
Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4165

RENDERING SPEEDS OF DYNAMIC AND STATIC OBJECTS
WITH TANGENT SPACE NORMAL MAPPING ON

3D GAMES

YOUNGSIK KIM
Dept. of Game and Multimedia Engineering, Korea Polytechnic University, Republic of Korea

E-mail: kys@kpu.ac.kr

ABSTRACT

In 3D games, bump mapping is an efficient way to provide high-resolution bumpy lighting features in
textures using only low-resolution meshes during runtime. This paper developed two 3D games based on
Unity3D and Direct3D using normal mapping, which is a typical one among bump mapping methods. In
particular, dynamic objects in 3D games require tangent space normal mapping, which requires much
computation per vertex. The performance of dynamic and static objects with or without normal mapping in
3D games is analyzed using various screen resolutions as well as eight simulation models in terms of the
rendering speed like frames per second (FPS). The rendering speeds of the models Gu and Gd on Unity3D
and Direct3D based games, where using normal mapping to all objects among the eight simulation models,
can be improved by up to 79.7% and 19.2%, respectively, compared with the models Bu and Bd without
normal mapping. The tangent space normal mapping on both dynamic and static objects in 3D games has a
large effect on rendering speed.
Keywords: Bump Mapping, Tangent Space Normal Mapping, Rendering Speed, Frames Per Second

(FPS), Direct3D, Unity3D

1. INTRODUCTION

Bump mapping has been widely used in
the latest 3D computer games to represent bumpy
surfaces in real time [1,2,3,4,5]. To provide the
high-resolution bumpy features with low-resolution
meshes, bump mapping has been used with texture
mapping. Blinn invented bump mapping in 1978
[5]. Bump mapping is a texture-based rendering
approach to provide wrinkle effects by applying
perturbed patterns on low-resolution macro meshes
according to lights. By representing such perturbed
surfaces in texture maps, bump mapping provides a
bumpy lighting features without both the high-
resolution meshes and the complex true geometric
perturbations using a height field function as shown
in Figure 1.

One of the typical bump mapping
techniques is normal mapping, which uses normal
information stored in a texture. Normal mapping
has begun to be implemented in the game since the
early 2000s when pixel shaders appeared. The most
important tasks of pixel shaders are lighting and
texture processing. Normal mapping, which
performs lighting calculations using a special
texture with perturbed normals stored, was not

possible in real-time before pixel shaders appeared
[3].

In [6], bump mapping is applied to cartoon
rendering using silhouette detection method in
image space. In [2,7], bump mapping hardware
approaches have been proposed for high-end 3D
graphics hardware. Bump mapping hardware in
[2,7] supports per-fragment lighting operations. In
[2], the costly per-pixel steps are eliminated by
reconstructing a tangent space and perturbing the
interpolated normal vector. In [8,9], the VISA+
hardware architecture is proposed as a new
generation of graphics accelerators designed
primarily to render bump-, texture-, environment-
and environment-bump-mapped polygons. Visa+
bump-mapping in [8,9] determines the respective
lighting diffuse and Phong specular lighting
contributions, which uses vector offset maps to
encode the bump map perturbations and uses two
cube maps. In [10], Gouraud bump mapping is
developed as another approach. In [11], a new real-
time terrain rendering approach combines hardware
tessellation and parallax mapping [12].

Unlike static objects in 3D games, normal
mapping must be computed per vertex when
applying normal mappings to dynamic objects. That

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4166

is, we need to define a tangent space with the
surface normals along the z axis for each vertex.
Therefore, tangent space normal mapping applied to
dynamic objects requires more computation than
static objects. Parallax mapping [12] is known as an
advanced method compared with normal mapping.
This paper applies tangent space normal mapping to
both static and dynamic objects on two kinds of
proprietary games like Unity3D and Direct3D based
game. The rendering speeds of two games with or
without normal mapping are compared where
changing screen resolutions as well as simulation
models in terms of frame per seconds (FPS).

