION
 Recently, with explosion of information
quantity in the web and the richness of natural
languages used during the redaction of this
information, the traditional search based on
keywords has become useless (does not meet the
needs of Internet users because the result depends
on the keywords chosen by Internet users
themselves). Therefore, a new type of search which
is based on the semantic web [1] has become a
necessity. Thus, the search engines that want to
implement this new type of search should be able to
measure the semantic similarity. For this reason, the
semantic similarity measuring has become a fertile
domain of research.

In this paper, our work focuses on
semantic similarity measuring between concepts of
ontology. This concept is a base of several works of
research. The authors of [2] propose a method to
compute the semantic similarity between words
using a multiple information resources (lexical,
corpus and taxonomy). Jeffrey Hau, William Lee

and John Darlington in [3] present a method to
define the compatibility between semantic web
services [4] [5] which are annotated by OWL
ontologies (Web Ontology language [6]) using the
semantic similarity. Also, we can find this type of
measure between ontologies [7] [8], for example
the authors of [8] propose a new method that allows
computing the semantic similarity between two
ontologies in three steps. In the first step, the
authors compute the semantic similarity between
the nodes of the two ontologies. Then, they
compute the semantic similarity between the
relations of the two ontologies. At last, the authors
combine these two previous results to form one
unified value which represents the semantic
similarity computed between these two ontologies.

Our proposed method aims to compute the

semantic similarity between any two concepts in
the same hierarchy of ontology (in this paper we
use the term graph to describe ontology). For this,
in the first step, we generate a routing table which
contains all possible paths from these nodes to the
root node. Then, we define the shortest paths on
which we will apply the dynamic programming to
obtain the value of semantic similarity between

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4133

these two nodes. In [9] the authors base on the same
technique (dynamic programming) for computing
the rate of similarity between outlines of 2D shapes
using the extraction of XML data which represent
local and global features of these outlines. Also,
Pelin Dogan, Markus Gross and Jean-Charles Bazin
in [10] have used the dynamic programming
technique for temporal aligning of video frames
with narrative sentences (the descriptions of natural
language accompanying these videos). To do that,
the authors relied on textual and visual information
that provides automatic timestamps for each
narrative sentence.

 The current method is designed to be able
to detect the small difference in the rate of semantic
similarity between a given concept and two other
sibling concepts defined in the same hierarchy of
ontology, which is missed in the other methods of
semantic similarity measurement, already exist in
the literature [11] [12] [13].

The rest of the current paper is organized

as follows: section 2 presents our method. Then,
section 3 provides the experimental comparison
with some other methods of similarity measuring.
Finally, section 4 is devoted to our conclusion.

2. PROPOSED METHOD
For computing the semantic similarity

between two concepts present in the same hierarchy
of ontology, we have designed a new method which
is summarized in figure 1. This method supports
the ontologies which use only the relations of type
“is-a” (inheritance). Therefore, our graph will be an
oriented graph towards the root node.

 Figure 1: A Graphical Representation of the Proposed
Algorithm.

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4134

<?xml version=”1.0” encoding=”utf-8” ?>
<SPaths> //the list of calculed shortest paths
 <SPath ID=”F”> //a shortest path from a given
node to the root node
 <SNode> </SNode> //the start node
 <Node> </Node>
 <Node> </Node>
 .
 .
 .
 <RNode> </RNode> //the root node
 </SPath>
 .
 .
 .
</SPaths>

<!ELEMENT SPaths (SPath*)>
<!ELEMENT SPath (RNode,Node*,SNode?)>
<!ELEMENT SNode (#PCDATA)>
<!ELEMENT Node (#PCDATA)>
<!ELEMENT RNode (#PCDATA)>
<!ATTLIST SPath id ID #REQUIRED>

Our designed method allows, in the first
place, the generation of the routing table for the two
concepts which we need to compute the semantic
similarity between them and defining the shortest
paths (section 2.1). Then, we use the dynamic
programming technique to calculate the semantic
distance between these two concepts (section 2.2).
Finally, in section 2.3 we compute the semantic
similarity between these concepts using the
semantic distance calculated in the previous
section.

