
Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4089

A NOVEL FRAMEWORK FOR SERIAL PROGRAM FULLY
AUTO PARALLELIZATION BASED ON OPENACC

1WANG XIAORUI, 2JIANG HUIFANG, 3CAI DA

1 School of Computer Science and Technology, China University of Mining and Technology, Jiangsu,
Xuzhou 221116,China

E-mail: 1445023924@qq.com, 2jhf@cumt.edu.cn,3neko1990@gmail.com

ABSTRACT

On the basis of OpenACC programming standard (for open accelerators), a new framework was proposed,
whose name is GENerate OpenACC, or GENACC for short. GENACC can automatically accelerate the
serial code. The static program of the source code are analyzed aimed to recognize the hot snippets and
analyze the computation property. And finally OpenACC directives are added to the source code in order to
accelerate the serial code. According to the experiments on the NPB test set, the results show that
GENACC can accurately produce compiler directive, and the source codes show fine performance on
different amount of data.
Keywords: OpenACC, Auto-Parallelization, LLVM translator, Inheritance code, NPB test set

1. INTRODUCTION

As the representative of the GPU products,
NVIDIA and AMD has rapidly developed.
Nowadays, an ordinary video card has the
computing performance like a super computer.
CUDA (Compute Unified Device Architecture) is a
programming platform for GPU parallel computing
under the trend of CPU / GPU heterogeneous
computing, and cites different parallel
programming models and instruction sets. The more
and more general language OpenCL was introduced
later, which could support more processors and do
accelerator operation on the bottom of the hardware
compared with the CUDA. But the development is
more difficult.

For a large number of inheritance codes, the
development process has cost a lot. Years of stable
usage also proved the reliability of these codes. If it
has been replaced, more costs need to be paid. Also,
the reliability of the new code could not be
guaranteed. Therefore, only the parallelization
could speed up the program in the case that
computing performance of single-core processor is
difficult to upgrade. How can this code take
advantage of the ability to accelerate the device
(including GPU, FPGA, DSP, MIC) to achieve a
higher rate has become a hotspot [1]. Among the
existing special acceleration equipment, GPU has
the characteristic of large computing density and
high bandwidth. And it has an advantage of
processing performance, cost performance and

programmability. With the combination of the GPU
and general-purpose processors, more and more
applications can achieve high-performance
computing to greatly optimize computing
efficiency.

For the past GPU programming, developers need
to understand the underlying structure of the GPU,
and to manually implement some of the details,
such as data transmission, computing task
allocation, cache structure optimization [2]. It
brought software development a great burden. On
the other hand, GPU hardware development is very
rapid. The implementation of the software may not
be suitable for new hardware. So development costs
and maintenance costs are very high. If inheritance
codes can be accelerated by GPU with automatic
parallelization method, it will greatly benefit
developers. Under such a background, graphics chip
maker NVIDIA and compiler company PGI, CRAY
proposed the OpenACC standard together.
Developers only need to use compiler instructions
to indicate parallel processing region and the
transfer data in the source code. While such
operations as data block and transmission, the
scheduling task are left to the OpenACC compiler
to achieve during runtime. The same instructions
can be run on a variety of general-purpose parallel
processors, such as multi-core CPUs or GPUs.
Because it can achieve hardware independence.
And the time costs less. So more developers choose
this way.

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4090

2. RELATED WORK

The appearance of the CUDA architecture
abstracted based graphics operations in the graphics
and became a more powerful data processing tool
for developers in 2006. Volkov and Kazian in the
University of California used Cooley-Tukey
framework to solve FFT computing problems. The
computing speed of core GPU in the G80 was close
to the equipment peak 144GFlop/s, which is 18
times of the best CPU results [3,4]. Kaushik et al.
achieved a template (nearest neighbor) computation
rate of 36 GFlop / s by parallel discovery and
caching optimization, which is 5.3 times of the
fastest CPU speed [5]. In 2004, a new method for
calculating the radiometric calculation using GPU
was proposed in the Tsinghua University. Also
Jacobi iterative method was proposed, which could
solve the linear equations quickly [6]. GPU
acceleration was attempted to use in the nuclear
power simulation in the literature [7], access to 10-
20% performance improvement.

