
Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4221 
 

CONDITIONAL INCLUSION DEPENDENCIES FOR 
IMPROVING XML DATA CONSISTENCY 

 
1MOHAMMED HAKAWATI, 1YASMIN YACOB, 1RAFIKHA ALIANA A. RAOF, 

1AMIZA AMIR, 1JABIRY M.MOHAMMED 2EYAD SAIF AL-HODIANI  
1School of Computer and Communication Engineering 

University Malaysia Perlis, Campus Pauh Putra, 02600 Arau, Perlis, Malaysia 
 

2Amman Arab University, Amman, Jordan  
E-mail:  1mshakawati@hotmail.com.   

 
ABSTRACT 

 
Without any doubt, XML data model considered the most dominant document type over the web with more 
than 60% of the total; nevertheless, their quality is not as expected. XML integrity constraint just as its 
relational counterpart played an important role to keep XML dataset as consistent as possible, but their ability 
to solve data quality issues is still intangible. The main reason is old-fashioned data dependencies introduced 
mainly to keep schema consistent rather than data consistent. In this paper, a conditional version of XML 
inclusion dependencies (۲ۼ۱۷܆) is proposed for data quality issues and justify the ability to use inclusion 
dependencies for data quality issues. ۲ۼ۱۷܆ Notations will extend ۲ۼ۷܆ and shift its mission from schema 
design to data quality by providing pattern tableaus. Moreover, a set of minimal ۲ۼ۱۷܆ dependencies will 
be discovered and learned using a set of mining algorithms. Finally, the ability to use ۲ۼ۱۷܆ to detect data 
inconsistencies will be inspected using denial quires between mined rules and XML tree.      
 
Keywords: XML, Data Quality, Data Cleaning, Integrity Constraints. 
1. INTRODUCTION   

Today, data become the lifeblood of business, 
with the varied use of database applications, like 
Decision Support Systems, Customer Relationship 
Management Systems, Data Warehouses, Web 
Services, and eLearning Systems. Beneficial 
information and knowledge can be gained from 
considerable amounts of data using these 
applications. Nevertheless, investigation shows that 
lots of such applications fail to run successfully and 
effectively, there are many reasons to cause the 
failure, such as poor system design or query 
performance, but nothing is more certain to yield 
failure than lack of concern for the issue of data 
quality [1]. 

According to a study presented from Data 
Mentor's blog in 2015, the expense of bad data (with 
all data models) may be even higher than that 12% 
lost revenue. 28% of those who have had problems 
delivering email say that customer service has 
suffered as a result, while 21% experienced 
reputation damage. Most of the companies, 86%, 
admitted that their data might be inaccurate in some 
way. Whereas 44% of businesses said, missing or 

imperfect data are the most frequent problem with 
outdated information [2]. 

With the increasing significance of XML as the 
main data model for data transfer and data 
integration, data quality becomes a critical issue to 
make these applications success. Data cleaning, 
which refers to a set of processes used to improve 
data quality, has been used extensively in relational 
databases with less concern in XML [3]. 

The need to effectively manage business 
information, which is filled with inconsistencies, 
incompleteness and stored in XML documents, is 
currently more important than any time. numerous 
investigations by specialists underline the value of 
effective and efficient techniques for handling 
“erroneous data" at scale [4]. In spite of the fact that 
this issue has gotten critical consideration over time 
in the traditional database literature, XML cleaning 
approaches fall far short of an effective solution for 
big data and web data [5]. Cleaning XML databases 
pose new challenges and problems not faced in 
cleaning relational databases, the first challenge is 
the semi-structure tree model which more difficult to 



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4222 
 

handle than relational one, the second challenge is 
that there are no unified notations for XML integrity 
constraints [6]. 

In the database theory, good data quality can be 
evaluated using five main attributes (Accuracy, 
Currency, Deduplication, Completeness, and 
Consistency), each attribute employed to solve a 
specific data quality problem [7]. Data consistency 
concerns about making the dataset obey a set of rules 
defined by expert domains, acquired using 
crowdsourcing or mined from existing dataset using 
a set of data mining algorithms. 

Traditionally, in order to guarantee schema 
consistency, integrity constraints are essential [8]. 
Functional and inclusion dependencies are the most 
widely recognized integrity constraints used for 
schema design issues. Nowadays, data consistency is 
also important for all data models (structured and 
semi-structured).Figure 1: Sample XML data 
Tree. 

Conditional dependencies have been introduced 
lately for the relational data model to analyze and 
improve data quality. As their main role is enhancing 
the quality of a single table (CFD) [9] or between 
pairs of relations (CIND) they only cover a small 
portion of the data instance that matched a specific 
condition [10]. 

XML Conditional Functional Dependencies 
(XCFD) [11], presented recently as a first step to fill 
the gap between XML Functional Dependencies 
(XFD) and data quality problem, Nevertheless, 
inclusion dependencies are also needed to find 
inconsistencies between multi-hierarchal levels 
inside the same XML tree [12]. 

 Figure 1 shows an XML dataset contains 
information about a university library with a finite 
number of books and journal articles to be used for 
online borrowing system and transferring 
transactions during daily orders. The system will use 
information stored in the XML file to check available 
resources (Books, Articles) and return order's query 
results. A set Σ of two traditional XML Inclusion 
Dependencies (XIND) hold at the XML tree T and 
used for schema matching are defined as follows: 
  ߰ଵ: ,݈݁ݐ݅ܶ] ݎ݁݀ݎ݋/ݏݎ݁݀ݎ݋/݅݊ݑ)) ([ݎ݋ℎݐݑܣ ,݈݁ݐ݅ܶ] ݇݋݋ܾ/ݕݎܽݎܾ݈݅/݅݊ݑ)⊇   (([ݎ݋ℎݐݑܣ
 ߰ଶ: ,݈݁ݐ݅ܶ] ݎ݁݀ݎ݋/ݏݎ݁݀ݎ݋/݅݊ݑ)) ([ݎ݋ℎݐݑܣ ,݈݁ݐ݅ܶ]݈݁ܿ݅ݐݎܽ/݈ܽ݊ݎݑ݋݆/ݕݎܽݎܾ݈݅/݅݊ݑ ⊇   [ݎ݋ℎݐݑܣ
 

First XIND insists that if an order requested by a 
student, it should find a matching entity in the book 
subtree in library books, completely as the second XIND requests that the order finds a match in 
available articles. These dependencies are satisfied 
by given XML document tree (Σ ⊨ T) and required 
full agreement between both sides of the 
dependency. Nevertheless, these two inclusion 
dependencies do not make sense; how can the same 
order match elements from two different subtrees at 
the same time? Now, suppose a student asked for an 
article titled like “Database” for author “Jenifer 
Widom," the system will check the first XIND and 
found that the requested order satisfies the first XIND, so the query result will back a book, which 
contains the same requested Title and Author, But, 
with a wrong type. To solve this problem and w.l.o.g. 

University 

Library Orders 

Book Journal 
Title Author 

Database 
System  

Jenifer 
Widom Article 

Title Author 
Database 
System  

Jenifer 
Widom 

Order 
Title Author Type 

Database 
System  

Jenifer 
Widom Book 

... ... 

... 

... 

... 

Figure 1: Sample XML data Tree. 



