
Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4034

HDFS CACHE PERFORMANCE USING SET ASSOCIATIVE
CACHE MEMORY

1B.PURNACHANDRA RAO,2Dr.N.NAGAMALLESWARA RAO

1Research Scholor, Dept of Computer Science & Engg,ANU College of Engg & Technology,Guntur,India.

2Prof. Dept of Information Technology,R.V.R. & J.C. College of Engg& Technology,Guntur, India.

E-mail: 1pcr.bobbepalli@gmail.com,2nnmr3654@gmail.com

ABSTRACT

Due to online activities and use of resources related to computing, data is being generated at an enormous
rate. Distributed systems are the efficient mechanism to access and handle such huge data. One such
mechanism is a Hadoop distributed file system (HDFS). An HDFS instant usually contains several nodes,
each of which stores a small portion of its data. It creates multiple data blocks and store each of the block
redundantly across the pool of servers to enable reliable, extreme rapid computation. HDFS supports
common file system operations such as read and write files , create and delete directories. In this paper we
are presenting a new paradigm for improving file accessing time in HDFS. It is known that accessing data
from cache is much faster than disk access. The cache memory is used to store frequently accessed data &
hence process it much more quickly. We have already observed the performance improvement using cache
memory in the existing Hadoop environment. In this paper we will prove the performance further
improvement by using set associative cache memory. Set associative cache mechanism is for managing the
interaction between main memory and cache memory.

Keywords— Hadoop Distributed File System (HDFS), MapReduce, Cache Memory , Set Associative Cache
Memory, Average Memory Access Time AMAT, NameNode, DataNode, Second Level Cache,
Victim Buffer, Prefetching.

1 INTRODUCTION

Apache Hadoop [1] is a well known project that
consists of open source implementation of a
distributed file system and MapReduce. One of the
significant designed features of the Hadoop system
is high throughput which is extremely suitable for
handling large scale data analysis and processing
problems. HDFS [2] [3] is designed for write-once-
readmany access model for files. In HDFS file
reading may contain several interactions of
connecting NameNode and DataNodes, which
considerably decrease the access performance when
the system is under a heavy workload. Hadoop [1],
MapReduce [5], Dryad [10] and HPCC (High-
Performance Computing Cluster) [12] frameworks
are Data-intensive and they rely on disk based file
systems to meet their exponential storage
demands.The system having the namenode acts as
the master server it manages the file system
namespace. Regulates client’s access to files.
HDFS supports common file system operations
such as read and write files and create and delete
directories. The datanode is a commodity hardware
having the GNU/Linux operating system and

datanode software. Cluster is having number of
datanodes. These nodes manage the data storage of
their system.As per the instructions from the client
datanode will perform operations on the file
system.As per the instructions from the namenode
blocks will be created , deleted by the datanode.
Generally the user data is stored in the files of
HDFS. HDFS stores data in HDFS files, each of
which consists of a number of blocks (default size
is 128MB).In other words, the minimum amount of
data that HDFS can read or write is called a block.
The default block size is customizable ,i.e we can
configure it using the HDFS configuration.

Hadoop distributed file system (HDFS) [6] has
the capability to store huge amounts of data. There
will be some time factor associated with retrieving
or keeping the data in datanode. There are various
mechanisms to minimize disk access latencies such
as jobs are scheduled on the same node that hosts
the associated data, in addition, data is replicated to
different nodes in numerous ways to improve
throughput and job completion time. When client
applications need to write data to HDFS, they
perform an initial write to a local file on the client
machine, in a temporary file. When the client
finishes the write and closes it, or when the

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4035

temporary file's size crosses a block boundary,
Hadoop will create a file and assign data blocks to
the file. The temporary file's contents are then
written to the new HDFS file, block by block. After
the first block is written, two other replicas (based
on the default replication factor three) are written to
two other DataNodes in the cluster, one after the
other. The write operation will succeed only if
Hadoop successfully places all data block replicas
in all the target nodes. Accessing data from cache is
faster than accessing data from memory. The cache
memory is used to store frequently access data and
hence process it much more quickly. By providing
a cache system to HDFS, we can avoid unnecessary
trips to hard disk to fetch data and thus avoid delay.
Accessing the data without cache will take longer
time (milliseconds) compared to accessing the data
with cache. We have already observed that the
performance improvement using cache
memory[13]. In this paper we will prove that the
performance will be further improved by using set
associative cache memory. The paradigm shift is to
use set associative cache mechanism to manage the
interaction between main memory and cache
memory. In this paper we will prove the
performance improvement by taking different
associativity levels by varying the cache size and
the block size i.e, for block size 16Bytes with
different cache sizes for each associativity level (2-
way , 4-way and 8-way) we will find out the
memory access time. Based on the values we will
prove that by using the set associativity cache
memory we will improve the performance of the
memory access , and by increasing the associativity
level (2-way to 4-way, 4-way to 8-way) as well we
can further improve the performance.