Automatic parallelization technology of serial
program can be divided into automatic
vectorization and automatic parallelization.
Automatic vectorization technology combined
multiple data operations through the SIMD
instruction to improve the speed. It has been very
mature to achieve in the modern compiler.
Literature [8] summarized the compilation
optimization and the related optimization algorithm
of SIMD instruction automatic vectorization.
According to whether developers need to mark
compiled guidance statement, it can be divided into
semi-automatic parallelization and fully automatic
parallelization. Semi-automatic parallelization
marked parallel compilation guidance statement in
serial code and then compiled them into parallel
executables. Guidance statements are OpenMP,
OpenACC for accelerators, OpenHMPP for
heterogeneous systems, and so on. Fully automatic
parallelization does not require the participation of
developers. The system can analyze the program
and generate the parallel execution on the basis that
the source program has not compiled guidance
statement. Previous research included Polaris
compiler from the University of Illinois [9] and
SUIF compiler architecture from the Stanford
University [10].They are mostly the nature of the
compiler. Domestic early research work includes an
automated parallelization system Agassiz
developed by the Fudan University Parallel
Processing Institute, Purdue University and the

University of Minnesota Computer College [11].
Agassiz made a certain degree of supplements in
the system versatility and scalability compared to
other compilation systems in the same period (such
as SUIF, Polaris). In addition, Agassiz system can
effectively integrate a variety of parallel
technology, and can effectively integrate multiple
languages and back-end instruction layer compiler.
Zhejiang University also designed an interactive
parallel translation system and compilation method
[12]. According to the information obtained from
the automatic analysis, combined with the
interactive information provided by the user, the
serial application in the multi-core architecture
could get good performance. A Cyclic Workload
Evaluation Algorithm Based on Program Static
Analysis was proposed in the literature [13], which
used SUIF framework and established GPU parallel
overhead model based on CUDA. Based on LLVM
/ Clang, CTMP was designed to convert serial code
into OpenMP programs in [14].

One of the reasons why OpenACC was
introduced was because of its openness. As a
standard for development, OpenACC is a compiler
instruction set that allows to specify the code loop
and code area to be unloaded from an host CPU to
an accelerator in standard C / C ++ and Fortran
languages. OpenACC also has portability across
operating systems, accelerators, or host CPUs.
Developers can use instructions that allow the same
code to run on different parallel hardware, such as
multicore CPUs, GPUs, or other hardware that has
compiler support. In the C or C ++ language, we
use the #pragma instructions, and in the Fortran
language, it is the line compiler directive! $acc.
Compiler instructions have a portable portability
feature that instructions can be ignored. Even if the
code compiler platform does not support
OpenACC, it can still compile the code and run
well. The code seems to never exist. OpenACC
executes parallel code on the accelerator, abstracts
out the storage and implementation of two parts,
and sets run-time behavior through runtime libraries
and some OpenACC-specific environment
variables.
3. ARCHITECTURE OF GENACC

A novel fully automated parallelization tool,
Generate OpenACC Directive (GENACC) was
designed in this paper, which primarily implements
two purposes: to identify the parallelizable parts of
the program and to automatically mark OpenACC
instructions.

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4091

3.1 Overall Design of GENACC
The complete automatic parallelization of the

serial code is divided into two steps. The first step
is to identify the parallelizable code area. The
second step is to program the parallelizable region.
Through an overview of the existing automated
parallelization tools, we have found that there are
already some fully automated parallelization tools.
They enter serial code without instruction in order
to generate an executable file which can take
advantage of GPU operations. However, the quality
of the tools are not stable. Some programs cannot
guarantee the correctness, the implementation may
be wrong; or generate the correct parallel
implementation, but the operation time has
increased. In addition, some compilers can
automatically generate OpenMP instructions or
Guided Auto Parallel. But it have not yet developed
for OpenACC.

In view of the above problems, the GENACC
framework firstly identified automatically the code
part that needs to be processed by GPU parallelism
in the source code, then used the existing semi-
automatic parallelization tool to handle the loop
optimization and generate the executable file. In
GENACC, these two steps can be separated
independently. This focuses of paper are the
implementation of automatic parallelization and the
generation of OpenACC instructions. For the
relevant part of the accelerator's underlying
hardware optimization, it was handled by the
corresponding OpenACC compiler.