The composition of this paper is as
follows. In Section 2, three bump mapping
algorithms are introduced. Section 3 describes the
tangent space normal mapping. Section 4 introduces
two proprietary 3D games based on Unity3D and
Direct3D that use tangent space normal mapping.
Section 5 compares and analyzes the rendering
speed of various resolutions with respect to the
normal mapping application of static and dynamic
objects in a two-game 3D game environment.
Finally, Section 6 concludes this paper.

Smooth surface
Wrinkle function

height

u

Wrinkled surface
Figure 1. A surface perturbed by a height field makes a

bumpy surface [5]

2. BUMP MAPPING METHODS
Bump mapping is a technique that uses

low-resolution meshes to handle bumpy surfaces in
real time, while high-resolution meshes are stored
in normal map textures for runtime use. Bump
mapping uses a special texture called a height map,
which is simply generated during preprocessing.
The height map expresses the high resolution model
as a height value from a flat bottom surface. The
height map was visualized by interpreting the
height value as a grayscale color. For example, if
the height is in the range [0,255], the lowest value 0

is expressed in black, and the highest value 255 is
expressed in white.

The bump mapping using the height map
is largely divided into two tasks. First, calculate the
perturbed normals of the bumpy surface using the
height map. And the second performs lighting
calculations on a fragment basis using a perturbed
normal. Three methods for handling bump mapping
using a height map are 1) normal mapping, 2)
parallax mapping, and 3) displacement mapping. 1)
Normal mapping is the oldest and most used in the
game. The effect of normal mapping is excellent,
but since it is a kind of gimmick, its limitations are
also clear. First, in the preprocessing step, the
height map is used to calculate the perturbed
normal of the bumpy surface and store it in a
special texture called the normal map normal map.
The irregular normal stored in the normal map is
used as the surface normal of the macro structure at
runtime. The macro structure is intact, but it is
rendered using normals in the normal map to
simulate the bumpy surface by lighting. Normal
mapping is implemented as a pixel shader.

Various pixel shader algorithms have been
developed to replace normal mapping. A typical
example is 2) parallax mapping [3] [12]. Parallax
mapping performs a simple ray tracing algorithm
on the height map at runtime. Unlike normal
mapping, it is possible to express that the bump is
actually hidden. Parallax mapping is implemented
as a pixel shader. That is, one ray is emitted per
pixel to calculate the point at which this ray hits the
height map, and the color of that point is
determined. As GPU performance continues to
evolve, ray tracing, which was only implemented in
the non- real time domain, can be implemented in
real time (although in a simplified form). 3)
Displacement mapping does tessellation operations
on the macro structure and then actually moves the
vertices using a height map [3]. It is more attractive
because it supports tessellation in shader model 5.
Displacement mapping is implemented by the
tessellator and the domain shader.

3. TANGENT SPACE NORMAL MAPPING

ALGORITHM

As shown in Figure 2, the surface normal,
np, for a point on P with texture coordinate (u,v) is
defined in the object modeling step. It is assumed
that ‘perturbed np’ is stored in the normal map. (np =
unit vector in the z-axis direction of world space
(0,0,1)). Texturing is to spread the texture on the

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4167

object surface. The n(np, vp) taken from the normal
map replaces np. Therefore, the normal of the
normal map is not ‘perturbed np’ but ‘perturbed
surface normal’. Consider a tangent space with a z-
axis surface normal at each point on the object
surface. Each normal of the normal map is defined
in the tangent space of the surface point to which the
normal is applied, not world space. In this sense,
normal is called tangent space normal map.

Z = np = Normal

X = Tangent Y = Binormal

n(up ,vp)

PTangent plane

Figure 2. Tangent Space Normal Map [3].