2 LITERATURE REVIEW

2.1 Hdfs With Cache System

Hadoop Distributed File System organizes its
file system differently from the underlying file
system such as the Linux ext3 or ext4 file system.
HDFS employs a block-based file system, wherein
files are broken up into blocks. A file and server in
a cluster doesn't have a one-to-one relationship.
This means that a file can consists of multiple
blocks, all which most likely won't be stored on the
same machine. A files blocks are spread throughout
the cluster on a random basis. This lets Hadoop
support files that are larger than the size of a single
disk drive. Since Hadoop is designed to work with
massive amounts of data, HDFS block sizes are
much larger than those used by a typical relational
database. Hadoop uses a minimum block size of
64MB , and its common to use a block size of
128MB or 256MB. The benefits with larger block

size is the filesystem metadata will be smaller, large
chunks of data can be read sequentially fast
streaming reads of data are easier to perform. Based
on the client request the data will be copied from
main memory to datanode. If we use the
HDFSCache system, the frequent access data will
be copied to datanode from main memory so that
the time required to access the data is less
compared to access time without cache. In the
existing HDFSCache system the interaction
between main memory and cache memory is
implemented using direct mapping technique, i.e
main memory locations can only be copied into one
location in the cache, we can get this configuration
by dividing main memory into pages that
correspond in size with the cache.Once all the
blocks in cache filled with data, then we cannot
write down the data to cache block and need to
remove the data from the cache to accommodate the
new data i.e, swapping the data word from cache to
main memory using the replacement algorithm to
decide which block in the cache gets replaced by
new data which causes more number of swappings,
increases the read operation time, which will reduce
the performance of the HDFS cluster.
HDFSCachesystem is implemented in Linux.
HDFS system without cache and with cache We
setup a test-bed consisting of five servers running
Linux 12.04 64bit OS 15GiB memory to compare
the time with HDFS without cache and HDFS with
cache[13]. On every computer Hadoop 2.7 (stable
version) is installed with the block size 128 MB.
Four of these computers are configured to be
DataNode servers and the remaining one is
configured to be NameNode server. Every
DataNode is having Cache Memory. Once all
blocks in cache filled with data, swapping is
required to copy the new word into cache which
causes more number of swappings from main
memory to cache. To test the existing environment
10 files have been copied to HDFS having different
size. Files size varies from 1000 KB to 10000KMB
and the same files have been read with cache and
without cache mechanism using scala programming
language with spark libraries to interact with
Hadoop Distributed File System. Please refer figure
1 for assigning data to variable and
reading/printing the data from the variable using
scala language with spark APIs without cache.
Here we are just showing only top 30 rows. Please
refer figure 2 for assigning the data to variable and
reading/printing the data from the variable using
scala language with spark APIs with cache
mechanism. Here we are just showing only top 30
records.

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4036

Figure. 1. Memory access without cache.

Figure. 2. Memory access with cache.

Please refer figure 3 and figure 4 for memory
access time with and without cache using the
naming convention based on the size of the file i.e;
OneMB.txt is having the info about OneMB size
text file memory access time, OneMB.txt is
showing that 500ms without cache and 97ms with
cache where as TwoMB.txt is showing that
TwoMB file memory access time is 16ms and 25ms
with Cache and without cache respectively. OneMB
file is having huge values either with cache(97ms)
or without cache(500ms) compared to any other file
size from 2MB till 10MB, since that is the first time
it is accessing the data. The data between TwoMB
and ThreeMB is having little difference so While
the file size is getting increased the time is getting
down little bit since the data is almost common
between OneMB and TwoMB , TwoMB and
ThreeMB and so on. Please refer the table 1 for the
values, from table it is seen that for the file size of
1000 KB, time required by HDFS is 500
milliseconds and that for HDFSCache is 97
milliseconds. We can observe that the values are
getting down from top to bottom while the file size
is getting increased , the reason is if we use the
distinct file data then the time will goes up as we
increase the file size . Here the files are having
almost same data with little bit difference. So the

time is getting down. In this architecture Direct
cache memory technique has been used ,i.e the
memory blocks are directly placed to cache
memory. If the cache memory is full we need to use
algorithms like Least Recently used , Adaptive
Replacement Cache and Most recently used
replace the cache word with memory word. We can
further improve the memory access performance
using set associative cache memory technique
where we can store set of words in the same line, so
that we can allocate most number of memory words
at cache as compared to Direct Mapping Cache.
Please refer graph1 for the time reduction while
using HDFS Cache.

Figure. 3. Memory Access Time with and without
cache.

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4037

Figure. 4. Memory Access Time with and without
cache.

