
Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4283

A RELIABLE IN-BAND CONTROL IN A SOFTWARE-
DEFINED NETWORK

ANATOLY S. KHAKHALIN*, EVGENY V. CHEMERITSKIY
Non-Profit Partnership "Applied Research Center for Computer Networks" (ARCCN), Moscow 142784,

Russian Federation
* Address correspondence to this author at the Non-Profit Partnership "Applied Research Center for Computer

Networks"(ARCCN), Moscowskiy town, Business Park «Rumyantsevo», Moscow 142784, Russian Federation E-mail:
ahahalin@arccn.ru

ABSTRACT

The development of wireless communication technologies has made it so the number of people who use
them has surpassed the number of users of landlines. This causes malfunctions in and slow operation of
networks. Software-defined networks separate data-forwarding processes from networking and
communication processes – such networks allow for a significant reduction in the number of protocols
used to improve the controllability of the network. This research investigates a method for establishing a
reliable network connection, which will maintain the operability of the network in the presence of at least
one route between switches, regardless of the number of failures. This study describes two methods of
failsafe route generation – Non-return routes and Return routes. The paper provides a flowchart that shows
the conditions that allow maintaining a connection to the switch. The proposed algorithm supports the
OpenFlow protocol. In addition, the study established the rules that the controller sets for each separate
switch. This method improves the fail-safety of the network and ensures its uninterrupted operation.
Keywords: Computer network, Forwarding plane, Network security, OpenFlow protocol
1. INTRODUCTION

This research studies Software-Defined
Networks (SDN) [1–3] – a special class of computer
networks, which is based on the idea of dividing the
network into two planes: the forwarding plane,
which is responsible for the forwarding of packets
between hosts in the network, and the control plane,
which uploads appropriate switching and routing
settings to the network switching devices. A
controller is used to manage said settings; it is a
program, whose commands control all the switches
in the network. The compatibility of the controller
with switches of various vendors and models is
achieved through special control protocols that
allow separating oneself from the internal switch.
The most popular one is the OpenFlow protocol [4–
6].

OpenFlow is a basic protocol that is a key
element of the SCD concept, which ensures the
operation of the controller with network devices
[23.24.25]. The controller is used to manage switch
flow tables, which are used to make the decision to
transfer the received packet to a specific switch port

[32.33.34]. Thus, direct network connections with
minimum data transfer delays and required
parameters are formed in the network.

The OpenFlow switch consists of at least
two components:

• flow table [19.20];
• secure channel [21.22]

The advantage of SDN networks is their
lower demand for technical experts, which
ultimately reduces capital and operating costs
[26.27.28]. In addition, SDN provides for quick
service interaction, since data are programmed by
remote control services (controllers) and
applications. On a global scale, SDN transforms a
network into a computational domain and integrates
increasingly more standardization practices that are
applicable to computers and software. In addition,
researchers point out the following advantages of
SDN networks [29.30.31]:

• Virtualization of the physical resources of
the network

• Quick reaction to changes in the network
• Simpler network adjustment
• Considerably less time required for

application deployment
• Cut network management costs

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4284

• The SDN controller supports the open
application-programming interface (API),
which enables programming it externally,
creating an environment for automation and
control, and scaling the functionality of
future applications

• Visibility of the whole network traffic by the
controller

Auxiliary equipment or dedicated
communication lines are often used to maintain
communication between the controller and switches
[7–8]. Therefore, the network infrastructure of SDN
is usually divided into two parts, each one
maintaining the operation of its plane: the
forwarding plane network and the control plane
network. If the control plane network is independent
of the forwarding plane network, then the SDN
controller performs an out-of-band control of the
switches. Otherwise, the communication between
the controller and the switches uses the same
communication lines that are used to transfer user
data – such control is called in-band control [9–10].