2.1 Routing Table Generation
The routing table represents a table

containing the two nodes that we need to measure
the semantic similarity between them and all
possible paths from these nodes to the root node.
We consider the following ontology:

 Figure 2: An Example Of Ontology.

For example, we need to generate the routing table
for the node F presented in figure 2.

Table 1: Routing Table
Nodes All paths to the root node

F (F,B,A);(F,G,C,A);(F,G,H,D,A)

By analysis of this routing table, we have

found three paths ((F, B, A);(F, G, C, A);(F, G, H,
D, A)) between the node F and the root node. The
shortest path will be the path, which has the
minimum number of nodes among the generated
paths in the routing table. In our example the
shortest path between the node F and the root node
is (F, B, A).

If we have two equal paths between the

node J and the root node (figure 2), the shortest

path for the node J, which will be used, is the one
that has more nodes in common with the second
concept with which we want to compute the
semantic similarity. For example, the shortest path
for the node F is (F, B, A) and for the node J, we
have two equal paths (J, B, A) and (J, C, A). But we
will choose (J, B, A) because this path has more
nodes in common with the concept (F, B, A)
compared to (J, C, A). This technique allows
minimizing the semantic distance between the
concepts that we want to compute the semantic
similarity between them.

To avoid redefining the shortest path for a

given node more than once, we proposed to use an
XML file to store the shortest paths computed for a
potential use in the future. This XML file follows
the structure of figure 3.

Figure 3: XML File For Storing The Shortest Paths

For validating this XML file, we use the following
DTD file:

Figure 4: The Corresponding DTD File.

2.2 Semantic Distance Calculation
At this level, for computing the semantic

distance between two concepts we use the
dynamic programming technique to obtain the
value of alignment between the two sequences

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4135

Function semanticDistance(sequence1,sequence2)
// sequence represents the nodes designations
// list that constitute the SPath
For i=0 to m do
 M(i,0) = i
End for
For j=0 to n do
 M(0,j) = j
End for
For i=1 to m do
 For j=1 to n do
 if sequence1 (i-1)== sequence2 (j-1) then
 subCost=0
 else
 subCost=1.5+ ε(i-1)+ ε(j-1)
 End if
 delCost=1+ ε(i-1)
 insertCost=1+ ε(j-1)

(1, 1)
M (i, j) m in (i 1, j)

D (i, j 1)

D i j su b C o st
D d e lC o st

insertC o st

          

 End for
End for
Return M(m,n) //the semantic distance value

of symbols composing the shortest path for each of these two concepts. The value of alignment will
be the semantic distance between these two
concepts. In this paper, we use an algorithm of
dynamic programming called Levenshtein Edit
Distance [14], this algorithm allows computing the
distance between two strings through a set of
operations, where an operation can be a
substitution, a deletion or an insertion of a single
character. But we are adapting it to support
execution of these three operations on a motif (node
designation) that can be a single character or even a
word.

Our adapted algorithm for computing the

sematic distance between two concepts is designed
as follows:

(i
(1, 1) / /

(i, j) min (i 1, j) F / / adeletion
D(i, j 1) F / / aninsertij) on

1)
(1

Di j subCost asubstitution
D D 


          


 

D (i, j) represents the value of edit distance in
position (i, j), F represents a fixed penalty with a
value equal to one and subCost represents a cost.
This cost is equal to zero if the nodes that exist in
the positions (i-1) and (j-1) are identical and equal
to 1.5+ ε(i-1)+ ε(j-1) if they are not identical.

1()[depth(n)(1](Gn)) 1
N n

NTNodes   

Where, ε(n) represents the weight of the node n,
depth (n) represents the depth of the node n in the
shortest path (the depth of the root node is equal to
zero), N(n) represents the order number of this node
between their siblings in the graph G (this number
begins from zero). And NTNodes(G) represents the
total number of nodes in the graph G.