Table 1: Memory AccessTime for HDFS without and
with cache

Graph .1.Memory Access Time for HDFS without

and with cache

2.1.1 Namenode
HDFS stores metadata on Namenode, and the

application data is stored on the datanodes. The
namenode detects failed DataNodes , unavailable
replicas and other causes of data corruption. When
we startup the Namenode it will do the these three

things: The NameNode reads into memory the
contents of the fsimage file it has, thus obtaining
the HDFS file system state. The NameNode loads
the edit log and replays the edit log to update the
metadata it loaded into memory in the previous
step.The NameNode also updates the fsimage file
with the updated HDFS state information[16]. The
NameNode starts running with a fresh , empty edits
file. The DataNode daemon connects to NameNode
and send it block reports that list all data blocks
stored by a DataNode.Using Inodes files and
directories will be represented on the NameNode.
Inodemaintains attributes like permissions
modification and access time, namespace and disk
space quotas. Blocks on the datanode contains the
file data and the replication factor is depends on the
configuration parameter used in the HDFS
configuration.Namespace in the namenode is
having information related to blocks and datanode
info information of the file. An HDFS client
waiting to read a file first contact the NameNode
for the locations of data blocks comprising the file
and then reads block content from the DataNode
closest to the client. In write operation the client
requests the NameNode to nominate a set of
DataNodes to write the data in block replicas. Once
client receives set of datanodes the data will be
written to datanodes in pipeline fashion [7,8].

2.1.2 Datanode
The datanode is a commodity hardware having

the GNU/Linux operating system and datanode
software. The cluster is having number of
datanodes. These nodes manage the data storage of
their system.As per the client request datanode
performs operations on the file .Datanode manages
blocks as per the namenode instructions. Namenode
will be hvaing handshaking mechanism with
datanodes at the startup. During handshake, the
namespace ID and software version of DataNode is
verified with the NameNode. Based on the success
of the match the datanode position will be
continued with the namenode. In the failure case of
the match the DataNode will automatically shuts
down. Namespace ID is assigned to the file system
instance when it is formatted.

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4038

Figure. 5. HDFS Architecture

A newly initialized DataNode without any
namespace ID can join the cluster and it will
receive the cluster's namespace ID. Datanode will
be recognized using its unique storage ID.If we
restart the datanode with different ip address or port
in this case aswell storage ID is usefull to recognize
the datanode. When you startup a datanode , it
connects to the NameNode and performs a
handshake to verify the namespace ID and the
Datanode's software version. Following the initial
registration with the Namenode, all datanodessend
two pieces of information to the Namenode
periodic hearbeats that showsthe are alive and a
block report that shows block information. Each
DataNode send block report to the NameNode to
identify the block replicas in its possession. First
block report is send during DataNode registration
and the subsequent block reports are sent at every
hour. This helps the NameNode to keep an up-to-
date view of where block replicas are located on the
cluster. Each DataNode send heartbeat to
NameNode to confirm that it is operating and its
block replicas are available. Default heartbeat
interval is 3 seconds and if no heartbeat signal is
received at NameNode in 10 minutes, the
NameNode will mark the DataNode as unavailable.
To fulfill this datanode position NameNode
schedules creation of new replica of those blocks
on another DataNode. Refer figure.5 for HDFS
architecture.

2.1.3 MapReduce
MapReduce is a programming model for

processing and generating large datasets. It
provides a series of transformations from a source
to a result data set. In a simplest case, the input
data is fed to the map function and the resultant
temporary data to a reduce function. The developer
only defines the data transformations. Hadoop
MapReduce job manages the process of how to
apply these transformations to the data across the

cluster in parallel[15].User specifies a map function
and a reduce function. The map function process a
key/value pair to generate an intermediate
key/value pair. The reduce function merges all
intermediate values associated with same
intermediate key.In general we can say that a
MapReduce job consists of two steps: map and
reduce, Map processes the original input file in a
parallel fashion and transforms it into an
intermediate output. Reduce is the summarization
step processes all relevant records together. We
need to configure MapReduce environment using
mapred-env.sh file[16]. The programs written are
inherently parallel and execute on a large cluster of
commodity servers. The runtime system take care
of all internal details like details of splitting the
incoming data into number of parts, programs
execution scheduling and handling machine
failure.

The MapReduce library group together all
intermediate values associated with same
intermediate key and pass them to reduce function.
Reduce function accept an intermediate key and a
set of values for that key and merges together these
values to form a smaller set of values just say like
zero or one output value is produced per reduce
invocation. Iterator function will be used to supply
intermediate values to users reduce function. Refer
figure 6 for MapReduce Architecture.

Figure 6. MapReduce Architecture

2.1.4 Data Distribution in HDFS
HDFS support operation to read, write and

delete file as well as to create and delete directories.
For reading a file, the HDFS client request the
NameNode for the list of DataNodes that host the
replicas of the data blocks of the file. Then it
directly contacts the DataNode and request the
transfer of desired blocks. During writes, the client
request the NameNode to choose a list of
DataNodes that can host the replicas of the first
block of the file. After choosing the DataNodes
,client establishes a pipeline from node to node and

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4039

sends the data block. After storing the first block,
namenode will send next set of blocks once it
receives request from datanode for second set. New
pipeline will be established between the new set of
DataNodes and client sends the further bytes of the
file [7].

HDFS provide APIs to retrieve the location of a
file block in the cluster. APIs are useful to schedule
the task to the node where data are located, thereby
improving the read performance. This allows the
application to set the replication factor of a file.
Three is the defaultreplication factor. For
frequently accessed or critical files , setting the
replication factor improves their tolerance against
faults and increases the read bandwidth. Refer
figure 7 for HDFS write operation.