Since out-of-band control isolates service
traffic from user traffic, it is more convenient and
safe. However, out-of-band control requires
auxiliary communication lines, which makes it very
expensive and often impossible to implement in
networks that connect objects located at great
distances from each other. In such networks, the
only possible option is integrated control, which has
one significant drawback – the high complexity of
maintaining a reliable connection to the controller.
When using this type of control, failure of any
communication line causes a disconnection
between the controller and all switches connected
via this line and may cause failures of entire
segments of the network, which is unacceptable.
Therefore, aside from a main set of packet
forwarding rules, the controller should also preload
into the switches some alterative rules to be used in
case of each possible failure. The critical point of
failure in the operation of the entire network is the
SDN controller, which is why it is necessary to take
its reliability and effectiveness into consideration
during its operation. However, since high-quality
controllers are expensive, it is necessary to develop
a method that would enable improving the fail-
safety of the network without replacing the current
controller.

The size of the alternative route array
required to maintain the connection between
switches in case of several equipment failures

exponentially depends on their number [11–13]. In
order to assure that a large network recovers after
multiple failures, the controller may require to
upload dozens and hundreds of additional packet
forwarding rules to the switches. Since modern
switches often support only several thousand rules,
high fault-tolerance can cause a shortage of space
for user traffic handling rules. Therefore, controller
developers have to make a compromise between
connection stability and overhead costs associated
with its maintenance.

This research offers a new method to
organize reliable communication between the
switches and the controller. Using this method, the
network is able to preserve control plane
connectivity as long as the network topology
maintains at least one route between them.

To that end, it is necessary to review some
common methods of ensuring failsafe connections
in SDN, to develop an approach to organizing a
failsafe, and to give a detailed description of its
implementation in terms of OpenFlow protocol.
2. RELATED WORK

The most common method to protect the
connection between a switch and its controller is
static route backup [14, 15]. This method is based
on a preliminary computation of several routes. The
best one is used to connect the switch to the
controller by default. If the forwarding plane detects
a failure of this route, it automatically switches to
the next best one. That way, the switch preserves its
connection to the controller as long as the failures
leave at least one of its static routes untouched.

Connection protection based on the
OpenFlow protocol is implemented via a group
table. A group table may contain, in particular, fast-
failover entries, which enable changing the packet
handling rules depending on the operability of the
communication lines connected to the switch. Each
such entry is a list of “port – series of actions” pairs
(fig. 1). When processing a packet, the switch
iteratively goes through the list elements in search
of the first pair with a connection to its port. If it
finds such a pair, actions associated with that pair
are applied to the packet and the packet processing
is completed. Thus, by setting appropriate entries in
the switch’s group table, the controller can
command the switches to alternative routes if some
links in the main route fail.

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4285

Figure 1. Example Of An Openflow Flow Table [18].

In practice, static route backup methods
often do not cover all possible failure combinations.
Therefore, they cannot guarantee the operability of
all switches in the network after failures occur. If
one were to generate a set of routes that would cover
all the possible failure variants, then the number of
rules that would have to be set on the switches
would be unacceptably large. Consider two
approaches to route generation, with a view to
covering all possible failure variants.

Non-return routes. In order to maintain a
failsafe status of an arbitrary communication line on
the main route, it is necessary to map L static routes,
where L is the number of communication lines on
this route. Then the total number of routes and the
number of rules on the switch are estimated as
o(exp(L)), and o(N * exp(L)), respectively.

Return routes. If a failure is detected on
the communication line on the main route, a return
to the source node takes place and one of the
alternative routes is used. Thus, up to (N – 1)! routes
have to be computed for each switch, where N is the
total number of switches in the network. Since a rule
for each indicated route has to be set on each switch
on this route, the number of rules on the switch can
be calculated as o(exp(N)).

This research offers an original method for
ensuring fail-safety, which allows maintaining the
operation of the network in the presence of at least
one route between switches. At that, the number of
rules that have to be set on the switches is smaller
than with static route backup.