To better implement different functions, we used
two compilers in the GENACC: the LLVM
compiler suite and the OpenACC compiler. The
LLVM compiler suite includes front tools Clang
and Polly for the analysis of multiple loops. Clang
is a subproject of LLVM and is a compiler front
tool for C, C ++, and Objective-C. Polly is an
optimizer based on LLVM which enables localized
cache optimization based on polyhedral models and
automatic vectorization. In addition, LLVM
includes multiple subprojects. Its core is to handle
analysis, transformation, optimization and
compilation of LLVM intermediate code. Because
LLVM uses a good modular design, it has a strong
scalability. The opt command is a modular LLVM
optimizer and parser which makes it easy to access
the generated abstract syntax tree (AST). Users can
analyze programs, extract information, or convert
custom intermediate code according to their own
needs.

This article will use the LLVM compiler suite to
complete the static analysis of the source program,
and through the program analysis to extract the cost
model required parameters. The OpenACC
compiler implements specific back-end
optimization and execution of files.
3.1.1 GENACC Functional Framework

The functions of the GENACC are divided into
four parts: analyzing the serial program, obtaining
the relevant hardware parameters, adding the
OpenACC guidance instruction to the hotspot code,
and issuing the executable program file. As shown
in

GENACC

Serial Program Analysis

Files merge
Loop information Extraction

Processor parameter Extraction
Transfer parameter Extraction

Executable file generation
Operation and Evaluation

Hardware parameter Extraction
Publish execution

Cost evaluation
OpenACC Instruction generation

Hotspot Code Processing

Figure 1:
GENACC

Serial Program Analysis

Files merge
Loop information Extraction

Processor parameter Extraction
Transfer parameter Extraction

Executable file generation
Operation and Evaluation

Hardware parameter Extraction
Publish execution

Cost evaluation
OpenACC Instruction generation

Hotspot Code Processing

Figure 1 GENACC Framework
Serial Program Analysis module is to compile the

target serial code into LLVM Intermediate code. If
there are more than one program file, it will be
merged. We need to extract the necessary cycle
information as a hot code in the compilation
process. The hardware parameter extraction module
obtains the transfer parameters between the
processor parameters and the CPU-GPU. The
hotspot processing module contains the cost
evaluation and the OpenACC instruction
generation. It is used to evaluate the cost of the
operation, add the OpenACC directive and generate
the patch file. The distribution execution module
executes the source file after the patch is added, and
evaluates the execution result.
3.1.2 GENACC Workflow

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4092

According to the above function, there are three

stages in the process of serial code completely
automatic parallelization with the GENACC
framework.

The first stage is the preparation stage. Before
analyzing the original serial code, we need to do
some preprocessing work. The target serial code
should be transformed into LLVM intermediate
code through the Clang. If the program consists of
multiple files, we should firstly compile the
individual files into the corresponding LLVM target
file, and then link them to a large LLVM
intermediate code. This can be done constant
diffusion, function embedded in the global scope to
get more accurate alias analysis results. In the
process of conversion, the required loop
information is extracted using the line static
program analysis. The parallelizable code can be
separated from the serial code, which we call as hot
code.

The second stage is the evaluation process stage.
The evaluation model mainly combines the
Roofline model and the LogGP model to model the
operational energy consumption in two layers, and
establishes a new computational cost model. Then,
based on the given cost configuration, the cost of
the hotspot code is evaluated on the CPU and the
GPU respectively. If there are obvious advantages
on the GPU, the code should be parallelized and
added OpenACC instructions. This stage will
analyze the data dependence of the loop, extract the
loop iteration number and the instructions of the
loop body, which will be input to the computational
cost model. Finally, a patch file is generated. And
the corresponding files are modified by the Linux
patch.

Source code Clang/LLVM
LLVM Intermediate Code polly

OpenACCPatch

source code with the OpenACC instructions
OpenACC Compiler

executable files

Polyhedron model Loop information

Cost model

Loop information

Patch Hot SpotFiltered hotspot code

Hotspot Code Identification

Hot SpotHotspot code

ComputIng platform
parameters

 Figure 2 GENACC Workflow The third stage is the implementation stage.
Firstly, the patched source code is compiled
through the OpenACC compiler. Then, the
generated target files and related data should be
transferred to the target machine and executed. This
stage will perform all loop-related compiler
optimizations, including the deletion or elevation of
common subexpressions. It also needs to use loop
of acceleration to achieve data transmission and
parallelization because of the OpenACC
instructions in the previous stage. Three stages of
the specific process are shown in Figure 2.
3.2 Parallel Identification Method