Figure. 7. HDFS Write Operation

2.1.4.1 Images and Journal
The inodes and the list of blocks that define the

metadata of the name system are called the image.
Entire Namespace image is available in RAM.
Checkpoint is the location in Namenode where
persistent record of the image stored in the local
native filesystem of the namenode. The operations
or transactions on the HDFS will be recorded by
Namonode in write ahead log called journal in its
local native filesystem.The jouranl file flushed and
synched before the acknowledgement after
tranaction initiation by client.NameNode will not
change the checkpoint file. During restart
checkpoint file will be written when requested by
the administrator or by the CheckpointNode.When
ever administrator requested for new checkpoint
file During startup the NameNode initializes the
namespace image from the checkpoint, and then
adopt the changes from the journal.

A new checkpoint and an empty journal are
written back to the storage directories before the
NameNode starts serving clients.For improved

durability, redundant copies of the checkpoint and
journal are typically stored on multiple independent
local volumes and at remote Network File System
servers. Single volume failure will be saved by first
choice where as failure of the entire node will be
protected by second choice. If the NameNode
encounters an error writing the journal to one of the
storage directories it automatically excludes that
directory from the list of storage directories. The
NameNode automatically goes down if no storage
directory is available. The NameNode is having a
multithreaded capability and processes requests
simultaneously from multiple clients. Saving a
transaction to disk becomes a performance issue
since all other threads need to wait until the
synchronous flush-and-sync procedure initiated by
one of them is complete. In order to improve the
performance in this process, the NameNode groups
couple of transactions. When one of the
NameNode's threads starts a flush-and-sync
operation, all the transactions grouped at that time
are committed together. Remaining threads only
need to check the status that their transactions have
been saved and do not need to initiate a flush-and-
sync operation.The Namespace image is the file
system metadata that describes the organization of
application data as directories and files. A
persistent record of the image saved to disk is
called a checkpoint. For each client-started
transaction, the change is saved in the journal, and
the journal file is flushed and manages the synch
before the change is committed to the HDFS client.
The NameNode is a multithreaded system and
process request simultaneously from multiple
clients. To optimize the saving of transaction to
disk, the NameNode batches multiple transactions
initiated by different clients. Remaining threads
only need to check their transactions have been
saved and do not need to initiate a flush-and-sync
operation [8].

2.1.4.2 CheckpointNode
Checkpointing is the process that creates a new

fsimage and the edit log . Once the edit log reaches
a specified threshold or when a certain period of
time elapses, the new entries in the edit log are
committed to the fsimage file.While the edit log
segments are quite small in comparison with the
fsimagefile , if you dontreguraly update the fsimage
file with the edit log transactions, the edit log could
get pretty large itslef, this will delay the start of the
Namenode. Checkpointing periodically merges the
latest fsimage file with the edit log, creating a brand
new up to date fsimage. This helps the Namoenode
load its final in memory state directly from the
fsimage file instaed of having to reoplay a vast
number of files from the edit log. When a
NameNode starts up, it merges the fsimage and
edits journal to provide an up-to-date view of the

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4040

file system metadata. The checkpoint node and
Namenoderequires same storage capacity. So these
two runs on different machines.

We can configure checkpoint node and web
interface using dfs.namenode.backup.address and
dfs.namenode.backup.http-address variables.There
are two checkpoint configuration parameters one
for maximum delay between two consecutive
checkpoints(dfs.namenode.checkpoint.period, set to
1 hour by default), and the number of
uncheckpointed transactions on the NameNode
which will force an immediate checkpoint, even if
the checkpoint period has not been
reached(dfs.namenode.checkpoint.txns, set to 1
million by default). Latest checkpoint will be
always available at the Namenodes directory. So it
is for the namenode to read the checkpoint if
necessary. Multiple checkpoint nodes may be
specified in the cluster configuration file.The
CheckpointNode periodically combines the existing
checkpoint and journal to create a new checkpoint
and an empty journal. The system can start from the
most recent checkpoint if all other persistent copies
of the namespace images or journal are unavailable.

2.1.4.3 BackupNode
The Backup node provides the same

checkpointing functionality as the Checkpoint
node, as well as having an in-memory, latest copy
of the file system's namespace that is always
synchronized with the active NameNode state[1].
Along with accepting a journal stream of file
system edits from the NameNode and persisting
this to disk. The same copy of the edits will be
saved by Backup node namespace in memory,
which is the backup of the namespace. The Backup
node does not need to download fsimage and edits
files from the active NameNode in order to create a
checkpoint, as it is happening with a Checkpoint
node or Secondary NameNode, since it is having
an up-to-date state of the namespace state in
memory. The Backup node checkpoint process is
better than checkpoint process as it only needs to
save the namespace into the local fsimage file and
reset edits.As the Backup node maintains a copy of
the namespace in memory, and the RAM
requirements are the same as the NameNode. The
NameNode supports one Backup node at a time. No
Checkpoint nodes may be required if a Backup
node is in use.