The formula 1 will be used for computing
the matrix M[0,…,m;0,…,n], where m and n
represent the length of sequences to be compared.
We find the semantic distance value in M [m; n].

Figure 5: Our Adapted Algorithm For Semantic Distance
Computing.

Consider the ontology presented in figure

2, if we want to compute the semantic distance
between the nodes I and F, we need to define the
shortest path between these nodes and the root node
(in our case is A) by using the shortest path
function. After execution, we obtain (A, E, I) and
(A, B, F) like a result. Then, we compare these two
sequences by using the dynamic programming:

Table 2: An Example of Application of Dynamic
Programming Algorithm.

 A E I
 0 1 2 3

A 1 0 1.44 2.773
B 2 1.5 2.44 3.773
F 3 2.833 3.773 4.606

After the computation of matrix M, we can see that
the semantic distance between the concepts (A, E,
I) and (A, B, F) is equal to 4.606.

(1)

(2)

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4136

Input: C1, C2, deg
Output: semantic similarity value

If C1==C2 then
 SDis=0
Else
 Generate the routing table for C1 and C2
 Define SPath1 and SPath2
 SDis= semanticDistance(SPath1, SPath2)
End if

1
deg* 1SSim SD is 

 Return SSim

For minimizing the execution time of
semantic distance calculation, we have designed an
intermediate phase, which execute before semantic
distance calculation and allows deleting the all
common nodes between SPath1 and SPath2 except
one node that verifies these two conditions:

1. All nodes either in SubSPath1 or SubSPath2 are connected.
2. SubSPath1 ∩ SubSPath2 = n.

Where, SPathi represents the shortest path between a given node and the root node, SubSPathi represents the sub shortest path of SPathi that we find after deleting the all common nodes from SPath1 and SPath2 except the node n, which must remain in common between these two sub shortest paths.
For example, we consider the graph shown

previously in figure 2. In this graph, we have the
two shortest paths for the nodes J and F are (J, B,
A) and (F, B, A). The computation of semantic
distance on these paths is burdensome either for
execution time or for memory because the
calculation applied to node A is useless (especially
if we have a long set of nodes in common). For this,
we can use the sub shortest paths (J, B) and (F, B)
in their place.

2.3 Semantic Similarity Calculation
In this section, we exploit the semantic

distance computed previously in this paper to
define the semantic similarity using an inverse
relation between these two concepts (semantic
distance and semantic similarity). By analyzing the
output value of the semantic similarity function, we
can categorize it in three categories:

1. The two concepts are the same.
2. Nothing in common between them.
3. There is a rate of semantic similarity
between them.

Therefore, this function should verify three
conditions:
1. ,)

, ,)

(: 0 (A,B) 1
2. : (A,A) 1
3. (: (A,B) SDis(A,C)then

SSim(A,B) SSim(A,C)

G SSim
G SSim

A B
A

G if SDiA B sC

   
  
  



Where A, B and C represent three concepts of
graph G, SSim represents the semantic similarity
and SDis represents the semantic distance.
To compute the semantic similarity in the current
paper, we have used the function proposed in [13].

1(,) (0 deg 1)deg* (,) 1SSim A B SDis A B  
A and B represent two concepts that we want to
compute the semantic similarity between them, the
parameter “deg” represents the impact degree of
Semantic distance on semantic similarity and its
concrete value will be defined in the experience
phase.

2.4 Global Algorithm
Global algorithm represents the algorithm

of our proposed method for computing the semantic
similarity between two concepts of hierarchical
ontology (all their concepts are connected by the
same relation type “is-a”).

Figure 6: Our Proposed Algorithm.

3. EXPERIMENTS
 This section is devoted to experimental
comparison between our proposed method and two
other methods of semantic similarity measuring.
For this, we have used a fragment of ontology
hierarchy shown in figure 7.