Parallel recognition, also known as parallel
detection, is a common technique in program
analysis. The loop is the primary parallel source in
the serial program. So we identify the parallel by
identifying the loops in the program. Based on the
code analysis in the LLVM tool, a new algorithm of
hot spot code separation was realized in this paper.
The following steps are as follow:

Step1: The source code was compiled into the
LLVM intermediate code, which was realized by
the LLVM C/C++ front tool Clang. To get more
accurate program analysis results, we compile
multiple files from the source program into a large
LLVM intermediate code without any compilation
optimizations. Some of the most confusing source
code was modified to match the specific criteria
using the Clang format tool. Although the original
code has been largely modified, this step does not
affect the semantics of the program.

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4093

Step2: Single-layer loop workload analysis. On
the basis of the unoptimized LLVM intermediate
code, opt is used to load a custom LoopInfoDump
analysis process to get a basic loop information.
The information includes the start and end
conditions for all loops. This can analyze the
workload of a single layer loop.

 Figure 3 Static Control Part of the Matrix Multiplication
Program Step3: Multi-layer loop workload analysis. This

step is complementary to the previous step to
complete the nesting multi-layer loop information

extraction. The polygon model of the source
program was obtained by the polly tool. As is
shown in Figure 3.

This is the matrix static control part obtained by
the analysis of the matrix multiplication example
program. The left is the analysis result of the
function init_array. There is a double loop in line10
to line 15. And the two nested boxes inside are
correspond to the two loops; the middle is the
analysis result of the function print_array. There is
also a double loop in line 22to line 29. The outer
loop would call fprintf once when each iteration
and output a blank line. On the right is the analysis
result of the entrance function main. Tri-loop is
from line 35 to line 44 in the program to achieve
matrix commensurate function.

Step4: Hotspot code information generation.
Information obtained from above two steps is
written into temporary files for the next stage. This
information includes the loop load, the number of
the loops. The number of loops can be an
expression of the input parameter, since it is not
certain in some cases.
3.3 Automatic Labeling of OpenACC

Instructions

GENACC has gotten multiple hotspot code
snippet information from the previous section. This
section will use the computational cost model to
evaluate the cost of running these hotspots on the
CPU and GPU and choose the corresponding
OpenACC guidance instructions which run on the
GPU and generate from the appropriate portion.
Steps are as follows:

Step1. Initialization of the computational cost
model. Table 1 Parameters of the computational cost
modelTable 1 is the parameters that the model
requires from the target computing platform. It is
obtained from the performance test program.

Step2. Cost evaluation. When the size of the data
to what extent, the use of GPU revenue will be
greater than the transmission costs. The computing
cost of the hotspot code fragment is evaluated. And
the OpenACC guidance instructions are added only
if its cost can be reduced when executed on the
GPU. The hot codes obtained by the analysis were
evaluated separately to screen out greater revenue
hotspot codes with the GPU.

Step3. If there is no hot codes to accelerate with
the GPU, that is, all parts of the program are not
suitable for GPU to accelerate, then it should be
exited directly.

Table 1 Parameters of the computational cost model
Parameters Meaning Access

 size of dataset program analysis
) instructions in the loop program analysis

 instructions on a specific schema ISA program analysis

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4094

 weight of time and power Given
 CPU-GPU transmission overhead test program
 interval when transmitting large chunks of data from main

memory to video memory test program

 interval when transmitting large chunks of data from video
memory to main memory test program

 main memory bandwidth test program
 graphics memory bandwidth test program
 CPU frequency hardware parameters

 GPU frequency hardware parameters
 power of the platform hardware testing
 CPU frequency thermal design power consumption hardware parameters

 GPU frequency thermal design power consumption hardware parameters
 CPU operational module numbers hardware parameters

Step4. OpenACC instructions generation. The
OpenACC directive consists of three kinds:

(1) OpenACC initialization instructions and
shutdown instructions. First of all, OpenACC
header files should be added at the beginning of the
corresponding files. Next, the device initialization
instructions, acc_init (device), should be written at
the entrance of the function. In the same way, the
device shutdown instructions should be added when
the device is no more required after completing the
calculation.