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4223 
 

Let us add a conditional constraint element to lhs of 
the dependencies to become:  
 ߰ଷ: (݈݁ݐ݅ܶ] ݎ݁݀ݎ݋/ݏݎ݁݀ݎ݋/݅݊ݑ, ݁݌ݕܶ ; ݎ݋ℎݐݑܣ = ⊇ ([′݇݋݋ܾ′ ,݈݁ݐ݅ܶ] ݇݋݋ܾ/ݕݎܽݎܾ݈݅/݅݊ݑ )  (([ݎ݋ℎݐݑܣ
 ߰ସ: ,݈݁ݐ݅ܶ]ݎ݁݀ݎ݋/ݏݎ݁݀ݎ݋/݅݊ݑ) ݁݌ݕܶ ;ݎ݋ℎݐݑܣ = ⊇ ([′݈݁ܿ݅ݐݎܽ′ ,݈݁ݐ݅ܶ]݈݁ܿ݅ݐݎܽ/݈ܽ݊ݎݑ݋݆/ݕݎܽݎܾ݈݅/݅݊ݑ)  ([ݎ݋ℎݐݑܣ
 XINDଷ, ߰ଷ asserts that for each order in the orders 
subtree, if the element Type = ‘Book’, then there 
must exist a text node in the book subtree s.t.  ݈݁ݐ݅ܶ]ݎ݁݀ݎ݋, [ݎ݋ℎݐݑܣ = ,݈݁ݐ݅ܶ]݇݋݋ܾ   ([ݎ݋ℎݐݑܣ

Moreover, XINDସ, ߰ସ  asserts that for each order 
in the orders subtree, if its type element =’Article’, 
then there must exist a text node in the articles 
subtree such that (݈݁ݐ݅ܶ]ݎ݁݀ݎ݋, [ݎ݋ℎݐݑܣ ,݈݁ݐ݅ܶ]݈݁ܿ݅ݐݎܽ =  .([ݎ݋ℎݐݑܣ

These enhanced dependencies are XIND that holds 
only on a subset of the XML document which 
satisfies the condition rather than the entire document, 
in addition, to be checked only using the related 
dependency, not BOTH. 

In light of these, there has been increasing demand 
for data quality tools, for effectively detecting errors 
in the XML data. Here, we introduce a new class of 
XML dependencies especial for detecting data 
inconsistencies between multilevel of the tree. 

This paper organized as follows: Section 2 
provides basic preliminaries for XIND, patterns 
tableaus, and other definitions. Section 3 covers the 
notation and related issues for proposed XML 
conditional inclusion dependencies (XCIND). Section 
4 presents a set of algorithms to mine a set of 
approximate XCIND with enhanced data structures 
and to derive a minimal set of patterns as an initial 
step toward a new era of XML data cleaning models. 
Section 5 provides an algorithm to discover XML 
inconsistent values. Section 6 argues about our result 
of mining dependencies and tools adopted, and 
finally, Section 7 concludes and outlines future work. 
2. PRELIMINARIES 

Integrity constraints can be defined as a set of 
properties or rules that should be satisfied by every 
data instance (XML data path) of a database [8]. Data 
which violate these constraints considered as 
inconsistent data and requires cleaning. Since there 
is more than one way of making these changes, 
methods have been proposed to clean data using 
different ways such as cost and distance functions 
[13][14][15], The goal of such approaches is to make 

the cleaned database as close as possible to original 
one. 

Obviously, XML integrity constraints have 
attracted much interest in last two decades to ensure 
data consistency [16]. The expression “integrity 
constraint” in XML used to mean extensions of 
relational integrity constraints, such as, functional, 
inclusion, approximate dependencies and so on, 
which depend principally on the equality of data 
values within a single or multi-relations. 

Even though XFD played a tiny role in instance 
cleaning, XIND had nothing to remember. Bohannon 
et al. [13] recommended that not only functional 
dependencies but also inclusion dependencies 
required for data cleaning as well as schema design. 
This motivates database theory scientist to introduce 
a massive number of approaches for improving 
relational database using both types’ of 
dependencies. 
2.1 XML Inclusion Dependencies 

Inclusion dependencies are the type of constraints 
which connect two set of attributes, between two 
different or even same relations, for instance, ܴଵ[ܣ, [ܤ  ⊆  ܴଶ[ܣᇱ,  ᇱ]  means that all values of theܤ
dependent attribute ܣ,  of ܴଵ, are contained in the ܤ
value set of the referenced attribute ܣᇱ,  .ᇱ of ܴଶ [8]ܤ
XML inclusion dependencies are important in many 
fields like XML publishing, where the relational 
database has to map to a single predefined XML 
Schema [17]. 

Karlinger et al. [18] presented XIND as a 
dependency preservation when mapping relational 
database to XML dataset, they used the same 
notation offered by their old work for XFDs [19], the 
most notable difference in their notations and others 
notations is they don’t use any XML Schemas (DTD 
or XSD) but using the closest node.  

Their notations for XIND has a form of ((ܲ, [ ଵܲ, … , ௡ܲ]) ⊆ (ܲ′, [ ଵܲ′, … , ௡ܲ′]), where ܲ and ܲᇱ paths are lhs and rhs selectors respectively, and  [ ଵܲ, … , ௡ܲ] and  [ ଵܲ′, … , ௡ܲ′]  are a nonempty set of 
paths called left hand side , right hand side (lhs, rhs) 
fields respectively. This notation differ slightly from 
the previous XML inclusion notation in that it 
considers only simple paths for both selectors and 
field paths, in addition, to allow attribute and text 
nodes rather than element node types. 

Many other notations for XIND presented [17], 
we cannot mention all of them for lack of space. 
However, XIND does not present any effort toward 
data cleaning and data quality, even though they 
played an important role in improving schema and 
instance in the relational database.    



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4224 
 

2.2 Conditional Constraints  
Fan et al. [9] developed a new extension to 

traditional dependencies for improving data instance, 
the idea was the first big step toward new 
comprehensive data cleaning approaches. Hundreds 
of papers published to study how CFD improve data 
quality [20][21] and it's siblings like data mining and 
data integration. 

XML database is not less important of relational 
one as mentioned earlier, this motivation leads 
authors in [11] to conduct a conditional copy of XFD 
called XCFD, and modify XFD notation based on 
generalized tree tuple (GTT) of to convey the new 
rules. XCFD Notation is an expression of the form     ݒ݌: {݁}, {ܺ}  →  {ܻ}, where: ݒ is the context path, {݁}   
is the conditional part, and {ܺ}  →  {ܻ} is a 
standard XFD. The conformation between the tree 
and the XCFD. T ⊨ ߮  achieved if two paths agree 
conditionally on their lhs then their rhs should match 
as well, this type of functional dependency is 
important for data cleaning issues rather than schema 
design issues and holds on a subset rather than entire 
documents 

GTT [22] and XCFD  mining algorithms adopted 
partitions concept for discovering XFD and its 
conditional version respectively, the idea of 
partitions presented mainly in  [23] as one of the most 
effective ways to deal with large databases with more 
care about relation degree (number of columns in a 
relation). To use partitions manner the authors used 
XML representation to shredding the XML 
document into a set or relations using pivot node 
concept which in turn gives semi-normalized table 
using XSD schema. 
2.3 XML Data Representation 

XML tree can be seen, as a set of tuples inside 
relational tables, the idea behind tree tuple is to find 
a relative representation of XML tree as a relational 
data model. Some of the key important points about 
the mapping phase are that tuples hold related 
information can easily be access with different 
DBMSs and gives a clearer conceptual view for 
XML dataset [22], [24]. Moreover, discovered 
patterns take tableau form, so it becomes much easier 
to handle XML tree as tabular form and combine 
them at advanced levels.  

Mapping XML tree can be done in many ways, 
Firstly by shredding the whole tree into a single huge 
flat relation, this concept has many disadvantages 
like the unmatched number of unreal tuples and a 
large size of degree, therefore, a direct result of this 
mapping is the increased complexity time [25].  

On the other hand, another way is using a semi-
normalized form by shredding XML into many 
related flat relations using the concept of tuple class. 
This representation uses the concept of schema 
normalization and reduced time and space. 

2.3.1 Essential Tuple Class 
The tuple in relational databases defined as a set 

of related data belongs to the same entity, projecting 
this idea to XML has numerous benefits and usage. 
In our case, tuple concepts are important to retrieve 
all data for a single entity and matching it with other 
tuples in order to discover data inconsistencies 
(future step).   

GTT [22] notation presented as an enhanced 
version over XML tree tuple [25]. GTT granted that 
related data under the same Pivot Path could not be 
lost and support the concept of a set of elements. A 
tuple class ܥ௉ of the data tree T, contains all related 
GTTs,  ௡ called the Pivot Path and the݌ ௡, where pathݐ
last node of the path called pivot node n. 

Each repeatable path (see [22] for more 
information) which contains maxOccurs (SetOf) 
restriction within the XSD schema (Fig.2) is taken 
into consideration. Each essential tuple class ܥ௉  
corresponds to a unique set of schema element. Each 
created temporary relation (ܴ௉) related to a specific 
essential tuple class ܥ௉, by implementing the concept 
of essential tuple class, each non-repeatable element 
within an XML tree considered an attribute within 
related relation ܴ௉, moreover each general tuple 
considered a relational tuple. 