3. OFFERED METHOD

Figure 2: Network Topology

First, it is necessary to describe the idea of

the developed algorithm based on a concrete
example Fig (2). If all communication lines with
integrated control are operational, then in order to
deliver packets from an arbitrary switch to the
controller, it is sufficient to deliver them to any

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4286

switch connected to the controller via the shortest
switch chain.
Assume all vertices of the network topology graph
are enumerated based on the increase in the
distance of these vertices to the controller vertex.
In this case, when choosing the next vertex for
sending the packet, one should choose the vertex
with the smallest number amongst neighboring
vertices. For instance, for switch 6, the route will
be 6-3-1-0, where 0 is the controller.

If the communication line with such a
vertex is broken, then the chosen packet transfer
route cannot be used and the switch attempts to
transfer the data via the neighboring vertex with the
largest number. For instance, if the link 3-1 is
broken, the route for switch 6 will be 6-3-4-2-0.

If all the lines apart from the one via
which the packet has arrived are broken, then there
is no routes that passes through this vertex is
operable, and the switch shall return the packet.
Consider Figure 1. If links 3-1 and 3-4 are broken,
no route is available from switch 3 to the controller.
In this case, the packet is returned to switch 6. On
switch 6, vertex 3 will be excluded from the choice
due to the lacking route from this vertex to the
controller. Then, for switch 6, the route will be 6-
4-2-0.

At some point, the packet may reach a
vertex where it has already been. In order to rule
out such cycles, it is necessary to know the vertices
where the packet has already been. To that end, the
term history is introduced – a sequence of numbers
starting with the number of the source-switch and
containing the initial part of the route via which the
network attempted to deliver the packets from this
switch to the controller.

In general, the controller should set such
rules for each switch, so that the packets that its
interfaces receive are processed according to the
following algorithm:
 Send the packet to the first active adjacent

vertex with the smallest number;  When sending the packet, save the number
of the current vertex to the history;  If a return on history occurs during the
sending, the current vertex should not be
entered into the history;  If the current vertex is in the history and is
the last one, send the packet to the next

active adjacent vertex with a number that is
higher than the number of the vertex the
packet came from;  If the current vertex is in the history and is
not the last one, send the packet to the last
vertex in the history (in other words, to the
port the packet came from).

The next section gives a detailed
description of how the above algorithm can be
coded using OpenFlow protocol rules.

4. OPENFLOW IMPLEMENTATION

In OpenFlow terms, the switch operation
logic is set using a packet handling rule table [17].
Each rule contains a set of simple actions, for
instance, transcription of the packet header and
transfer of the packet via indicated port, and a
pattern – a rule is applied to a packet only if the
packet fits the pattern for the rule [19]. Each bit of
the pattern can have one of three values: 0, 1, and
substitute (*). The packet header fits the pattern
only if each bit of the header is exactly equal to the
corresponding bit of the pattern or (*) is used in
this bit of the pattern.

We assume the switches in the modeled
network should support the OpenFlow protocol
version 1.1 or higher, support fast-failover groups,
and have at least three rule tables. Each packet has
a header that consists of several fields. Each field
is a set of bits. The MAC address field will be used
to handle the history. To that end, the field is
divided into sections of equal length; a binary
representation of the switch number will be written
down in each section. It is expedient to introduce
the following designations:
 r is the number of bits dedicated to the

switch number;
 l is the maximum number of switches in the

history (history length);
 k is the number of bits in the field dedicated

to storing history.
It is worth noting that the switch number

should be unique, in which case, the number of bits
dedicated to the switch number is r=log2N, where
N is the number of switches in the network.

It is expedient to examine in detail the
rules and tables (Figure 3) set on switches during
the operation of the algorithm.