Usage of multiple Backup nodes concurrently
will be supported in the future. The Backup node is
configured in the same manner as the Checkpoint
node. The command bin/hdfsnamenode -backup is
used for starting the BackupNode. Two
configuration parameters used in the
backup/checkpoint node are

dfs.namenode.backup.address,
dfs.namenode.backup.http-address configuration
variables.Use of a Backup node provides the option
of running the NameNode with less responsibilities
like no persistent storage, assigning all
responsibility for persisting the state of the
namespace to the Backup node. Using -
importCheckpoint option we can start the
NameNode, along with specifying no persistent
storage directories dfs.namenode.edits.dir for the
NameNode configuration.

It creates periodic checkpoints and in addition it
maintains an in-memory, latest image of the file
system namespace that is always synchronized with
the state of the NameNode. The BackupNodeallows
the journal stream of namespace transactions from
the active NameNode, and saves them to its own
storage directories. The same transactions will be
applied to its own namespace image in memory. If
the NameNode fails the BackupNode's image in
memory and the checkpoint on disk is a record of
the latest namespace state. It can perform all
operation of the regular NameNode that do not
involve modification of the namespace or
knowledge of block locations.

2.1.4.4 FileSystem Snapshots
HDFS Snapshots are read-only point-in-time

copies of the file system. Subtree of the file system
or the entire file system can be taken as Snapshots.
Data backup, protection against user errors and
disaster recovery are the some common use cases
of snapshots. Snapshots can be taken on any
directory once the directory has been set as
snapshottable. Simultaneously 65,536 snapshots
will be accommodated by snapshottable directory.
There is no limit on the number of snapshottable
directories. Administrators can set any directory to
be snapshottable. We need to delete all snapshots
inside any snapshottable directory before deleting
the snapshottable directory. Nested snapshottable
directories are currently not allowed. A directory
cannot be set to snapshottable if one of its
ancestors/descendants is a snapshottable
directory.File system snapshot helps to persistently
save the current state of the file system. It helps to
rollback in case of failure during upgrade. This
helps HDFS to return to the namespace and storage
state as they were at the time of snapshot. Each
DataNode creates a copy of storage directory and
hard links existing block files into it.

When a data block is removed, it removes only
the hard link and block modification during append
use copy-on-write technique. Thus old block replica
remains untouched in their old directory [4]. HDFS
implements a single write, multiple-reader model.
The client that opens a file for writing is granted a

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4041

lease for that file and no other client can perform
write to the file. The lease is revoked when the file
is closed. After writing data to the file, the user
application explicitly calls hflush operation.
Current packet is pushed to the pipeline and hflush
operation waits until all DataNodes in the pipeline
acknowledges the successful transmission of the
packet. This makes all data written before hflush
operation visible to readers [9].

3 PROPOSED METHOD

3.1 Problem Statement

Improving the cache performance in DataNode:
Once all the blocks in cache filled with data, then
we cannot write down the data to cache block and
need to remove the data from the cache to
accommodate the new data i.e, swapping the data
word from cache to main memory is required to
copy the new word into cache which causes more
number of swappings, increases the read operation
time, which will reduce the performance of the
HDFS cluster.This is the problem in the existing
architecture.

3.2 Proposal

We can use Set Associative Cache Memory
where it will store more number of data words since
it is having high number of blocks compared to
Directcache mapping technique. 2-way set
associative cache memory is having two words of
data in each line , 4-way set associative cache
memory is having 4 words of data in each line and
n-way set associative cache memory is having n
words of data in each line. The hit ratio will
improve as the set size increases, because more
words with the same index but different tags can
reside in cache. Compared to DirectMappingCache
technique this will take extra logic cost in
comparators and cache miss penalty as well. Once
the data is available in Cache memory in this
process this will take less time compared to
DitrectMappingCache. A second-level cache helps
improve performance with less database calls,
keeping the entity data local scope to the
application. The application interacts with normal
entity manager without knowing about the cache.
The second level cache is responsible for caching
objects across sessions. When this is active, objects
will first be searched in the cache and if they are
not found, a database query will be fired. In a CPU
cache, a write buffer can be used to hold data being
written from the cache to main memory or to the
next cache in the memory hierarchy. A victim
buffer is a type of write buffer that stores dirty
evicted lines in write-back caches so that they get
written back to main memory. Cache prefetching is

a technique used by computer processors to boost
execution performance by fetching instructions or
data from their original storage in slower memory
to a faster local memory before it is actually
needed. In the proposed implementation we are not
considering these hardware optimization
techniques.