Table 1 shows three main relations scheme 
gained from mapping XML doc (and Journals hid as 
not needed) using class tuple Pivot Path with two 
additional columns Key and parent Kay as 

University: Rcd        Library:  Rcd               Book: SetOf Rcd 
 Title: str 

               Author: str …                Journal: SetOf Rcd                       Article: SetOf Rcd                             Title: str 
           Author: str … Order: SetOf Rcd               Title: str 

            Author: str … Figure 2: University XML Schema. 



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4225 
 

preordered traversing number (hidden in the lake of 
space). 

 
Table 1:  Main Relational Schemas for University XML 

Dataset. 
RArticle 

DOI Author Title Year Journal 
 
ROrder 
OID Title Author Type  
RBook 
ISBN Title Author Year Publisher Genre 

2.4 Pattern Tableaus  
Pattern tableau can be defined as a subset of tree 

tuples in which the underlying conditional integrity 
constraints hold. A pattern tableau T୔  restricts tree 
tuples of lhs subtree over attributes X୔ (conditional 
context) and tree tuples of rhs subtree over 
attributes Y୔. For each repeatable path [A] (due XML 
Schema, XSD) in X୔ or Y୔ and each tuple ݐ௣ ∈ T୔, 
 or a special (A) ݉݋݀ ௣[A] is either a constant inݐ
value ’– ’.  

Each pattern tuple ݐ௣ defines a condition which is 
a constant value, ݐ௣[A]  restricts a matching tuple’s 
attribute value to a constant value ′ܽ′ ∈  ,(A) ݉݋݀
and dash ’– ’  represents an arbitrary data value 
from ݀݉݋ (A). A tree tuple ݐଵ ∈ T matches ݐ௣ ∈ T୔, 
ଵݐ) ≍ ௣) if ∀Aݐ  ∈ (X୔ or  Y୔): ௣[A]ݐ = (’– ’ ∨  (ଵ[A]ݐ
the pattern tableau is divided into lhs (with 
attributes X୔) and rhs (with attributes Y୔) as depicted 
in Table 2. Both sides of the tableau can be left empty 
specifying no restriction on any attribute of the 
respective relation. Below are the pattern tabulate for ߰ଷ and ߰ସ respectively:     

Table 2: Patterns Tableaus for ߰ଷ and ߰ସ. 

ଵܶ Type Nil ଶܶ Type Nil Book - Article - 
3. XML CONDITIONAL INCLUSION    

DEPENDENCIES 
This section introduces the syntax and semantics 

of the new XML dependency type, which is called 
XCIND and see the most important measures related 
to any dependency language; satisfiability, 
implication.  

3.1 Syntax 
XCIND syntax is too close to strong path 

notations; as this notation is the closest notation to 
relational notation and the clearest description of 
XML inclusion dependencies. XCIND, ߰ is a pair:  

߰ ∶ ቀ൫(ܵ , [ܲ ;  ௖ܲ]) ⊆ (ܵᇱ, [ܲᇱ ;  ௖ܲᇱ ])൯, T୔ቁ 
Where: ൫(ܵ , [ܲ]) ⊆ (ܵᇱ, [ܲᇱ])൯  is a standard XML 
inclusion dependency [18] embedded in ߰ such that: ܵ , ܵᇱ are two paths called lhs ,rhs  selectors 
respectively, [ܲ], [ܲᇱ] are two nonempty sequence of 
paths called lhs ,rhs fields respectively defined over 
XML Tree. ∀݅ ∈ [1, ݊], ܵ. ௜ܲ  and ܵᇱ. ௜ܲᇱ are legal 
paths end with attribute or text. [ ௖ܲ] ܽ݊݀ [ ௖ܲᇱ] are two 
nonempty sequence of paths ends with text match 
values from patterns tableaus and called Conditional 
Paths. T୔ is a pattern tableau, it contains all disjoint 
path values  (ܵ. ௖ܲ௜) and  (ܵᇱ. ௖ܲ௜ᇱ ).  For each 
repeatable path [A] in previous paths and for each ݐ௣ ∈ T୔ ,  .(A)݉݋ܦ ௣[A] is a constant ‘ܽ’ fromݐ

3.2 Semantics 
Suppose an   XCIND ߰ , which contains a 

traditional XIND  as an embedded dependency with 
associated pattern tableau T୔. the embedded XIND  
semantics can be verified using closest node 
definition presented in [18], closest node property 
demands that all lhs selector and fields should belong 

P  Pc P‘  Pc’ 
 

  S‘ S 

Pattern Tableau ௉ܶ  

α ߚ 
    ௖ܲ    ௖ܲᇱ
 

 ௣ݐ

XML Tree T 

2. ܵ. ܲ =  ܵᇱ. ܲᇱ 3. ܵᇱ. ௖ܲᇱ = )௣ݐ  ௖ܲᇱ ) 

1. ܵ. ௖ܲ  = )௣ݐ  ௖ܲ) 

… … 

… 

Figure 3: Tree, Tableau Confirmation. 



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4226 
 

to the same path tuple and the same thing for rhs. 
Moreover, each lhs path should find a match rhs path. 
As a result, all lhs paths can be seen as tuples in a 
relation related to other tuples in different relation as 
rhs paths. Moreover, pivot node property presented 
by [22] request that related values for a dependency 
should belongs to the same GTT tuple class, both 
notations  can help us in defining the semantics of XCIND and its relationship with XCFD. 

A condition over the dependent subtree ܵ should 
distinguish tuple paths ܲ of ܵ that included in the 
referenced subtree ܵᇱ from tuples not included. A 
condition filtering only included tuples with a valid 
condition. The degree of validity (Support) can be 
regarded as the “precision” of a condition. 
Furthermore, a condition should filter all included 
tuples; its degree can be regarded as the confidence 
of a condition. Practically embedded XIND cannot 
completely cover S subtree; it applies only to S paths 
that matching certain pattern tuples ݐ௉. More 
specifically, paths within XCIND matches the pattern 
tableau if  ܵ. ௖ܲ௜  = )௣ݐ  ௖ܲ௜) and  ܵᇱ. ௖ܲ௜ᇱ = )௣ݐ  ௖ܲ௜ᇱ ) .  

XML tree Τ  satisfies XCIND ߰, denoted by (Τ ⊨ ߰), iff for each conditional path ௖ܲଵ ∈ ݈ℎݏ , and for 
each pattern tuple ݐ௣ ∈ T୔; if the value of the path ௖ܲଵ 
matches the value of the corresponding tableau ݐ௣ ;  
ܵ. ௖ܲଵ = )௣ݐ ௖ܲଵ), then there exists a path  ଶܲᇱ ∈  , ݏℎݎ
which match the non-conditional path of  ଵܲ; ܵ. ଵܲ = ܵᇱ. ଶܲᇱ   and moreover its corresponding conditional 
path ௖ܲଶᇱ  matches the value of the pattern tableau; ܵᇱ. ௖ܲଶᇱ = )௣ݐ  ௖ܲଶᇱ ) (see Fig.3).  

The satisfaction of the traditional XIND can 
appear clearly from above; when the value of the lhs 
path equal the value of the rhs, and this proof us that 
the embedded XIND still valid within the new 
notation. Intuitively, XML tree  Τ  satisfies a set Σ of  XCINDs denoted by (Τ ⊨ Σ), if (Τ ⊨  ߰) for 
each ߰ ∈  Σ. Moreover, two sets Σଵ and Σଶ of XCINDs are equivalent, denoted by Σଵ ≡ Σଶ, if  XML 
tree satisfies both, Τ ⊨ Σଵ  and Τ ⊨ Σଶ. 

Pattern tableaus contain either value from the 
domain or special case ‘ − ’ as a non-care value, 
logically, if a specific tableau ݐ௉ holds ‘ − ’ for all its 
paths, then XCIND  ߰ covers the whole document and 
at that time there is no condition, which mean it’s 
clearly XIND. This led us to think about XIND as a 
special case of  XCIND. Finally, XCIND 
߰: ቀ൫(ܵ, [ܲ; ௖ܲ]) ⊆ (ܵᇱ, [ܲᇱ; ௖ܲᇱ ])൯, t୔ቁ is in a normal   
form if T୔ only consists of a single pattern tuple ݐ௣. 
A set Σ of XCIND of the normal form can model an 
aggregated XCIND. 