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4287

Figure 3: Openflow Tables And Groups For Packet Handling

1. In the first table, the presence of the current

switch in the history is determined. The
pattern for each rule in this table is a
sequence with r length for comparison to
the MAC field of the packet. With that, each
sequence is a binary representation of the
switch number and is located with r*i shift,
where i is the sequence number of the rule
starting with 0. In other words, all possible
locations of the switch number in the
history are checked. All the bits that are not
part of the current verification section take
on substitute values. If the switch is found
in the history, proceed to table 2; otherwise,
proceed to table 7. The number of rules in
this table is l + 1.

2. Determine the position of the switch in the
history. If the switch number is encountered
in the middle of the history – a loop is
created, which requires a return on history,
in which the packet is sent to the port via
which it was received. The determination of
the switch position in the history requires
the introduction of rules, the pattern
whereof is divided into three parts:
comparison-to-number section, pre-section
bits, and post-section bits. Pre-section bits
have substitute values; post-section bits

have zero values. Thus, if a match is found
for one of such patterns, then the switch is
located at the end of the history; otherwise,
a loop is created. In case of return on
history, the packet is sent to the outgoing
port. If the switch number is located at the
end of the history, proceed to Table 3. The
number of rules in this table is l + 1.

3. It is necessary to determine the following
table based on the port via which the packet
was received. This will determine the routes
that should be checked, since it is necessary
to check only the neighboring switches, the
number whereof is higher than the number
of the switch from which the packet came.
This is due to the fact that the packet is
forwarded to the minimum number and if
the packet has returned from any switch,
then it has already been to the switches with
a number that is lower than the one it
returned from. The number of rules in this
table is 2r – 1.

4. Depending on the port via which the packet
was received, it is sent to one of the fast-
failover entries in the group table, where the
packet is forwarded to the first operating
port on the list arranged in ascending order
of numbers of switches connected via said

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4288

ports, starting with the number that is higher
than the number of the switch the packet
came from. At this stage, 2r – 1 entries in
the group table are introduced.

5. Determine the end of the history to record
own number. To that end, the pattern of
rules in the table under consideration
checks the position of the last zero section.
The verifications takes place by sections of
r bits; preceding bits have the (*) value;
following bits have zero value. The number
of rules in this table is l + 1.

6. Similar to 3.
7. Depending on the port via which the packet

was received, it is sent to one of the fast-
failover entries in the group table, where the
packet is forwarded to the first operating
port on the list arranged in ascending order
of numbers of switches connected via said
ports, with the exception of the incoming
port. At this stage, 2r – 1 entries in the group
table are introduced.

In other words, two situations can occur

during the operation of the algorithm – fast-
failover forwarding according to certain rules and
return on history in case a loop is created or all fast-
failover forwarding options at the current vertex
are exhausted.

Consider an estimation of the number of
rules during the operation of the algorithm offered
in this research.

The number of rules M that has to be set

on one switch is as follows:

 M = 3l + 3 + 4*(2r - 1) (1)

Considering that r = log2N and ݈ = ௞

௥
where k ≤ N,

(ܯ)݋ = ൫(2୪୭୥మ݋ ே − 1)൯ = (2) (ܰ)݋

Thus, in order to maintain a connection to
one switch, it is necessary to set a number of rules
on other switches that is linearly dependent on the
number of switches. This operation should be
performed for each switch. As a result, the offered
method requires setting o(N) rules, while static
backup requires o(exp(N)) rules.
5. CONCLUSION

This research developed and investigated
a method of organizing a reliable in-band control

in SDN. When it is necessary to achieve fail-safety,
with which the network continues to operate in the
presence of at least one functional route, the
developed method uses significantly fewer rules
than static route backup does. The study found two
ways of generating routes that would cover all
possible failures – Non-return routes and Return
routes.

In addition, the research developed a
schematic instruction that describes the conditions
that maintain the connection to the switch. As a
result, the operation of the network is not
interrupted and no time is required for file backup
in case of a network failure. The developed idea
consists in the fact that all communication lines
with integrated control are operational and in order
to deliver packets from an arbitrary switch to the
controller it is sufficient to deliver it to any switch
that is connected to the controller along the shortest
switch chain. In addition, the research provided a
list of rules that the controller should set for each
switch.