Refer figure 8 for proposed architecture. Map-
Reduce framework will provide cache facility to
cache files needed by applications. Hadoop
framework will ensure the cached data availability
on each and every data nodes DN1,DN2 and
DN3(in file system, not in memory) as shown in the
figure 8 where your map/reduce tasks are running.
Datanodes are having Set associative cache
memory configured inside each datanode. You can
access the cache file as local file in your Mapper Or
Reducer job. Cache memory is having two sets of
data along with tag info. If the address is 00000
this is the tag followed by index[11] as shown in
the figure 8 this will match for tag using 00 address
followed by the index 000 , now the data is 5670. In
this set associative cache memory we can store two
sets of data for the same tag value like 01 000 and
00 000. Cache system checks whether requested
file is available in cache local memory or not. If
requested file is available then request is fulfilled
by cache. Hence here we can avoid disk access to
fetch a file. Else client communicates with
DataNodes to check whether requested file is
present in their local memory. If file is available
then request will be processed. Else if file is not
available in cache local memory then file is fetched
from disk by using HDFS API. The same will be
copied to local cache memory for future reference.

Figure. 8. Hadoop Distributed File System

Architecture with SetAssociativeCacheMemory

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4042

4 IMPLEMENTATION

Refer figure 9 for the Implementation
architecture using Set Associative Cache Memory.
NameNode is connected withDatNodes and
DataNodes are having internal CacheMemory with
Set Associative Cache Memory(SACM)
architecture. Whenever client sends request for read
or write data file this will be searched in cache
memory inside DataNode. If the data is available in
the cache memory that will be used for read or
write purpose. If the file is not available then that
will be accessed from disk using HDFS API. In Set
associative cache memory, each word of cache can
store two or more words of memory under the same
index address. Each index address refers to two
data words and their associated tags. The hit ratio
will improve as the set size increases because more
words with the same index but different tags can
reside in cache. Compared to DirectMappingCache
technique this will take extra logic cost in
comparators and cache miss penalty as well. Once
the data is available in Cache memory in this
process this will take less time compared to Direct
Mapping Cache since number of data blocks are
less and swapping is high in Direct Mapping Cache.

We can explain our experimental setup with one
example. Consider 5 datanodes having local cache
memory setup using set associative cache memory
technique. Since the space issue here we can
consider only two datanodes . The files are
scatterred across the datanodes. The Namespace is
maintaining datablock and datanode info. When
HDFS Cleint sends request for file info this will be
verified in datanode local cache. If the data is
available this will be fetched from local cache, if
not that will be accessed from disk using HDFS
API. 2-way set associative cache memory is having
two words of data in each line , 4-way set
associative cache memory is having 4 words of
data in each line and n-way set associative cache
memory is having n words of data in each line.
Here the given example/figure 9 is showing 2 -way
set associative so it is having two sets of data along
with tag info. If the address is 00000 this is tag
followed by index as shown in the figure 9 this will
match for tag using 00 address followed by the
index 000 , now the data is 5670. In this set
associative cache memory we can store two sets of
data for the same tag value like 01 000 and 00 000.
In Direct Mapping Cache technique the words
available at cache is always less than the words
available at set associative cache memory
technique. At any instant of time the availability is
high so we can reduce the trips to visit memory, i.e,
we can have less average memory access time in set
associative cache memory. This is how we can

validate the performance of set associative cache
memory is better than the direct mapping cache.

Figure. 9. DataNode Architecture with

SetAssociativeCacheMemory

5 EVALUATION

The results are here for Average Memory
Access Time (AMAT) using the cache time
analyzer [14] for set associative mapping technique.
Refer figure 10 for Cache Time Analyzer [14]. This
Cache time analyzer demonstrates Average
Memory Access Time analysis for the cache
parameters we specify.

Figure.10. Cache Time Analyzer

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4043

Write-through cache is the technique where
every write operation to the cache is accompanied
by a write of the same data to main memory. When
this is implemented, then the input/output processor
need not consult the cache directory when it reads
memory, since the state of main memory is an
accurate reflection of the state of the cache as
updated by the central processor. Although this
scheme simplifies the accesses for the input/output
processor, it results in fairly high traffic between
central processor and memory, and the high traffic
tends to degrade input/output performance.The
block is modified in the main memory and not
loaded into cache is what we called "No write
allocate" and the block is loaded on a write miss,
followed by the write-hit action is what we called
"Write allocation on Miss".Write-back cache is the
technique the central processor updates the cache
during a write,but actual updating of the memory is
deferred until the line that has been changed is
discarded from the cache. At that point, the
changed data are written back to main memory.
Write-back caching yields somewhat better
performance than write-through caching because it
reduces the number of write operations to main
memory. The information is written only to block
in the cache. The cache block once it is modified
will be written to main memory. To reduce the
frequency of writing back blocks on replacement, a
dirty bit will be used. This status bit indicates
whether the block is dirty (modified while in the
cache) or clean (not modified). If it is clean the
block will not be written on a miss. Dirty data
means the data in the cache if it is modified but not
modified in main memory. Whereas, dirty bit
(modify bit) is a cache line condition(status)
identifier,its purpose is to indicate whether contents
of a particular cache line are different to what is
stored in operating memory.If we try to write to an
address that is not already contained in the cache
this is called a write miss. Percentage of memory
accesses that are reads or writes (we are treating
them as %reads and %writes), data found in cache
is cache hit and data not found in cache is cache
miss. If the data is not available in cache, then
processor loads the data from memory to cache,
which results an extra delay is called miss penalty.
Using the following formula[14] we can calculate
the Average Memory Access Time(AMAT) with
22% writes, 10% dirty data, 40 Miss Penalty
(cycles), 1 Hit Time(cycles), 6 Memory hit
(cycles)and block size is 16Bytes. Clocks
MemWrite is the write time in clock cycles for a
single write.