The tangent space basis is defined as {T, B,

N}. The vertex normal, N, is defined per vertex in
the modeling step. Tangent, T, and Binormal, B,
need calculation. The surface normal, N, for a point
on P with texture coordinate (u,v) is defined as
equation (1) [1]. Usually Tangent, T, is taken from
the partial derivative of the u texture coordinate, and
Binormal, B, is taken from the partial derivative of
the v texture coordinate with respect to a point
P(u,v) in the world space x, y, z as defined as
equations (2) and (3) [4]. Figure 3 shows pseudo
shader programs for tangent space normal mapping
[3].

dv
vudP

du
vudPvuN),(),(),( (1)

 







 dz

du
dy
du

dx
du

dP
duT ,, (2)









 dz

dv
dy
dv

dx
dv

dP
dvB ,, (3)

4. UNITY3D AND DIRECT3D BASED

GAMES WITH TANGENT SPACE
NORMAL MAPPING

Pseudo Program: Tangent Space Normal Mapping
void VS_Tangent_Space_Normal
(float4 Pos : POSITION,

float3 Normal : NORMAL,
float3 Tangent : TEXCOORD0,
float2 Tex : TEXCOORD1, // normal map
out float4 oPos : POSITION,
out float2 oTex : TEXCOORD0,
out float3 Light : TEXCOORD1,
uniform float3 LightPos,
uniform float4x4 ViewProj)

{
oPos = mul(ViewProj, Pos);
oTex = Tex;
light = LightPos – Pos.xyz;
float3 Binormal = cross(Normal, Tangent);
Rotation=float3(Tangent,Binormal,Normal);
Light = mul(Rotation, light);

}
void PS_Tangent_Space_Normal
(

float2 oTex : TEXCOORD0,
float3 Light = TEXCOORD1,
out float4 Color : COLOR,
uniform sampler2D shadowMap)

{
float3 LightDir = normalize(Light);
float3 Normal = tex2D(NormalMap, oTex).xyz;
Normal = normalize(Normal*2.0 – 1.0);
Color = dot(Normal, LightDir);

}
Figure 3. Pseudo Shader Program for Tangent Space

Normal Mapping [3].

This paper developed two 3D games like
Unity3D and Direct3D based games for
performance evaluation. The normal mapping
rendering effects were applied to the static and
dynamic objects of 3D games of own production,
and the performance was analyzed at various screen
resolutions.

The Unity3D based game used in the first
experiment is a Massive Multiplayer Online Role
Playing Game (MMORPG) using Unity3D game
engine. This Unity3D based game uses a free
camera viewpoint and needs to defeat field and
dungeon monsters. It is a game to nurture the
character's skill and power and to suppress the oak
king boss monsters on the top stage of the dungeon.
Second, the Direct3D based game used in the
experiment is an online action Role Playing Game
(RPG). This Direct3D based game uses the third
person's back view to kill the monsters in the map
with the party member and finally needs to kill the
boss to clear the game.

Figure 4 (a) and (b) illustrate the operation
flows of our own Unity3D and Direct3D based

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4168

games, respectively. Especially, since Direct3D
based game is a network based MMORPG, the
network address assignment and join steps are
included in the game control flow as shown in
Figure 4 (b).

Table 1 (a) and (b) show the number of
vertices and triangles of Dynamic and Static Objects
used in our own Unity3D and Direct3D based
games, respectively. In Unity3D based game,
dynamic objects are Monster and Player, and static
objects are Bonfire, Log, Fence1, and Fence2 as in
Table 1 (a). In Direct3D based game, dynamic
objects are Female Player, Male Player, Lizard, and
Hyena and static objects are Ruin1, Ruin2, Ruin3,
Ruin4, and Barrel as in Table 1 (b). All objects in
Unity3D and Direct3D based games are shown in
various screen shots of Figure 5.

Game Start

Title

GameStart
Tip

Game Play(Dungeon)

Quit Game

Game Guide

Game Play(Field)

(a) Unity3D based Game

Game Start

NetworkAddressAssignment

Join

Create a new Character
CharacterSelect

Game Start

Start Loading Game Stages

Game Play Game System, etc

Quit Game

(b) Direct3D based Game
Figure 4. Game Control Flow.