The offered algorithm supports the
OpenFlow protocol that controls the switch using
OpenFlow tables and groups for packet handling,
where each bit of the pattern can have one of three
values.

Thus, the offered method reduces the
frequency of network failures, which allows
optimizing its operation and improving its
functionality.
CONFLICT OF INTEREST
The authors confirm that this article content has no
conflict of interest.
ACKNOWLEDGEMENTS
This research is supported by the Ministry of
Education and Science of the Russian Federation,
Unique ID RFMEFI60914X0003
REFERENCES:
[1] “Open Networking Foundation, ‘Software-

Defined Networking (SDN) Definition’,
March 26, 2015. Available:
https://www.opennetworking.org/sdn-
resources/sdn-definition [Retrieved on: May
18, 2016].”

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4289

[2] C. S. Li and W. Liao, “Software defined
networks.,” IEEE Commun. Mag., vol. 51,
no. 2, pp. 113–114, 2013.

[3] N. Feamster, “Software defined
networking.,” 2013.

[4] “Open Networking Foundation, ‘OpenFlow
Switch Specification’, March 26, 2015.
Available:
https://www.opennetworking.org/images/st
ories/downloads/sdn-resources/onf-
specifications/openflow/openflow-switch-
v1.3.5.pdf. [Retrieved on: May 14, 2016].” .

[5] K. Kirkpatrick, “Software-defined
networking,” Commun. ACM, vol. 56, no. 9,
p. 16, Sep. 2013.

[6] C. Monsanto, J. Reich, N. Foster, J. Rexford,
D. Walker, and P. Cornell, “Composing
Software-Defined Networks,” pp. 1–13,
2013.

[8] S. Sezer, S. Scott-Hayward, P. Chouhan, B.
Fraser, D. Lake, J. Finnegan, N. Viljoen, M.
Miller, and N. Rao, “Are we ready for SDN?
Implementation challenges for software-
defined networks,” IEEE Commun. Mag.,
vol. 51, no. 7, pp. 36–43, Jul. 2013.

[9] D. Kreutz, F. M. V. Razmos, and P.
Verissimo, “Towards secure and dependable
software-defined networks,” in Proceedings
of the second ACM SIGCOMM workshop on
Hot topics in software defined networking -
HotSDN ’13, 2013, p. 55.

[10] S. Shin, P. Porras, V. Yegneswaran, M. Fong,
G. Gu, and M. Tyson, “FRESCO: Modular
Composable Security Services for Software-
Defined Networks,” 2013.

[11] M. Yang, Y. Li, D. Jin, L. Zeng, X. Wu, and
A. V. Vasilakos, “Software-Defined and
Virtualized Future Mobile and Wireless
Networks: A Survey,” Mob. Networks Appl.,
vol. 20, no. 1, pp. 4–18, Feb. 2015.

[12] W. Han, H. Hu, Z. Zhao, A. Doupé, G.-J.
Ahn, K.-C. Wang, and J. Deng, “State-aware
Network Access Management for Software-
Defined Networks,” in Proceedings of the
21st ACM on Symposium on Access Control
Models and Technologies - SACMAT ’16,
2016, pp. 1–11.

[13] S. Scott-Hayward, S. Natarajan, and S.
Sezer, “A Survey of Security in Software
Defined Networks,” IEEE Commun. Surv.
Tutorials, vol. 18, no. 1, pp. 623–654, 2016.

[14] S. Sharma, D. Staessens, D. Colle, M.
Pickavet, and P. Demeester, “In-band
control, queuing, and failure recovery
functionalities for openflow,” IEEE Netw.,

vol. 30, no. 1, pp. 106–112, Jan. 2016.
[15] S. Sharma, “Fast failure recovery for in-band

OpenFlow networks,” IEEE Xplore Digit.
Libr., 2013.