(3)

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4137

Table 3: Computing Semantic Similarity Using [15].
 Animal Bird Fish Shark Canary Ostrich Pug

Animal 1 0 0 0 0 0 0
Bird 0 1 0 0 0 0 0
Fish 0 0 1 0 0 0 0

Shark 0 0 0 1 0 0 0
Canary 0 0 0 0 1 0 0
Ostrich 0 0 0 0 0 1 0

Pug 0 0 0 0 0 0 1

Table 4: Computing Semantic Similarity Using [13].
 Animal Bird Fish Shark Canary Ostrich Pug

Animal 1 0,71 0,71 0,58 0,58 0,58 0,58
Bird 0,71 1 0,55 0,47 0,76 0,76 0,47
Fish 0,71 0,55 1 0,76 0,47 0,47 0,47

Shark 0,58 0,47 0,76 1 0,41 0,41 0,41
Canary 0,58 0,76 0,47 0,41 1 0,62 0,41
Ostrich 0,58 0,76 0,47 0,41 0,62 1 0,41

Pug 0,58 0,47 0,47 0,41 0,41 0,41 1

Figure 7: A Fragment of Ontology Hierarchy.

For a better interpretation of our method,
we applied the algorithm of similarity computation
on the example of figure 7.

The tables below give an overview of the

calculation of semantic similarity by applying our
method and comparing with other methods where
we set the parameter "deg" to 0.2. Each concept is
defined by a starting node and an arrival node (last
node), in the tables the concepts are represented by
the last node. For example, the concept (Animal,
Fish, Shark) will be represented by the node called
Shark.

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4138

Our method is based on two steps to compute the
semantic similarity.
These steps are defined as follows:
Step 1: computing the semantic distance.
Table 5: Semantic Distance Computing Using Dynamic

Programming.
 Animal Fish Shark
 0 1 2 3

Animal 1 0 1.458 2.782
Bird 2 1.5 2.458 3.782

Table 3 represents the results of the first

method [15] which can only find the similarity
between the same concepts, table 4 represents the
results of the second method [13] which can find a
rate of similarity between concepts of ontology as
our proposed method, where our results are
presented in the table 6. In contrast to our method,
the method presented in table 4, gives the same rate
of semantic similarity between a given concept and
all the concepts, which represent a direct
specification of this concept. For example the
semantic similarity between the concept (Animal)
and the concepts (Animal, Bird) and (Animal, Fish)
is equal to 0.71. But in the reality, the semantic
similarity between these concepts is different. For
this reason, the rates of semantic similarity
computed using our proposed method on the same
concepts are different. For example, the rate of
semantic similarity between (Animal) and (Animal,
Bird) is equal to 0,769 and between (Animal) and
(Animal, Fish) is equal to 0.774. Therefore, our
method can detect even the small difference of
semantic similarity rate, which resides between a

Step 2: computing the semantic similarity.

The formula for calculating the semantic similarity
is defined as follows:
 SSim (C1, C2)=1/(0.2*3.782+1) = 0.569

We follow these two steps to compute the
semantic similarity using our method between each
two ontological concepts and the result of similarity
is stored in table 6.

given concept and two other sibling concepts
defined in the same hierarchy of ontology which is
missed in the other methods.

Also, the semantic similarity between two
concepts more specific is greater than two others
more generalist. For example, the semantic
similarity between the concepts (Animal, Bird,
Canary) and (Animal, Bird, Ostrich) is greater than
the semantic similarity between (Animal, Bird) and
(Animal, Fish).

In addition, we use the XML file for

storing the shortest paths already computed. This
technique allows minimizing the execution time
that can be reserved every time for redefining these
shortest paths.

The method proposed in this paper is
based on a dynamic programming algorithm, which
is well known by its robustness and speed.
Therefore, this one can compute the semantic
similarity between concepts of hierarchical

Table 6: Computing Semantic Similarity Using Our Method.
 Animal Bird Fish Shark Canary Ostrich Pug

Animal 1 0.769 0.774 0.643 0.638 0.639 0.641
Bird 0.769 1 0.67 0.569 0.79 0.791 0.568
Fish 0.774 0.67 1 0.791 0.569 0.569 0.571

Shark 0.643 0.569 0.791 1 0.52 0.521 0.522
Canary 0.638 0.79 0.569 0.52 1 0.699 0.519
Ostrich 0.639 0.791 0.569 0.521 0.699 1 0.519

Pug 0.641 0.568 0.571 0.522 0.519 0.519 1

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4139

ontology in very short time even in industrial size
ontologies.