(2) Data transfer instructions, "pragma acc data".
The hot program also has input and output. And the
data is stored in the main memory. So the input data
needed to be marked with copyin to copy into the
memory. While the output data needed to be
marked with copyout.

(3) Parallel instructions, "pragma acc loop",
"pragma acc kernels". Appending this instructions
to specific loops means making OpenACC compiler
accelerate the current loop and construct kernel
functions executed on GPU.

Step5. Patch files generation. The relevant
instructions generated by the previous step needed
to be modified in some form. Open source patch
programs just meet this demand. Where OpenACC
instructions generated was recorded by GENACC
in the format of the patch files. As shown in Figure
4, it is the corresponding patch file of matrix
multiplication program:

 Figure 4 Matrix multiplication of the serial program Seen in the figure, there are three modifications
in the source program. Each place has a template as
“@@-beginning line of source file, end line of
source file + beginning line of new file, end line of
new file-@@”. The symbol "+" in the first column
indicates that the line is not existed in the source
program and new added. The openacc.h header file
was added in the first place and protected using
conditional compiler. So that there will be no error
when the compiler does not support OpenACC
guidance. The device initialization instructions
were added in the second to initialize the default
device. Next, copyin illustrates that A and B need to
transfer into memory and copy the results C back to
the RAM. At the last place, acc_shutdown was
added to take off the device before the function
returning.

Step6. Generating the program with OpenACC
instructions. This step can be accomplished through

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4095

the Patch program. The target file should be set as
the corresponding directory when the source code
contains multiple files. Finally, the OpenACC
compiler is called to compile the source code into
an executable file.
4. EXPERIMENTS AND ANALYSIS

The NPB (NAS parallel Benchmark) test sets
was used to test the functionality and performance
of the GENACC architecture in this paper.
GENACC was deployed on Linux relying on a
number of Linux platform tools. The software and
hardware parameters of the runtime environment
are shown in the Table 2 and Table 3.

Table 2 Experiment software version
Types Version
Operating System OpenSUSE 13.2
CUDA version 7.5
PGI compiler version 2016.03
LLVM version 3.8

gcc compiler version 4.8.3

Table 3 Experimental hardware Platform
Hardware Platform1 Platform2
CPU Type Core i7

4710MQ
Core i5
3340M

CPU Core
Frequency/Ghz

2.5-3.5 2.7-3.4
CPU Operations
Cores

8 4
CPU Access
Bandwidth/GB/s

25.6 25.6
CPU Cache/MByte 6 3
GPU Type GTX 850M GT750M
GPU Operations
Cores

640 384
GPU Core
Frequency /Ghz

0.86 0.95
GPU Access
Bandwidth /GB/s

80 80
CPU-GPU Bus
Type

PCI-E3.0 PCI-E 3.0

NPB consists of five core programs and three
computational fluid dynamics simulation programs.
The EP (Embarrassingly parallel) program is used
to calculate the Gauss pseudo-random numbers. EP
is very suitable for parallel computing. Because it
has few requirements for intercommunication
between processors. And the results can often be
the upper bound for a particular parallel system
floating point performance. The MG (MultiGrid)
program is to compute the discrete periodic
approximation solution of the three-dimensional
Poisson equation with four V-loop multiple grid
algorithms. The CG (Conjugate Gradient) program
is used to get the approximation of the minimum
eigenvalues of large sparse symmetric positive
definite matrices. And it represents the problem of
non-structural style calculation and non-regular
remote communication computing. The FT (Fast
Fourier Transformation) program is used to solve
the three-dimensional partial differential equation
based on the rapid Fourier transform spectrum
analysis. Also, it requires a lot of remote
communication. The IS（Integer sort）program is
a kind of bucket sort, which is used to sort the two-
dimensional large integer and requires a large
number of fully switched communications. The
three computational fluid dynamics simulations
include LU (lower upper triangular) which is used
to solve block sparse equations based on symmetric
super relaxation method, BT(Block Tri-Diagonal)
which is used to solve the three-diagonal system,

and SP which is used to solve the five diagonal
system.