ReadHitContribution :%Reads * Hit_rate *
HitTime

ReadMissContribution:%Reads*MissRate*((Mi
ssPenalty+HitTime)+(%Dirty*MissPenalty))

Write Hit Contribution: %Writes * HitRate *
HitTime

WriteMissContribution: %Writes*MissRate*
MissPenalty. Average Memory access Time has
been collected for different input factors like Write
Back policy and Write Through Policy using No-
write Allocate on miss and Allocate on Miss
methods on each policy with different units on
CacheSize, Associativity and BlockSize[14].

Refer figure 11 for Write Back-No Write
Allocate cache write policy. Table 2 shows the
results along with the associativity for the block
size 16. Average Memory Access Time (AMAT) is
decreasing once we increase the associativity from
2 till 8. For the cache size 2 , the top row shows that
the time is decreasing once we increase the
associativity level i.e for 1-way associativity is
taking 6.14ms whereas 2-Way associativity is
taking 4.9897 ms , 4-Way is taking 4.35 ms and 8-
Way is taking 3.83ms.The time is going down
while we are increasing the associativity level. We
can observe the same in table as well as in graph. 2

Figure. 11. Write Back -No Write Allocate

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4044

Table 2: AMAT with different associativity levels:
Write Back -No Write Allocate

Graph.2. Write Back-No Write Allocate with different

Associativity levels:Block Size 16Bytes

Refer figure 12 for Write Back - Allocate on
Miss cache write policy. Table 3 shows the results
along with the associativity for the block size 16.
Average Memory Access Time (AMAT) is
decreasing once we increase the associativity from

2 till 8. For the cache size 2 , the top row shows that
the time is decreasing once we increase the
associativity level . We can observe the same in
table3 as well as in graph. 3.

Figure. 12. Write Back - Allocate On Miss

Table 3. AMAT with different associativity levels:
Write Back - AllocateOn Miss

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4045

Graph.3. Write Back- Allocation On Miss with

different Associativity levels:Block Size 16Bytes

Refer figure 13 for Write Through - No Write
Allocate cache write policy. Table 4 shows the
results along with the associativity for the block
size 16. Average Memory Access Time (AMAT) is
decreasing once we increase the associativity from
2 till 8. For the cache size 2, it shows that the time
is decreasing once we increase the associativity
level. We can observe the same in table 4 as well as
in graph. 4.

Figure. 13. Write Through - No Write Allocate

Table 4. AMAT with different associativity levels:
Write Through -No Write Allocate

Graph.4. Write Through- No Write Allocate with

different Associativity levels: Block Size 16Bytes

Refer figure 14 for Write Through - AllocateOn
Miss cache write policy. Table 5 shows the results
along with the associativity for the block size 16.
Average Memory Access Time (AMAT) is
decreasing once we increase the associativity from
2 till 8. For the cache size 2, the top row shows that
the time is decreasing once we increase the
associativity level. We can observe the same in
table 5 as well as in graph. 5

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4046

Figure 14. Write Through - Allocate On Miss

Table 5: AMAT with different associativity levels:
Write Through - AllocateOn Miss

Graph.5. Write Through- Allocate On Miss with

different Associativity levels:Block Size 16Bytes

Average Memory AaccessTime (AMAT) varies
for different Associativity level and it is decreasing
as shown the graph.6. As shown in the table 2,3,4,
and 5for each row the time is getting decreased as
we move on from lower to higher associativity
level, table 2 shows that for block size 16 and cache
size 16 the average memory access timings are
2.69, 2,29, 2.17 and 2.05 for associativity levels
1,2, 4 and 8 respectively using write back cache and
no write allocate. As in table 3 for block size 16
and cache size 8 the average memory access
timings are 3.728, 3.2528, 3.0724 and 2.716 for
associativity levels 1, 2, 4 and 8 respectively using
write back cache and allocate on Miss policy.Table
4 shows that for block size 16 and cache size 4 the
average memory access timings are 4.77384,
4.20288,3.9096 and 3.53832 for associativity levels
1,2,4 and 8 respectively using write through cache
and no allocate write policy. Table 5 shows that for
block size 16Bytes and cache size 4KBytes the
average memory access timings are 6.9, 5.82,
5.232, and 4.744 for the associativity levels 1,2,4
and 8 respectively using write through cache and
allocate on miss policy. The average access time is
even getting down if we increase the associativity
level, i.e, average access time with associativity
level 8 is lower than associativity level 2 or 4. As
shown in Table 5the average access time is 3.088
milliseconds for associativity level 8, where as it is
3.66, 3.944 and 4.744 for associativity levels 4,2
and 1 respectively. Graph 6 is showing that AMAT
is going down while increasing associativity level
for each block size 16, 32, 64, 128 and 256. Using