4. CONCLUSION
In this paper, we have presented a new

method for computing the semantic similarity
between two concepts of the same ontology using
the dynamic programming. Then, we have
compared it against other methods of semantic
similarity measuring and the obtained results are
very interesting. These results prove that our
method resolves the limitations of the other
methods in some cases (where we need to compute
the semantic similarity between a given concept
and two other sibling concepts defined in the same
ontology).

This method is not able to compute the
semantic similarity between two concepts defined
in two different ontologies. For this reason, in the
future work, we are interested to compute the
semantic similarity between concepts defined in
different ontologies.

REFERENCES
[1] T. B. Lee, J. Hendler, O. Lassila, “The

semantic web”, Scientific America, 2001, pp.
1-18.

[2] Y. Li, Z. A. Bandar, D. McLean, “An
Approach for Measuring Semantic Similarity
between Words Using Multiple Information
Sources”, IEEE Transactions on Knowledge
and Data Engineering, Vol. 15, No. 4, 2003,
pp. 871-882.

[3] J. Hau, W. Lee, J. Darlington, “A Semantic
Similarity Measure for Semantic Web
Services”, the 14th international conference on
World Wide Web, Chiba, Japan, 2005.

[4] M. Burstein, C. Bussler, M. Zaremba, T. Finin,
M. N. Huhns, M. Paolucci, A. P. Sheth, S.
Williams, “A Semantic Web Services
Architecture”, IEEE Internet Computing, Vol.
9, No. 5, 2005, pp. 52-61.

[5] S. A. McIlraith, D. L. Martin, “Bringing
Semantics to Web Services”, IEEE Intelligent
Systems, Vol. 18, No. 1, 2003, pp. 90-93.

[6] https://www.w3.org/TR/owl2-overview, last
accessed 17/11/2016.

[7] F. Li, “An Improved Method about the
Similarity Calculation of Ontology”,

International Conference on Multimedia
Technology, IEEE, 2010, pp. 1-4.

[8] H. Wang, X. Han, “Research on Similarity of
Semantic Web”, International Conference on
Computer Application and System Modeling,
IEEE, 2010, pp. 166-169.

[9] N. Gherabi, M. Bahaj, “Outline Matching of
the 2D Shapes Using Extracting XML Data”,
ICISP 2012, Springer, Heidelberg, 2012, pp.
502–512.

[10] P. Dogan, M. Gross, J.C. Bazin, “Label-Based
Automatic Alignment of Video with Narrative
Sentences”. ECCV 2016, Springer
International, Switzerland, 2016, pp. 605–620.

[11] Z. Wu, M. Palmer, “Verb semantics and
lexical selection”, In Proceedings of the 32
Annual Meeting of the Associations for
Computational Linguistics, 1994, pp. 133-138.

[12] D. Lin, “An Information-Theoretic Definition
of similarity”, In Proceedings of the Fifteenth
International Conference on Machine Learning.
ICML 1998.

[13] J. Ge, Y. Qiu, “Concept Similarity Matching
Based on Semantic
Distance”, the 4th International Conference on
Semantics, Knowledge and Grid, IEEE, 2008,
pp. 380-383.

[14] E. S. Ristad, P. N. Yianilos , “ Learning
String-Edit Distance”, IEEE Transactions on
Pattern Analysis and Machine Intelligence,
Vol. 20, No. 5, 1998,522-532.

[15] F. Giunchiglia, P. Shvaiko, M. Yatskevich ,
“S-Match: an algorithm
and an implementation of semantic matching”,
ESWS 2004, Springer, Heidelberg, 2004, pp.
61-75.