 
Σ(߰): ቀ൫(ܵ, [ܲ; ௖ܲ]) ⊆ (ܵᇱ, [ܲᇱ; ௖ܲᇱ ])൯, ௣ݐ ∈ T୔ቁ. 

3.3 Reasoning about XCIND 
To make effective use of XCIND it is often 

necessary to reason about them. Two main issues 
related to any constraint language with any data 
model, the consistency problem (satisfiability) and 
the implication problem. Consistency insists that 
there is no contradiction between discovered 
dependencies, whereas implication helps to mine 
other dependencies using a set of inference rules [26]. 
3.3.1 The Satisfiability Issue  

The satisfiability (consistency) problem of XCIND can be explained as follow: Given a set Σ of XCIND rules over an XML document tree T, 
expressional syntax (T ⊨ Σ ). The answer to the 
question “Is there exists a nonempty set of paths (data 
values) that conform a set of  XCIND Σ ?” is 
significant.  

In the presence of constraints, an XML document 
may result to be inconsistent if it does not respect 
some constraint. Assigning a set of traditional XIND Σ during the creation of the document require the 
satisfaction between them, but as known traditional 
dependencies are always satisfiable for relational [8] 
or even XML [19]. At the same line, inserting pattern 
tableaus for traditional XIND will not make it non-
satisfiable, in contrast, the satisfiability problem is 
still achievable.  
Theorem: XCIND is always, satisfiable.  

proofing this theorem can be explained with two 
different techniques: Firstly: for relational 
constraints; a set CIND, Σ are always satisfiable by 
constructing a nonempty instance I such that I ⊨ Σ, 
building the instance starts by looking for the active 
domain for each attribute inside each relation as an 
lhs in the database schema and then propagate these 
values to related attribute at the rhs. Next, using the 
patterns to expand the equality between non-
conditional attribute for both lhs and rhs [10]. 
Section 4.3 introduces a set of algorithms to ensure 
the satisfiability of proposed XCIND by discovering 
a set of minimum dependencies from existing XML 
tree. As mining algorithms able to discover satisfied 
dependencies then T ⊨  XCIND. 

Moreover, XML tree conforms a set of legal 
paths ܲ if every path ݌ ∈ ܲ ends with value [18] ݒ. 
For two subtrees rooted by ݎଵ,  ଶ and has a set ofݎ
paths under ݎଵ and ݎଶ , XML tree considered 
complete if all paths at lhs subtree ݎଵ ends with a set 
of values that are also have a match values at the rhs 
subtree ݎଶ. Otherwise the XML tree considered to 
confirms paths ܲ but not complete.  



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4227 
 

3.3.2 The Implication Issue  
XCIND Inference system is integrating of XIND 

and pattern tableau notation presented for a relational 
database. Below some of the main inference rules 
that can be used to discover a new dependency from 
the already discovered set and moreover reduce the 
number of discovered tableaus for the issue of 
reducing the processes needed to be done. These 
inference rules consider XCIND in the normal form 
and each tabulates contains a single conditional path. 
(note, ⊢ means implies). 
 ଵ: Reflexivityܴܫ

: Σ ⊢  ߰: ቀ൫(ܵ , [ܲ ;  ௖ܲ]) ⊆ (ܵ , [ܲ ;  ௖ܲ])൯,   .௉ቁݐ
Where ܲ is a sequence of distinct paths inside T and ݐ௉[݌] =ᇱ− ′ for all ݌ ∈ ܲ. 

 ଶ: Permutation Projectionܴܫ 
߰: ቀ൫(ܵ, [ ଵܲ … ௠ܲ;  ௖ܲ]) ⊆ (ܵᇱ, [ ଵܲᇱ … ௠ܲᇱ ;  ௖ܲᇱ ])൯, ௉ቁݐ ⊢ 
߰: ൬ቀ൫ܵ, ൣ గܲ(ଵ) … గܲ(௞); ෠ܲ௖൧൯

⊆ ൫ܵᇱ, ൣ గܲ(ଵ)ᇱ … గܲ(௞)ᇱ ; ෠ܲ௖ᇱ ൧൯ቁ ,  ௉൰ݐ̂
 

Where  {(1)ߨ … {(݇)ߨ  ∈ {   1 … ݉}, ෠ܲ௖    and  ෠ܲ ௖ᇱ  
are a permutations for ௖ܲ  ,  ௖ܲᇱ respectively, and 

௉ݐ̂  = ] ௉ݐ  గܲ(ଵ) … గܲ(௞);  ෠ܲ௖  ||  గܲ(ଵ)ᇱ …  గܲ(௞)ᇱ ;  ෠ܲ ௖ᇱ  ]. 
 :ଷ:Transitivityܴܫ 

߰: ቀ൫(ܵ , [ܲ; ௖ܲ]) ⊆ (ܵ̅ , [ തܲ; തܲ௖])൯, ଵቁݐ  ∧  ߰ ∶ 
ቀ൫(ܵ̅ , [ തܲ; തܲ௖]) ⊆ (ܵᇱ, [ܲᇱ; ௖ܲᇱ ])൯, ଶቁݐ   ⊢   ߰ ∶

ቀ൫(ܵ , [ܲ; ௖ܲ]) ⊆ (ܵᇱ, [ܲᇱ; ௖ܲᇱ ])൯,  .ଷቁݐ
Where ݐଷ[ܲ ;  ௖ܲ] = ; ܲ]ଵݐ  ௖ܲ] and ݐଷ[ܲᇱ; ௖ܲᇱ ] ;ଶ[ܲᇱݐ= ௖ܲᇱ ].  
Inference rules (ܴܫଵ −  ଷ) are common for all dataܴܫ
dependencies and can be found in all database 
textbooks [8], in this research we cover only these 
dependencies as they effected by pattern tableaus. 
Other XML rules like (Downshift, Upshift) are used 
only for displacement paths between selector and 
filed section, whereas Union rule used for combining 
n-ary inclusion dependency from a set on unary rules. 
  :ସ:Unionܴܫ
߰: ቀ൫(ܵ, [ ଵܲ … ௠ܲ;  ௖ܲ]) ⊆ (ܵᇱ, [ ଵܲᇱ … ௠ܲᇱ ;  ௖ܲᇱ ])൯, ௉ቁݐ ∧ 

߰: ቀ൫(ܵ, [ ௠ܲାଵ … ௡ܲ; ௖ܲ]) ⊆ (ܵᇱ, [ ௠ܲାଵᇱ … ௡ܲᇱ; ௖ܲᇱ])൯,  ௉ቁݐ
⊢   ߰: ቀ൫(ܵ , [ ଵܲ …  ݊;  ௖ܲ]) ⊆ (ܵᇱ, [ ଵܲᇱ …  ௡ܲᇱ;  ௖ܲᇱ ])൯,  ௉ቁݐ
Union rule ܴܫସ used to merge only rules shared same 
patterns and path selectors to imply new dependency 

rich with information. Actually, such inference rule 
is important to overcome XCIND inconsistences by 
allowing to add more paths values to ݎℎݏ subtree as 
a solution for XCIND violations. 
4. INFERENCING XCIND 

XCIND Inference issue can be expressed as 
follows: Given an XML tree T over  XSD S, find a 
cover set Σ  of all XML conditional inclusion 
dependencies ߰: ቀ൫(ܵ, [ܲ; ௖ܲ]) ⊆ (ܵᇱ, [ܲᇱ; ௖ܲᇱ ])൯, T୔ቁ 
such that T ⊨ ߰ for all ߰ ∈ Σ. 

In order to discover a set of XCIND, the mining 
algorithm takes as input an XML document T as a set 
of related relations R୔, and discover initially a set of 
approximate XINDs with support and confidence 
thresholds (ߠ,  ,then produced a set of minimal ,(ߜ
non-trivial conditional inclusion. The reason of 
discovering traditional approximate XIND before 
start searching of pattern tableaus is that any attribute 
of R୔ (repeatable path) cannot participate in both 
types of paths (conditional path and field path). 