Table 1. Dynamic and Static Objects in 3D Games
(a) Unity3D based Game

 Objects No. of
Vertices

No. of
Triangles

Dynamic
Objects

Monster 692 1218
Player 1426 2478

Static
Objects

Bonfire 112 144
Log 368 398
Fence1 86 112
Fence2 504 546

(b) Direct3D based Game

 Objects No. of
Vertices

No. of
Triangles

Dynamic
Objects

Player
(Female) 4939 5941
Player (Male) 4942 4954
Lizard 4542 5984
Hyena 3450 3996

Static
Objects

Ruin1 7422 5560
Ruin2 6024 4641
Ruin3 3660 2633
Ruin4 2942 2127
Barrel 930 780

5. PERFORMANCE EVALUATION

In this Section, The performance of
dynamic and static objects of 3D games with
tangent space normal mapping was analyzed by
measuring the rendering speed (FPS: frame per
second). First, for the Unity3D based game, the
computer used in the experiment is the processor:
Inter (R) Core (TM) i5-4670 CPU @ 3.40GHz
3.40GHz, memory: 8.00GB, 64bit operating system,
graphics card: Geforce Nvidia GTX 660. Also, for
the performance analysis of Unity3D based game,
the screen resolution of the device was changed to
640x480, 800x600, 1024x768, 1152x864, and
1280x960. Second, for the Direct3D based game,
the computer used in the experiment is the
processor: Inter (R) Core i5 4210M @ 2.60GHz
2.60GHz, memory: 4.00GB, 64bit operating system,
graphics card: Nvidia Geforce 940m. Also, for the
performance analysis of Direct3D based Game, the
screen resolution of the device was measured while
changing to 640x360, 1024x576, 1366x768,
1600x900, and 1920x1080.

Table 2 shows eight simulation models Au
/ Ad, Bu / Bd, Cu / Cd, Du / Dd, Eu, / Ed, Fu / Fd,

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4169

Table 3. Rendering Speeds (FPS) of Eight Models in Various Screen Resolutions

(a) Unity3D based Game
Models

Screen
Resolutions

Au Bu Cu Du Eu Fu Gu Hu AVR STDEV

640x480 67.5 58.3 94.1 81.7 71.2 69.1 114.9 93.7 81.3 18.6
800x600 63.1 54.4 82.2 72.1 63.7 61.1 98.2 81.8 72.1 14.5
1024x768 52.8 47.8 75.7 64.7 59.4 57.5 77.7 68.1 63.0 10.6
1152x864 41.8 35.6 62.4 57.6 48.1 43.3 67.6 59.2 52.0 11.3
1280x960 34.2 32.1 59.1 39.1 43.2 40.8 51.7 44.7 43.1 8.9

Average(AVR) 51.9 45.6 74.7 63.0 57.1 54.4 82.0 69.5 62.3 12.4
Standard Deviation(STDEV) 14.0 11.5 14.4 16.1 11.4 12.0 24.9 19.1 15.3 4.6

(b) Direct3D based Game
Models

Screen
Resolutions

Ad Bd Cd Dd Ed Fd Gd Hd AVR STDEV

640x480 635.7 585.7 698.0 629.0 641.1 594.4 700.3 643.6 641.0 41.7
800x600 490.5 448.0 536.4 488.3 503.0 467.9 540.5 507.5 497.8 31.5
1024x768 324.7 300.2 353.5 328.7 334.2 308.9 361.2 335.0 330.8 20.4
1152x864 268.5 249.3 287.8 265.4 271.1 254.7 293.9 272.7 270.4 15.0
1280x960 226.4 210.0 240.1 223.8 229.0 215.3 241.1 229.7 226.9 10.8