[16] “Openvswitch.org, ‘Design Decisions In
Open vSwitch’, March 30, 2016. Available:
http://openvswitch.org/support/dist-
docs/DESIGN.md.txt. [Retrieved on: April
18, 2016].” .

[17] “OpenFlow, ‘Network Planning’, 2011.
Available:
http://archive.openflow.org/wp/deploy-
production-planning/. [Retrieved on:
2016].” .

[18] SDN technologies – Software Defined
Networking. Electronic resource
[https://habrahabr.ru/company/muk/blog/25
1959/]

[19] Lee S. S. W. et al. Path layout planning and
software based fast failure detection in
survivable OpenFlow networks. Design of
Reliable Communication Networks
(DRCN), 2014 10th International
Conference on the. IEEE, 2014. pp. 1-8.

[20] Cvijetic N. et al. SDN and OpenFlow for
dynamic flex-grid optical access and
aggregation networks. Journal of Lightwave
Technology. 2014. Vol. 32. No. 4. pp. 864-
870.

[21] Capone A. et al. Detour planning for fast and
reliable failure recovery in SDN with
OpenState. Design of Reliable
Communication Networks (DRCN), 2015
11th International Conference on the. IEEE,
2015. pp. 25-32.

[22] Kobayashi M. et al. Maturing of OpenFlow
and software-defined networking through
deployments. Computer Networks. 2014.
Vol. 61. pp. 151-175.

[23] Ji P. N. et al. Demonstration of OpenFlow-
enabled traffic and network adaptive
transport SDN Optical Fiber
Communication Conference. Optical
Society of America, 2014. pp. W2A. 20.

[24] Akyildiz I. F. et al. A roadmap for traffic
engineering in SDN-OpenFlow networks.
Computer Networks. 2014. Vol. 71. pp. 1-30.

[25] Giotis K. et al. Combining OpenFlow and
sFlow for an effective and scalable anomaly
detection and mitigation mechanism on
SDN environments. Computer Networks.
2014. Vol. 62. pp. 122-136.

[26] Cohen R. et al. On the effect of forwarding
table size on SDN network utilization.
INFOCOM, 2014 Proceedings IEEE. IEEE,

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4290

2014. pp. 1734-1742.
[27] Hu F. (ed.). Network Innovation through

OpenFlow and SDN: Principles and Design.
CRC Press, 2014.

[28] Smeliansky R. L. SDN for network security.
Science and Technology Conference
(Modern Networking Technologies)
(MoNeTeC), 2014 First International. IEEE,
2014. pp. 1-5.

[29] Chou W., Luo M., Lin K. System and
apparatus of generalized network controller
for a software defined network (SDN): USA
patent 8982727. 2015.

[30] Adami D. et al. Towards an SDN network
control application for differentiated traffic
routing. Communications (ICC), 2015 IEEE
International Conference on. IEEE, 2015.
pp. 5827-5832.

[31] Blenk A. et al. Pairing SDN with network
virtualization: The network hypervisor
placement problem. Network Function
Virtualization and Software Defined
Network (NFV-SDN), 2015 IEEE
Conference on. IEEE, 2015. pp. 198-204.

[32] Röpke C., Holz T. Retaining control over
SDN network services. Networked Systems
(NetSys), 2015 International Conference
and Workshops on. IEEE, 2015. pp. 1-5.

[33] Cabaj K. et al. SDN Architecture Impact on
Network Security. FedCSIS Position Papers.
2014. pp. 143-148.

[34] Betgé-Brezetz S., Kamga G. B., Tazi M.
Trust support for SDN controllers and
virtualized network applications. Network
Softwarization (NetSoft), 2015 1st IEEE
Conference on. IEEE, 2015. pp. 1-5.