A set of  R୔ relations imposed to a set of 
preliminary phases to prepare them for discovering 
approximate XIND dependencies. As known the 
general syntax of inclusion dependency asks each 
column at ݈ℎݏ to infer from simultaneous column 
on ݎℎݏ, for example, for ߰: R୔ [A, B] ⊆ R୔ᇱ  [A′, B′], 
attribute A infer only from A′ not  Aᇱ ∪  B′. This 
property help us consider only unary XIND as a 
normal form of n-ary XIND. 
4.1 Data Preprocessing 

As mentioned early in section 3.2, XML data 
representation divides the XML document into a set 
of related relations R୔ corresponds to an essential 
tuple class ܥ௣, in our algorithm we need to retrieve 
the data type used for each repeatable element 
,ݐ݊݅) ,݃݊݅ݎݐݏ  to use them later as an attribute (݈ܽ݁ݎ
data type, this feature is one of the greatest strength 
of XSD. 

The idea is building an association between each 
data value (ݒ) and attributes [A] that having this 
value (more precisely constructing a relationship 
between each leaf node and its direct parent inside 
the XML tree). The initial phases for relations 
preparation are: 
1. Dividing R୔ attributes (A ∈  R୔) for all R୔ 

relations under XML tree (R୔ ∈ T) into classes ॼ shares the same data type ݐ . As known from 
the basic definition of IND [27] that related 



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4228 
 

attributes between different or even same relation 
share the same data type. 
 ॼ௧ =  R୔ . A | A has ݐ data type , R୔ ∈ T 

2. Creating an Active Domain ॽ for each attribute [A]  by selecting a distinct values without 
redundant from A values. 

ॽ୅ = ∋ ݒ . ୅(T)| R୔ߨ   A ∈  ॼ௧  , R୔ ∈ T  
3. Constructing a Binary relationship defined as a 

couple of results of previous two steps, ९ ⊆ ॽ ×ॼ  . 
९ = , ݒ) R୔. A) 

To clarify the concept of relations preparation, 
let’s consider XML tree  T as a set of  R୔ as appeared 
early in section 2.3.1, and let’s consider two 
relations ܴை௥ௗ௘௥ ,ܴ஻௢௢௞ , (see appendix) which 
contain a sample of data for lack of space. Applying 
previous steps on these relations will produce next 
initial results, for example, for string 
datatype, ॼ௦௧௥: {ܱ. ,݈݁ݐ݅ܶ .ܤ ,݈݁ݐ݅ܶ ܱ. ,ݎℎܽݐݑܣ .ܤ ݁ݎ݊݁ܩ , ݎℎܽݐݑܣ :ॽ௦௧௥,{ݎℎ݁ݏ݈ܾ݅ݑܲ {Little Women … ,  Wiley … , Science … }, finally if the value ݒ = ‘First 
course in Database’ appears in more than one 
attribute then B= {(First course in Database, 
O.Title),( First course in Database, B.Title)}  These 
result can be summarized as shown next in Table 3. 
 

Table 3: Patterns Tableaus for ߰ଷ and ߰ସ 

4.2 Approximate XIND Discovering  
Actually, an extraction context can be seen as 

transactional databases in which attributes are items 
and values are transactions, moreover inferencing 
unary XIND can be seen as mining association rules 
whose confidence threshold   ߜ = 1. The major 
difference between integrity constraints and 
association rules is that the latter are not schema-

level properties and deal with frequency measures 
instead of real-world probabilities and probabilistic 
models. Before start arguing about the discovery 
algorithm, we should introduce the concept of 
approximate inclusion dependencies for XML data 
model. From the definition of ݃ଷ measure for AFD of 
relational databases [28] we can hire a modified 
version ݃ଷᇱ  for inclusion dependencies: 
݃ଷᇱ  ൫߰: ൫(ܵ , [ܲ]) ⊆ (ܵᇱ, [ ܲᇱ])൯, T൯
= 1 −  max{ |݌|, ∋ ݌ ܲ (Tᇱ ) ݏ. .ݐ Tᇱ ⊨ ߰}

|ܲ (T)|           4.1 
Informally, ݃ଷᇱ  is the proportion of value in ݈ℎݏ 

paths that should be modified (sometimes deleted) 
from T to produce Tᇱ that satisfied XIND (Tᇱ ⊨߰). ݃ଷᇱ  Test asks the user to define the error threshold ߳ ∈ [0,1], then approximate XIND satisfies  T with 
respect to ߳,  iff ݃ଷᇱ  (߰, T) ≤ ߳. Now as confidence 
value indicates to the ratio of correct value where 
dependency holds in then: 

,߰)݂݊݋ܥ T) = 1 −  ݃ଷᇱ  (߰, T) 
As  ݃ଷᇱ  (߰, T) ≤ ߳ Then ܶ ⊨  ߰ if 

,߰)݂݊݋ܥ  T) ≥  4.2                                        ߜ
Formula (4.2) shows the minimal ratio needed to 

consider a driven dependency satisfies tree under XIND definition, if the user provides a specific 
thresholds ߜ, then T satisfy XIND  (T ⊨ ߰) if  ݂݊݋ܥ(߰, T) ≥  as a result (T ⊨ఋ ߰). Inference an ,ߜ
interesting approximate unary XIND can done just by 
one pass thought the extraction context as algorithm 
an in  Fig.4 shows.  

 
Approximate XIND Mining  ((९, ॽ, ॼ), ݊ .1 } (ߜ = 0; // counter for threshold value 2. ݅݊3 [ ][ ] ݕܽݎݎܽ ݐ. ॏ =  ॼ௧| ݐ ∈ ,ݐ݊݅} ,݃݊݅ݎݐݏ ,݁ݐܽ݀ … } // set of all attributes for all R୔ 4. for each A ∈ ॼ௧   do  5. ݎℎݏ (A) = {< B , ݊ >| B ∈ ॼ௧};  6. for each ݒ ∈ ॽ௧   7. for each A s. t. (v, A) ∈ ९௧   
8. for each < B, ݊ >∈ ,൫(v|(A)ݏℎݎ B) ∈ ९௧൯ 
9. ݊஺஻  =  ݊஺஻ + 1; 10. for each A ∈ ॼ  do 11. for each < B, ݊ >∈ ,v) \ (A) ݏℎݎ A) ∈ ९௧  12. if  (( ݊஺஻/ ݊஺஺ ) ≥ then  XIND .13 (ߜ  =  XIND ∪ {A ⊆ B} 14.  ॏ =  ॏ \{A, B} 15. return XIND , ॏ } 

Figure 4: XIND Inferencing Algorithm. 

९ࢍ࢔࢏࢚࢙࢘  
ॽࢍ࢔࢏࢚࢙࢘ ॼ௦௧௥௜௡௚ 

First course… O.Title , B.Title, 
Alpha Teach… O.Title , B.Title, 
… … 
Wiley Publisher 
Ballantine Publisher 
Book Type 
Article Type 
…  …  



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4229 
 

݈ℎݎ ݏℎݏ 

݊஺஻ : Support of the dependency. 
݊஺஺ : Cover of the dependency.  

,߮)݂݊݋ܥ T) = ,߮)݌݌ݑݏ T)
,߮)ݎ݁ݒ݋ܿ T)  =  ݊஺஻

݊஺஺
 .     

Once the extraction context phase groups relation 
attributes based on their domain type, approximate XIND mining algorithm invoked for each data type, 
for instance in our case there are three main data 
types (int, date, string). Moreover, the algorithm 
starts by assigning all attributes to share the same 
domain type as rhs for each attribute (line 4,5), we 
omit the selector paths and just use the attribute name 
(field path) to clarifying the context i.e. {݁ݎ݊݁ܩ} is for {݁ݎ݊݁ܩ/݇݋݋ܤ}. 