Average(AVR) 389.2 358.6 423.2 387.0 395.7 368.2 427.4 397.7 393.4 23.8
Standard Deviation(STDEV) 170.5 155.7 190.4 168.6 172.4 158.8 189.9 173.4 172.4 12.6

Table 2. Eight Simulation Models in Unity3D and Direct3D based Games

(a) Unity 3D based Game
Simulation Model Au Bu Cu Du Eu Fu Gu Hu
Number of Dynamic
Objects 2 4 2 4 2 4 2 4
Normal Mapping on
Dynamic Objects Yes No
Number of Static Objects 14
Normal Mapping on Static
Objects Yes No Yes Yes

(b) Direct3D based Game

Simulation Model Ad Bd Cd Dd Ed Fd Gd Hd
Number of Dynamic
Objects 16 32 16 32 16 32 16 32
Normal Mapping on
Dynamic Objects Yes No
Number of Static Objects 20
Normal Mapping on Static
Objects Yes No Yes Yes

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4170

Figure5. Screen Shots of Various Models for Unity3D and Direct3D based Games.

(a) Model Au for Unity3D based Game

(b) Model Bu for Unity3D based Game

(c) Model Cu for Unity3D based Game

(d) Model Du for Unity3D based Game

(e) Model Ed for Direct3D based Game

(f) Model Fd for Unity3D based Game

(g) Model Gd for Direct3D based Game

(h) Model Hd for Direct3D based Game

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4171

Gu / Gd and Hu / Hd, respectively, with varying
numbers of dynamic and static objects for each of
the two games (Unity3D and Direct3D based
games). Figure 5 (a) - (g) illustrate the screenshots
of the eight simulation models in Table 3 in turn.

Table 3 and Figure 6 compare the
rendering speeds of the eight simulation models. As
shown in Table 4 and Figure 6, the lower the screen
resolution, the better the rendering speed in both
games in all eight models. In Unity3D based games,
the average rendering speed of 640x480 resolution
was 47.0% higher than that of 1280x960 resolution.
Standard deviations were 18.6 and 8.9 at 640x480
resolution and 1280x960 resolution, respectively,
with a standard deviation of up to 52.1% at lower
resolutions. In Direct3D based games, the average
rendering speed was 64.6% higher than the
1920x1080 resolution and 640x360 resolution.
Standard deviations were 41.7 and 10.8 at 640x360
resolution and 1920x1080 resolution, respectively,
with a standard deviation of up to 74.1% at lower
resolutions.

The average rendering speeds of model Gu

and model Gd were 82.0 FPS and 427.4 FPS,
respectively, according to various simulation
models. The reason that the rendering speed of
models Gu and Gd is higher than other models is
because normal mapping is not applied to both
dynamic objects and static objects, and the number
of dynamic objects is also small. The average
rendering speeds of the models Gu and Gd were
improved by 79.7% and 19.2%, respectively,
compared to Bu and Bd models which applied
normal mapping to both dynamic objects and static
objects.

The average rendering speed of A: B, C: D,
E: F, and G: H models according to the number of
dynamic objects was 13.8% and 8.2% respectively
on Unity3D and Direct3D based games,
respectively. The average rendering speeds of A: E,
B: F, C: G, and D: H models with or without tangent
space normal mapping applied to dynamic objects
were 12.3% and 2.0% respectively on Unity3D and
Direct3D based games, respectively. The average
rendering speed of A: C, B: D, E: G, and F: H
models with and without tangent space normal
mapping applied to static Objects was 38.4% and

(a) Unity3D based Game

(b) Direct3D based Game

Figure 6. Rendering Speeds (FPS) for Unity3D and Direct3D based Games.

Journal of Theoretical and Applied Information Technology
15th September 2017. Vol.95. No.17 © 2005 - Ongoing JATIT & LLS

 ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

 4172

8.2%, respectively, in Unity3D and Direct3D based
games, respectively.

The tangent space normal mapping does
not represent a realistic bump representation
compared to parallax mapping or displacement
mapping. However, normal mapping is the most
cost effective method of representing bumps.