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4047

the stats which we have had in the tables and
graphs, we can conclude that we can decrease the
average memory access time which includes read
and write operations by using the set associativity
cache levels as compared to Direct Mapping cache
technique. Existing architecture in the Hadoop is
having Direct Mapping cache Technique, i.e what
we have showed in table 2, 3, 4 and 5with
associativity level 1. As per the analysis based on
the stats what we had the average memory access
time for Direct Mapping cache technique
(associativity level 1) is always higher than any
associativity level average memory access time. So
by implementing the set associative cache memory
mapping technique in the Hadoop architecture, we
can reduce the memory access time, i.e, we can
accommodate number of data words at datanode
itself so that map reduce client can get the data
word from datanode itslef, instead of getting from
memory, so reducing the average memory access
time.

Graph.6. AMAT with different Associativity levels

Write Back - No Write Allocate

Block Size: 16, 32, 64, 128, 256Bytes

6 CONCLUSION

The cache memory is used to store frequently
accessed data & hence process it much more
quickly.We have already observed the performance
improvement using cache memory in the existing
Hadoop environment[13]. In this paper we have
proved that the performance further improvement
by analysis results using Set Associative Cache
Memory. Set associative cache mechanism is for
managing the interaction between main memory
and cache memory.Based on the analysis of values
for same cache and block size with different
associativity levels we can say that there is
improvement in average memory access time by
using the set associative cache memory technique
for mapping cache memory to main memory. The
memory access time is even lower than the existing
HDFS Cache architecture memory access time. So
we can conclude that HDFS with cache is better
than without cache[13], and HDFS Cache using
associativity levels is even better than HDFS with
Cache. The second level cache is responsible for
caching objects across sessions. A victim buffer is a
type of write buffer that stores dirty evicted lines in
write-back caches so that they get written back to
main memory. Cache prefetching is a technique
used by computer processors to boost execution
performance by fetching instructions or data from
their original storage in slower memory to a faster
local memory before it is actually needed.
Hardware based prefetching is typically
accomplished by having a dedicated hardware
mechanism in the processor that watches the stream
of instructions or data being requested by the
executing program, identifies the next few elements
that the program might need based on this stream
and prefetches into the processor's cache.In the
proposed architecture, these techniques have not
been considered. The future work includesreducing
the average memory access time even further by
considering hardware optimization techniques such
as second level cache, victim buffer and prefetching
while implementing the set associative cache
memory architecture in Hadoop Distributed File
System.

REFERENCES

[1] Apache Hadoop. Available at Hadoop Apache.

[2] Apache Hadoop Distributed File System.
Available at Hadoop Distributed File System
Apache.

[3] Scalability of Hadoop Distributed File System.

[4] George Porter. Decoupling storage and
computation in Hadoop with SuperDataNodes,

Journal of Theoretical and Applied Information Technology
31st August 2017. Vol.95. No.16

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4048

ACM SIGOPS Operating System Review, 44,
2010.

[5] Hadoop Distributed File System with Cache
technology by Archana Kakade and Dr. Suhas
Raut, Industrial Science Vol.1,Issue.6/Aug.
2014 ISSN : 2347-5420

[6] J. Dean and S. Ghemawat (2004), “Mapreduce:
Simplified Data Processing on Large Clusters”.
In Proceeding of the 6th Conference on
Symposium on operating Systems Design and
Implementation (OSDI’04), Berkeley, CA,
USA, 2004, pp.137-150.

[7] Shafer J, Rixner S, Cox AL. The Hadoop
Distributed Filesystem: Balancing Portability
and Performance, in Proceedings of IEEE
International Symposium on Performance
Analysis of Systems and Software (ISPASS
2010), White Plains, NY, 2010.

[8] Feng Wang et al. Hadoop High Availability
through Metadata Replication, IBM China
Research Laboratory, ACM, 2009.

[9] Derek Tankel. Scalability of Hadoop
Distributed File System, Yahoo developer
work, 2010.

[10] “The Case for RAMClouds: Scalable High-
Performance Storage Entirely in DRAM”
Department of ComputerScience Stanford
University.

[11] Computer System Architecture, Third Edition,
M.Morris Mano

[12] J. Shafer and S Rixner (2010), "The Hadoop
distributed file system: balancing portability
and performance”, In 2010 IEEE International
Symposium on Performance Analysis of
System and Software (ISPASS2010), White
Plains, NY, March 2010. Pp.122-133.

[13] Ms. Archana Kakade, Dr. Suhas Raut, "HDFS
with cache system – a paradigm for
performance improvement"

[14] William Stallings(2013), "Computer
Organization and Architecture: Desigining for
performance", Ninth Edition .

[15] Garry Turkington(2013), HadoopBeginner's
Guide, Learn how to crunch big data to extract
meaning from the data avalanche

[16] SAM R. ALAPATI , Expert Hadoop
Administration, Managing, Tuning and
Securing Spark, YARN and HDFS, Addison
wesley data & analytics series, 2017.