Lines 4, 5 fill ݎℎݏ for all attributes with each 
attribute shares same data type, for string data type: ݎℎܤ)ݏ. (݈݁ݐ݅ܶ = .ܱ)ݏℎݎ (݈݁ݐ݅ܶ = .ܤ)ݏℎݎ .ܱ)ݏℎݎ  (ݎℎܽݐݑܣ (ݎ݋ℎݐݑܣ = (݁ݎ݊݁ܩ)ݏℎݎ = = (ݎℎ݁ݏ݈ܾ݅ݑܲ)ݏℎݎ {< ܱ. ,݈݁ݐ݅ܶ 0 >< .ܤ ,݈݁ݐ݅ܶ 0 >< ܱ. ,ݎℎܽݐݑܣ 0 >< .ܤ ,ݎ݋ℎݐݑܣ 0 >< ,݁ݎ݊݁ܩ 0 >< ,ݎℎ݁ݏ݈ܾ݅ݑܲ 0  Column not used here as it has finite {݁݌ݕܶ}  .{<
domain {݇݋݋ܤ,  from the ݒ Then each value .{݈݁ܿ݅ݐݎܣ
extraction context used to update ݊  value, for instance 
the value ݒ = ᇱ First course in Database′, appears in 
two attributes (ܱ. .ܤ and ݈݁ݐ݅ܶ  so we ,(݈݁ݐ݅ܶ
increased ݊ by one for both of them, whereas not 
participated attributes remains unchanged. The final 
results after calculating the number of occurrence for 
each element value of ݃݊݅ݎݐݏ data type and between 
related attribute of ܴை௥ௗ௘௥ ,ܴ஻௢௢௞  relations can be 
depicted as a two dimensional array [݈ℎݏ][ݎℎݏ], as 
illustrated next in Table 4. 

To see how XIND generated, let’s consider the 
library has 500 books (with 320 titles and 255 
authors), and 200 orders requested by students, 80 of 
them books (with 70 titles and 65 authors) and the 
remaining are articles. Remember that choosing 
active domain will return values without redundant as 
may be many copies of a book available and may be 
the same book ordered by a number of students. 

Table 4: Final Result after XIND Procedure Invoked. 
.ܤ  ܶ ܱ. .ܤ ܶ .ܱ ܣ  .ܾݑܲ .݊݁ܩ ܣ

.ܤ  0 0 0 0 70 320 ݈݁ݐ݅ܶ
ܱ.  0 0 0 0 200 70 ݈݁ݐ݅ܶ

.ܤ  0 0 65 255 0 0 ݎ݋ℎݐݑܣ
ܱ.  0 0 200 65 0 0 ݎ݋ℎݐݑܣ

 0 13 0 0 0 0 ݁ݎ݊݁ܩ
 176 0 0 0 0 0 ݎℎ݁ݏ݈ܾ݅ݑܲ

To formulate XIND we need to assign confidence 
threshold ߜ, as large as the confidence value is as less 
as XIND numbers are; suppose ߜ = 0.75, this value 
means at least 75% of the values in dependent 
relation should appear at referenced relation in order 
to consider discovered dependency satisfied. 

Now as we mentioned the total number of orders 
are not only books but also article, so no XIND will 
be discovered using this confidence value as ߮: order[Title] ⊆ book[Title] has (70/200 = 0.35) 
value, but the truth is all book orders are in the book 
relation and this highlight the important of 
proposed XCIND, as not all orders should take under 
consideration to appear in books relations but only 
whom had Book Type.  

Reducing the confidence value (ߜ = 0.25) will 
help us producing XIND and false dependencies will 
be unveiled in next steps.   

൬݊஺஻
݊஺஺

 ൰ = 70
200 ≥  ߜ 

Moreover, approximate XIND algorithm will 
discover three more inclusion dependency between 
book and order table using the same threshold: 

߮: order [Author] ⊆ book[Author].  ߮: book[Title] ⊆ order[Title]. ߮: book [Author] ⊆ order[Author].  
 
The mining algorithm reduces the search space 

by eliminating any attribute committed as a 
participant in any inclusion dependency from 
conditional attributes, as any attribute cannot 
participate in both path types (line 14). 
4.3 XCIND Main Mining Algorithm 

Patterns for inclusion dependencies differ slightly 
from those assigned for XCFD; as they have two 
kinds of conditions; selecting and demanding 
conditions. Selecting condition appear on ݈ℎݏ 
relation (R୔) and used to ensure the validity of 
included dependency whereas demanding condition 
used on ݎℎݏ relation (R୔ᇱ ) and needed to ensure the 
completeness of the relation. 

In this paper, our mining XCIND algorithm focus 
on selecting condition as their requirement subsume 
the demanding condition requirement. To change 
discovered dependencies to conditional ones, we 
need to search for patterns though non-inclusion 
attributes; (R୔. Attr ∩  ॏ). Mining a set of XCIND 
pass thought a set of procedures invoked from the 
main algorithm appear in Fig.5. The output of each 
procedure used as an input for another procedure 
until the requested set of rules produced. 



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4230 
 

Algorithm Mining XCIND () Input: XML document as a set of R୮ with 
attributes  ܽଵ … ܽ௡ , supp ߠ, Conf  ߜ  Output: Set of Minimal XCIND Preprocessing Phases 1. EX = Preprocessing(set of R୮) // extraction 

context for each data type in R୮ 
2. XIND = Approximate XIND Mining (EX, δ) //discover XIND with size =1 Initialize variables steps 3. XCIND =  ∅  // stored discovered XCIND 4. Level ݈ = 1 // Single attribute set size at lattice  5. ܥ௟ =  R୔. Attr ∩  ॏ // Fill level ݈ଵ candidates            with selected attributes of Rଵ Iteration steps { 6. for each ߰ ∶ (R୔ [A]) ⊆ (R୔ᇱ , [B]) ∈ XIND 7. XCINDs = XCINDs ∪

XCINDGenerator   (ܥ௟ , ߰, , ෠ߠ   መ)  8. MinimalCover (XCINDs)ߜ
9. return (XCINDs) } 
 

Figure 5: XCIND Mining Main Algorithm. 
The algorithm starts by defining a set of 

parameters and variables to store values during the 
algorithm debugging. At level ݈ = 1, the algorithm 
looks only for XCIND which has a single conditional 
attribute on the ݈ℎݏ relation. XCINDGenerator  
Procedure invoked to form a dependency that has 
predefined support and confidence thresholds differ 
from used for XIND. AprioriGeneration procedure 
[21] called to generate candidates with a large size. 

 For a set of discovered approximate XIND, each 
one will convert to an XCIND using procedure appear 
in Fig.6. The general idea is threefold: First: 
computing a JOIN between participant relations 
(R୔, R୔ᇱ ) as line 4 depicts, these relations known as 
dependent relation (R୔) and referenced relation (R୔ᇱ ). 
Second: using R୔ᇱ  attribute to indicate included tuples 
from not included (line 5). And finally grouping the 
result using preferred attributes (line 6) which used 
as a condition attributes (line 3).  

After that, each procedure fetched to do a 
special task, the result back again to the main 
algorithm. The complexity time for this algorithm is 
the summation of all sub procedure times. 

 
 
 
 

,௟ܥ)  ܚܗܜ܉ܚ܍ܖ܍۲۵ۼ۱۷܆ ߰, ,෠ߠ |݈| መ)  { 1. whileߜ <> ݊ do 2. For each X ∈ ௟ܥ  3. SELECT X, ܿݐ݊ݑ݋(B)  4. FROM R୔ , R୔ᇱ  5. WHERE A = B  6. GROUP BY X 
7. HAVING ܿݐ݊ݑ݋(B) ≥ ෠ߠ) // ݉ݑܰ  ∗ ܰ) 
8. And (ܿܽݐݏ(ܿݐ݊ݑ݋(B))/ܿܽݐݏ (ܿݐ݊ݑ݋(A))) ≥ መ 9. XCINDߜ  =  XCIND ∪ (R୔ [A;  X]) ⊆ (R୔ᇱ  [Y]) 10. ݈ =  ݈ + ௟ܥ .11 ;1 = AprioriGeneration (ܥ௟ିଵ) 12. Return XCIND; } 

Figure 6: XCIND Generator Procedure. 
During the search for patterns, normal query 

statement will count each tree tuple as a participant, 
for instance, it will count 200 orders, this case 
produces useful patterns with completeness option 
and elapsed less running time. Furthermore, inserting 
distinct option will remove the redundant element 
and count single element to ensure patterns 
availability, the called cover option and produce 
more tangible patterns but consumes more running 
time. As our main target is discovering patterns for 
supported XIND, once our algorithm mined an XIND, 
it moves directly to looking for a pattern for it. More 
precisely, the final result will show only XIND that 
has related patterns, other false XIND will be 
eliminated as final results. 
4.3.1 Merging Pattern of XCIND 

The final step required ensure the minimality of 
discovered XCIND is to regroup these pattern so 
dependencies share same conditions merged together 
in order to minimize searching processes. These 
operations are performed by the MinimalCover 
procedure presented in Fig.7.  