SP, EP, MG, CG, four procedures were
successfully parallelized by GENACC in the serial
version of the NPB test set. The comparison results
are shown in Figure 5:

 Figure 5 Runtime Comparison of GENACC Parallel
Program and Serial Version The automatic parallelization handler is 1.5 to 6

times faster than the original serial version. In
addition, this article compares these five versions
with the corresponding OpenMP programs. As is
show in Figure 6 that MG and CG have an
advantage on the GPU only when the input data is
larger.

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4096

 Figure 6 Runtime Comparison of GENACC Parallel
Program and OpenMP Version In these programs, although the A-level program

of CG is 7% slower than the optimized OpenMP
version, the others are 1.3 to 1.8 times faster.
5. CONCLUSION

This paper completes the fully automatic
parallelization framework GENACC, which could
parallel detect the serial code, optimize loops,
analyze data dependency, generate the patch file of
the source program, and ultimately generate the
executable program used GPU. With experiments
on the NPB test sets, compiler generated by
GENACC guide commands to test. The
experimental results show that the GENACC fully
automatic parallelization system has been able to
identify the parallelizable part on the serial code
and can convert the source code into the code with
the OpenACC instruction in order to realize the
automatic parallelization of the serial code. The
generated codes have a high readability. However,
GENACC cannot deal with the situation that
programming needs more storage. As a part of
future research, the optimization of OpenACC code
parameters need more study.

REFERENCE

[1] Liu Y, Lü F, Wang L, Chen L, Cui HM, Feng

XB. Research on heterogeneous parallel
programming model [J]. Journal of Software,
2014,25(7):1459−1475 (in Chinese).

[2] Wang H.F., Chen Q.K. General Purpose
Computing of Graphics Processing Unit: A
Survey[J].Chinese Journal of
Computers,2013.36(4):757-772(in Chinese).

[3] Volkov V, Kazian B. Fitting FFT onto the G80
architecture [J]. University of California,
Berkeley, 2008, 40.

[4] Volkov V, Demmel J W. Benchmarking GPUs
to tune dense linear algebra[C]. Proceedings of
the 2008 ACM/IEEE conference on

Supercomputing (SC '08). IEEE Computer
Society, 2008:1-11.

[5] Datta K, Murphy M, Volkov V, et al. Stencil
computation optimization and auto-tuning on
state-of-the-art multicore architectures[C].
Proceedings of the 2008 ACM/IEEE conference
on Supercomputing. IEEE Press, 2008: 4.

[6] Hu W. and Qin K.H., A New Rendering
Technology of GPU-Accelerated Radiosity [J] .
Journal of Computer Research and
Development, 2005, 42(6): 945-950(in
Chinese).

[7] Wang X., Wu F., Zhang X., Feasibility of
CPU/GPU heterogeneous computing in nuclear
power plant simulator [J].Computer
Applications. 2014, 34(S2): 73-77(in Chinese).

[8] Gao W, Zhao RC, Han L, Pang JM, Ding R.
Research on SIMD auto-vectorization
compiling optimization [J]. Journal of Software,
2015,26(6):1265−1284 (in Chinese).

[9] Blume B, Eigenmann R, Faigin K, et al. Polaris:
The next generation in parallelizing
compilers[C].Proceedings of the Seventh
Workshop on Languages and Compilers for
Parallel Computing. 1994: 141-154.Wilson R P,
French R S, Wilson C S, et al. SUIF: an
infrastructure for research on parallelizing and
optimizing compilers[J]. Acm Sigplan Notices,
1994, 29(12):31-37.

[10] Wilson R P, French R S, Wilson C S, et al.
SUIF: an infrastructure for research on
parallelizing and optimizing compilers[J]. Acm
Sigplan Notices, 1994, 29(12):31-37.

[11] Zheng B,Tsai J Y,Zang B Y,et al. Designing
the Agassiz Compiler for Concurrent
Multithreaded Architectures[C]. Proceedings of
the 12th International Workshop on Languages
and Compilers for Parallel Computing.
Springer-Verlag,1999:380-398.

[12] Li Y., Sun X.X., Yuan X.Y. Interaction-based
speculative thread-level parallelization
[J].Application Research of Computers. 2010,
27(6):2123-2126(in Chinese).

[13] Wang T. GPU-based program analysis and
parallelization research [D]. People's Liberation
Army Information Engineering University,
2010(in Chinese).

[14] Zhang D.Y. Clang-based C language code
parallelization conversion tool design and
implementation [D]. Jilin University, 2015.