6. CONCLUSION

In 3D games, normal mapping is a typical
bump mapping method to use low-resolution
meshes and store high-resolution features of bumpy
surfaces in textures for runtime use. In this paper,
we apply tangent space normal mapping to static
and dynamic objects using two Unity3D and
Direct3D based games, and analyze performance at
various screen resolutions. Performance analysis
showed that the average rendering speed was 47.0%
and 64.6% higher in the two games on the low
resolution screen than on the high resolution screen.
And the rendering speed of the model Gu / Gd,
which applied normal mapping to all objects among
the eight simulation models, was improved by
79.7% and 19.2%, respectively, compared with the
model Bu / Bd without normal mapping. The
normal mapping has the greatest effect on rendering
speed.

The implication is that the number of
dynamic objects and static objects and the rendering
speed according to the screen resolution should be
considered whether or not tangent space normal
mapping is applied in Unity3D or Direct3D based
3D games. In the future, research can be expanded
by applying parallax mapping and displacement
mapping.

ACKNOWLEDGEMENT
This work was supported by Institute for
Information & communications Technology
Promotion(IITP) grant funded by the Korea
government(MSIP) (No. 2016-0-00204,
Development of mobile GPU hardware for photo-
realistic real time virtual reality).

REFERENCES:

[1] Mark J. Kilgrd, “A Practical and Robust Bump-

mapping Technique for Today’s GPUs”, Game
Developers Conference, 2000.

[2] Mark Peercy, John Airey, and Brian Cabral,
“Efficient Bump Mapping Hardware”,
Computer Graphics (Proc. Siggraph ‘97), 1997,
pp. 303~306.

[3] JungHyun Han, 3D Graphics for Game
Programming, CRC Press, 2011.

[4] Wofgang Engel, Shader X5 Advanced Rendering
Techniques, 2.6 Normal Mapping without
Precomputed Tangents, Charles River Media,
2007.

[5] James Blinn, “Simulation of Wrinkled
Surfaces,’’ Computer Graphics (Proc. Siggraph
’78), pp. 286-292, Also in Tutorial: Computer
Graphics: Image Synthesis, 1978, pp. 307-313.

[6] Won-Kyu Lee, Sun-Young Lee, and In-Kwon
Lee, “Cartoon Rendering for Bump Mapped
Object”, Journal of the Korea Computer
Graphics Society 12(1), pp. 15~18.

[7] Michael Cosman, Robert Grange, 1996, “CIG
Scene Realism: The World Tomorrow,” Proc.
Of I/ITSEC on CD-ROM, 2006, pp. 628.

[8] K. Bennebroek, I. Ernst, H. Rüsseler, O. Wittig,
“Design Principles of Hardware-based Phong
Shading and Bump Mapping,” 11th
Eurographics Workshop on Graphics
Hardware, Poitiers, France, 1996, pp. 3-9.

[9] I. Ernst, D. Jackèl, H. Rüsseler, O. Wittig,
“Hardware Supported Bump Mapping: A Step
towards Higher Quality Real-Time Rendering,”
10th Eurographics Workshop on Graphics
Hardware, Maastricht, Netherland, 1995, pp.
63-70.

[10] I. Ernst, H. Rüsseler, H. Schulz, O. Wittig,
“Gouraud Bump Mapping,” Proc. 1998
Eurographics/Siggraph Workshop on Graphics
Hardware, Lisbon, Portugal, 1998, pp. 47-53.

[11] González, Cesar, Mariano Pérez, and Juan M.
Orduña. "A hybrid GPU technique for real-time
terrain visualization." Proceedings of
Computational and Mathematical Methods in
Science and Engineering, 2016.

[12] Wofgang Engel, Shader X5 Advanced
Rendering Techniques, 2.3 Practical Parallax
Occlusion Mapping with Approximate Soft
Shadows for Detailed Surface Rendering,
Charles River Media, 2007.