 MinimalCover (Σ)  { 1. for each XCIND ∶ ߰ ∈  Σ   2. ܵܪܮ݌݉݁ݐ = ∪ ݏݐ݈݊݁݉݁݁ ܵܪܮ) ߰  = ܵܪܴ݌݉݁ݐ .3 (ݏ݁ݑ݈ܽݒ ݏݐ݈݊݁݉݁݁ ܵܪܴ) ߰  ∪ ,ܵܪܮ݌݉݁ݐ]௧௣݌݉݁ݐ ) if .4 (ݏ݁ݑ݈ܽݒ ([ܵܪܴ݌݉݁ݐ ∉  Σ୫ୡ 
5.      Σ୫ୡ =  Σ୫ୡ  ∪  ௧௣݌݉݁ݐ 
6. else 7. ݉ܽܿݐℎ ( ݌݉݁ݐ௧௣ , Σ୫ୡ) 
8. return Σ୫ୡ } 

Figure 7: Minimal Cover Procedure. 



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4231 
 

The method match checks if the lhs value 
(respectively rhs) are used before with the same 
attribute list. If so, the method merges both 
dependencies with the lhs value (resp. of rhs) at the 
proper place (attributes stored in lhs and rhs). 
5. XCIND DETECTING INCONSISTENCIES 

The next step toward verifying proposed XCIND 
is detecting or identifying responsible data values 
which cause erroneous and inconsistent, more 
precisely, detecting XCIND violations. Given a data 
instance as an XML document and a set Σ of 
conditional inclusion dependencies on T, finding all 
paths in T that violate some XCIND in Σ. 

In order to test the consistency of an XML 
database state relative to a given constraint, the 
system often computes its denial query, extracting 
those tuples that do not satisfy the constraint 
predicate in negated form (called the denial form of 
the constraint); consistency holds if the denial query 
returns an empty result. The tuples extracted by the 
denial query represent constraint violations  [29]. 
 Detecting Inconsistencies (Σ, T)  { Input: XML document as a set of R୮, 
 Set of XCIND, ߰   Output: a set of inconsistencies  ݅݊ܿ݋ [] = ∅ // for discovered inconsistencies  1. For each ߰: (݈ℎݏ ⊆ ; ݏℎݎ (݌ݐ  ∈  Σ 
2. For each (R୮ | (ݎݐݐܣ൫R୮൯ ∩  
3. ߰ (݈ℎݏ)  ≠   ∅)) 
4. For each (R୮ᇱ ൫R୮ᇱݎݐݐܣ) | ൯  ∩ 
(ݏℎݎ) ߰ .5  ≠   ∅)) 6. ߳ = SELECT lhs FROM R୮ ,  WHERE  ݌ݐ

lhs NOT IN  7. (SELECT lhs FROM R୮ , R୮ᇱ  ,    ݌ݐ
8. WHERE R୮. P = R୮ᇱ . P  
9. AND R୮ . ݈ℎݐ = ݏ௣ . ݈ℎݏ) 
10. And R୮ . ݈ℎݐ = ݏ௣ . ݈ℎݏ 
= ݋ܿ݊݅ .11 ∪ ݋ܿ݊݅     { ݋ܿ݊݅ ܖܚܝܜ܍ܚ .12  ߳

Figure 8: Detecting Inconsistencies Algorithm. 
 

Inclusion Dependencies (XIND, XCIND) provide 
different criteria to classify a path as inconsistent 
from XCFD, any path appears in the dependent paths 
(݈ℎݏ) should appear also in the referenced paths 
 ,For example, in the order subtree (relation)  .(ݏℎݎ)

there exist a book discovered using generated query 
based on XCIND ߰: ,݈݁ݐ݅ܶ] ݎ݁݀ݎ݋ ;ݎ݋ℎݐݑܣ [݁݌ݕܶ ,݈݁ݐ݅ܶ] ݇݋݋ܾ ⊇ ,[ݎ݋ℎݐݑܣ ݌ݐ =  Contains (′݇݋݋ܾ′
following information (Title = ‘ipv6 essentials’, and 
Author = ‘Silvia Hagen’), unfortunately, this book 
is not available at book subtree. 

The truth is modifying referenced relation (book) 
asked for inserting new path into the rhs relation in 
order to make dependency satisfied. On the other 
side, modifying dependent paths relation (order) 
needs even to delete or update paths values in order 
to make them obey related dependency. Modifying 
inconsistencies is out of scope this paper and will be 
left for future work. 

Procedure in Fig.8 checked each XCIND against 
related relation R୮, R୮ᇱ , is there exist a tree tuple 
appears in ݈ℎݏ of the dependency and not appear at ݎℎݏ, then it needs an insertion as a requirement of the 
solution. 
6. EVALUATION 
6.1 Experimental Conditions 

We evaluate our methods with two datasets: 
synthetic dataset (University.XML) and real dataset 
(Mondial.XML), summary for both datasets will be 
shown next in Table 5. 

All our experiments were performed on an Intel 
Core i5-2410M with a CPU clock rate of 2.3 GHz, 8 
GB of main memory and running Windows 10 
professional. Algorithms were implemented using 
the C# language with LINQ programming model. 
SQL Server 2016 was used to perform tests while 
RDBMS accesses SqlClient. 

In order to import needed XML file to the 
application, we use XML read techniques to load 
XML file, create the related schema and then 
shredding XML tree based on pivot paths techniques 
and finally store relation in the new database. 
Moreover, XML documents are required to be well-
formed to allow application starts working.  

 
Table 5: Dataset Summary. 

 Size 
KB # of nodes # of rep 

paths 
University 128 9143 3 
Mondial 1,198 49,422 28 

6.2  XCIND Mining Algorithm Analysis  
Mining good quality rules will effect on the XML 

data quality model, for this reason, we test our 
mining algorithms with different confidence values; 



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4232 
 

as changing support values will affect only the 
number of paths that dependency based on (degree of 
validity). The number of discovered dependencies 
will change consequently as well as running time by 
changing confidence thresholds as appear in Fig.9 
and Fig.10.  

As appear from Fig.9, the number of discovered 
XCIND decreases by increasing the tableau 
confidence threshold. Whereas the time still liner, 
which proves our algorithm of mining conditional 
inclusion rules regardless the complexity of XML 
tree (same for Fig.10). 

Another factor effects number of dependencies is 
using the DISTINCT keyword in a HAVING or even 
SELECT statements to remove duplicates returned 
by a query for XCIND Generator procedure will 
enforce the algorithm to choose single value for 
multiples redundant values, more precisely, instead 
of having same text node at lhs, rhs relations, only 
one value can ensure the consistency of the 
dependency on XML tree, Nevertheless, the 

complexity time increased; due to the sort operation 
that the SQL enforced to perform.  

 

 

 
7. CONCLUSIONS 

Conditional dependencies played an important 
role in improving relational databases quality, as 
XML data model becomes standard for data 
transferring and integration, XML data quality 
become more crucial. In this paper, we introduce a 
conditional version of standard XML inclusion 
dependencies special for data quality issues. 
Moreover, a novel mining algorithms to inferring 
minimal, non-trivial rules are introduced and tested 
with different confidence threshold. Finally, 
discovering inconsistencies using mined rules are 
presented to prove the ability of XCIND to detect 
inconsistent tree tuples between multilevel inside 
XML tree.   

In conclusion, discovered dependencies will be 
implemented to discover data inconsistencies from 
XML tree and will recover inconsistencies as needed. 

0
2
4
6
8

10
12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Num
ber

 of 
Rul

es

Confidence [0,1]
 Complete Cover

Figure 10: Scalability and Number of discovered XCIND 
(University data set) 

0
100
200
300
400
500
600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Num
ber

 of 
Rul

es

Confidence[0,1]
 Complete Cover

0
50

100
150
200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Tim
e(s)

Confidence[0,1]
 Complete Cover

Figure 9: Scalability and Number of discovered XCIND 
(Mondial data set) 

0
0.5

1
1.5

2
2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Tim
e(s)

Confidence[0,1]
 Complete Cover



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4233 
 

Proposed discovering algorithms for XCIND and 
XCFD as future work produced a set of useful 
dependencies to be used as business rules. 

Many major difficulties faced us during this 
research, for example, not all XML documents are 
associated with their schema files, moreover, not all 
XML document contains valuable information, 
therefore, mined rules looks useless. 

This research is the first phase to build a model 
for improving XML data quality using a set of 
conditional integrity constraints and to open a new 
research doors for using these promising rules for 
others non-structured database like JSON, 
furthermore, Using enhanced XCIND in more than 
data cleaning problems, like data publishing and data 
integration will be left as a future work for this 
research.  
 
REFERENCES  
[1] L. Li, “Data quality and data cleaning in 

database applications,” no. September 2012. 
[2] Larisa Bedgood, “How Much is Dirty Data 

Costing You? ” 2015. [Online]. Available: 
http://www.datamentors.com/blog/how-
much-dirty-data-costing-you. [Accessed: 
16-Jan-2016]. 

[3] S. Grijzenhout and M. Marx, “The quality of 
the XML Web,” J. Web Semant., vol. 19, pp. 
59–68, 2013. 

[4] Computing Research Association, 
“‘Challenges and opportunities with big 
data,’” 2012. 

[5] J. Chen et al., “Big data challenge: A data 
management perspective,” Front. Comput. 
Sci., vol. 7, no. 2, pp. 157–164, 2013. 

[6] Z. Tan and L. Zhang, “Repairing XML 
functional dependency violations,” Inf. Sci. 
(NY)., vol. 181, no. 23, pp. 5304–5320, 2011. 

[7] W. Fan, “Data Quality : From Theory to 
Practice,” SIGMOD Rec., vol. 44, no. 3, 
2015. 

[8] R. Elmasri and S. B. Navathe, Fundamentals 
of Database Systems, 7th Editio. Pearson 
Education, 2016. 

[9] W. Fan, F. Geerts, X. Jia, and A. 
Kementsietsidis, “Conditional functional 
dependencies for capturing data 
inconsistencies,” ACM Trans. Database 
Syst., vol. 33, no. 2, pp. 1–48, 2008. 

[10] S. Ma, W. Fan, and L. Bravo, “Extending 
inclusion dependencies with conditions,” 
Theor. Comput. Sci., vol. 515, no. January, 
pp. 64–95, 2014. 

[11] L. T. H. Vo, J. Cao, and W. Rahayu, 
“Discovering conditional functional 

dependencies in XML data,” in Proceedings 
of the Twenty-Second Australasian Database 
Conference-Volume 115, 2011, vol. 115, no. 
5, pp. 143–152. 

[12] M. Hakawati, P. Saad, N. Sabri, Y. YACOB, 
R. B. AHMAD, and M. S. Salim, “XML 
INTEGRITY CONSTRAINTS, WHAT’S 
NEXT?,” J. Theor. Appl. Inf. Technol., vol. 
92, no. 2, p. 365, 2016. 

[13] P. Bohannon, W. Fan, M. Flaster, and R. 
Rastogi, “A cost-based model and effective 
heuristic for repairing constraints by value 
modification,” Proc. 2005 ACM SIGMOD 
Int. Conf. Manag. data - SIGMOD ’05, p. 
143, 2005. 

[14] W. Fan, F. Geerts, and X. Jia, “A revival of 
integrity constraints for data cleaning,” Proc. 
VLDB Endow., vol. 1, no. 2, pp. 1522--1523, 
2008. 

[15] X. Chu et al., “KATARA: A Data Cleaning 
System Powered by Knowledge Bases and 
Crowdsourcing,” Proc. ACM SIGMOD Int. 
Conf. Manag. Data, pp. 1247–1261, 2015. 

[16] J. Liu, J. Li, C. Liu, and Y. Chen, “Discover 
dependencies from data - A review,” IEEE 
Trans. Knowl. Data Eng., vol. 24, no. 2, pp. 
251–264, Feb. 2012. 

[17] H. Chen and H. Liao, “Inclusion 
dependencies for XML,” in 2010 
International Conference on Information, 
Networking and Automation (ICINA), 2010, 
pp. 82–86. 

[18] M. M. M. Karlinger, M. M. M. Vincent, and 
M. M. Schrefl, “Inclusion dependencies in 
XML: Extending relational semantics,” Lect. 
Notes Comput. Sci. (including Subsea. Lect. 
Notes Artif. Intell. Lect. Notes 
Bioinformatics), vol. 5690 LNCS, no. 9, pp. 
23–37, 2009. 

[19] M. W. Vincent, J. Liu, and M. Mohania, “On 
the equivalence between FDs in XML and 
FDs in relations,” Acta Inform., vol. 44, no. 
3–4, pp. 207–247, 2007. 

[20] W. Fan and F. Geerts, “Foundations of Data 
Quality Management,” Synth. Lect. Data 
Manag., vol. 4, no. 5, pp. 1–217, 2012. 

[21] M. M. Aqel, N. F. Shilbay, and M. Hakawati, 
“CFD-Mine: An Efficient Algorithm For 
Discovering Functional and Conditional 
Functional Dependencies,” Trends Appl. Sci. 
Res., vol. 7, no. 4, pp. 285–302, Apr. 2012. 

[22] C. Yu and H. V. Jagadish, “XML Schema 
refinement through redundancy detection 
and normalization,” VLDB J., vol. 17, no. 2, 
pp. 203–223, 2008. 



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4234 
 

[23] Y. Huhtala et al., “Tane: An Efficient 
Algorithm for Discovering Functional and 
Approximate Dependencies,” Comput. J., 
vol. 42, no. 2, pp. 100–111, 1999. 

[24] S. Fast, I. Mlynkova, and M. Necasky, “On 
Mining XML integrity constraints,” in 2011 
Sixth International Conference on Digital 
Information Management, 2011, pp. 23–29. 

[25] M. Arenas and L. Libkin, “A normal form for 
XML documents,” ACM Trans. Database 
Syst., vol. 29, no. 1, pp. 195–232, 2004. 

[26] J. Vidaković, I. Luković, and S. Kordić, 
“Specification and Implementation of the 
Inverse Referential Integrity Constraint in 
XML Databases,” in Proceedings of the 7th 
Balkan Conference on Informatics 
Conference, 2015, p. 18. 

 [27] M. A. Casanova, R. Fagin, and C. H. 
Papadimitriou, “Inclusion dependencies and 
their interaction with functional 
dependencies,” J. Comput. Syst. Sci., vol. 28,  
no. 1, pp. 29–59, 1984. 

[28] J. Kivinen and H. Mannila, “Approximate 
inference of functional dependencies from 
relations,” Theor. Comput. Sci., vol. 149, 
no. 1, pp. 129–149, 1995. 

[29] S. Ceri, F. D. I. Giunta, P. L. Lanzi, and P. 
Milano, “Mining Constraint Violations,” 
vol. 32, no. 1, 2007. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Journal of Theoretical and Applied Information Technology 
15th September 2017. Vol.95. No.17  © 2005 - Ongoing JATIT & LLS   

 ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 4235 
 

 
Appendixes 

Sample R୆୭୭୩  dataset. 
 
 
 
 
 
 

Sample R୓୰ୢୣ୰   dataset. 

R Book 
ISBN Title Author Year Publisher Genre 
1592 Alpha Teach Yourself … Trudy Suggs 2003 Alpha Science  
0671 First course in Database Jenifer Widom 2007 Wiley Science 
0451 Little Women Louisa May Alcott 1988 Signet Classics Science 
0345 

 
Protect and Defend Richard North 2001 Ballantine Romance 

… … … … … … 

R 
Order 

ID Title Author Type 
33 First course in Database Jenifer Widom Book 
30 Adaptive receiver for data transmission over time-dispersive 

channels. 
Shahid U. H. Qureshi, E. E. 

Newhall Article 
32 The estimated cost of a search tree in binary words. Alexey Fedotov, Boris Ryabko Article 
31 Alpha Teach Yourself American Sign Language in 24 Hours Trudy Suggs Book 
34 ipv6 essentials Silvia Hagen Book 
… … … … 


