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ABSTRACT 

Due to online activities and use of resources related to computing, data is being generated at an enormous 
rate. Distributed systems are the  efficient mechanism to access and handle such huge data. One such 
mechanism is a Hadoop distributed file system (HDFS). An HDFS instant usually contains several nodes, 
each of which stores a small portion of its data. It creates multiple data blocks and store each of the block 
redundantly across the pool of servers to enable reliable, extreme rapid computation. HDFS supports 
common file system operations such as read and write files , create and delete directories.  In this paper we 
are presenting a new paradigm for improving file  accessing  time in HDFS. It is known that accessing data 
from cache is much faster than disk access. The cache memory is used to store frequently accessed data & 
hence process it much more quickly. We have already observed the performance  improvement using cache 
memory in the existing Hadoop environment. In this paper we will prove the performance  further 
improvement by using set associative cache memory. Set associative cache mechanism is for managing the 
interaction between main memory and cache memory. 

Keywords— Hadoop Distributed File System (HDFS), MapReduce, Cache Memory , Set Associative Cache 
Memory, Average Memory Access Time AMAT, NameNode,  DataNode, Second Level Cache, 
Victim Buffer, Prefetching.

 

1 INTRODUCTION  

Apache Hadoop [1] is a well known project that 
consists of  open source implementation of a 
distributed file system and MapReduce. One of the 
significant designed features of the Hadoop system 
is high throughput which is extremely suitable for 
handling large scale data analysis and processing 
problems. HDFS [2] [3] is designed for write-once-
readmany access model for files. In HDFS file 
reading may contain several interactions of 
connecting NameNode and DataNodes, which 
considerably decrease the access performance when 
the system is under a heavy workload. Hadoop [1], 
MapReduce [5], Dryad [10] and HPCC (High-
Performance Computing Cluster) [12] frameworks 
are Data-intensive and they rely on disk based file 
systems to meet their exponential storage 
demands.The system having the namenode acts as 
the master server it manages the file system 
namespace. Regulates client’s access to files. 
HDFS supports common file system operations 
such as read and write files and create and delete 
directories. The datanode is a commodity hardware 
having the GNU/Linux operating system and 

datanode software. Cluster is having number of 
datanodes. These nodes manage the data storage of 
their system.As per the instructions from the client 
datanode will perform operations on the file 
system.As per the instructions from the namenode 
blocks will be created , deleted by the datanode. 
Generally the user data is stored in the files of 
HDFS. HDFS stores data in HDFS files, each of 
which consists of a number of blocks (default size 
is 128MB).In other words, the minimum amount of 
data that HDFS can read or write is called a block. 
The default block size is customizable ,i.e we can 
configure it using the HDFS configuration. 

Hadoop distributed file system (HDFS) [6] has 
the capability to store huge amounts of data. There 
will be some time factor associated with retrieving 
or keeping the data in datanode. There are various 
mechanisms to minimize disk access latencies such 
as jobs are scheduled on the same node that hosts 
the associated data, in addition, data is replicated to 
different nodes in numerous ways to improve 
throughput and job completion time. When client 
applications need to write data to HDFS, they 
perform an initial write to a local file on the client 
machine, in a temporary file. When the client 
finishes the write and closes it, or when the 
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temporary file's size crosses a block boundary, 
Hadoop will create a file and assign data blocks to 
the file. The temporary file's contents are then 
written to the new HDFS file, block by block. After 
the first block is written, two other replicas (based 
on the default replication factor three) are written to 
two other DataNodes in the cluster, one after the 
other. The write operation will succeed only if 
Hadoop successfully places all data block replicas 
in all the target nodes. Accessing data from cache is 
faster than accessing data from memory. The cache 
memory is used to store frequently access data and 
hence process it much more quickly. By providing 
a cache system to HDFS, we can avoid unnecessary 
trips to hard disk to fetch data and thus avoid delay. 
Accessing the data without cache will take longer 
time (milliseconds) compared to accessing the data 
with cache. We have already observed that the  
performance  improvement using cache 
memory[13]. In this paper we will prove that  the 
performance will be further improved by using set 
associative cache memory. The paradigm shift is to 
use set associative cache mechanism  to manage the 
interaction between main memory and cache 
memory. In this paper we will prove the 
performance improvement by taking different 
associativity levels by varying the cache size and 
the block size i.e, for block size 16Bytes with 
different cache sizes for each associativity level (2-
way , 4-way and 8-way) we will find out the 
memory access time. Based on the values  we will 
prove that by using the set associativity cache 
memory we will improve the performance of the 
memory access , and by increasing the associativity 
level (2-way to 4-way, 4-way to 8-way) as well we 
can further improve the performance. 

2 LITERATURE REVIEW 

2.1 Hdfs With Cache System 

Hadoop Distributed File System organizes its 
file system differently from the underlying file 
system such as the Linux ext3 or ext4 file system. 
HDFS employs a block-based file system, wherein 
files are broken up into blocks. A file and server in 
a cluster doesn't have a one-to-one relationship. 
This means that a file can consists of multiple 
blocks, all which most likely won't be stored on the 
same machine. A files blocks are spread throughout 
the cluster on a random basis. This lets Hadoop 
support files that are larger than the size of a single 
disk drive. Since Hadoop is designed to work with 
massive amounts of data,  HDFS block sizes are 
much larger than those used by a typical relational 
database. Hadoop uses a minimum block size of 
64MB , and its common to use a block size of 
128MB or 256MB.  The benefits with larger block 

size is the filesystem metadata will be smaller, large 
chunks of data can be read sequentially  fast 
streaming reads of data are easier to perform. Based 
on the client request the data will be copied from 
main memory to datanode. If we use the 
HDFSCache system, the frequent access data will 
be copied to datanode from main memory so that 
the time required to access the data is less 
compared to access time without cache. In the 
existing HDFSCache system the interaction 
between main memory and cache memory is 
implemented using direct mapping technique, i.e 
main memory locations can only be copied into one 
location in the cache, we can get this configuration 
by dividing main memory into pages that 
correspond in size with the cache.Once all the  
blocks in cache filled with data, then we cannot 
write down the data to cache block and need to 
remove the data from the cache to accommodate the 
new data i.e, swapping the data word from cache to 
main memory using the replacement algorithm to 
decide which block in the cache gets replaced by 
new data which causes more number of swappings, 
increases the read operation time, which will reduce 
the performance of the HDFS cluster. 
HDFSCachesystem is implemented in Linux. 
HDFS system without cache and with cache We 
setup a test-bed  consisting of five servers running 
Linux  12.04 64bit OS 15GiB memory to compare 
the  time with HDFS without cache and HDFS with 
cache[13]. On every computer Hadoop 2.7 (stable 
version) is installed with the block size 128 MB. 
Four of these computers are configured to be 
DataNode servers and the remaining one is 
configured to be NameNode server. Every 
DataNode is having Cache Memory. Once all 
blocks in cache filled with data, swapping is 
required to copy the new word into cache which 
causes more number of swappings from main 
memory to cache. To test the existing environment 
10 files have been copied to HDFS having different 
size. Files size varies from 1000 KB to 10000KMB  
and the same files have been read with cache and 
without cache mechanism using scala programming 
language with spark libraries to interact with 
Hadoop Distributed File System. Please refer figure 
1 for assigning  data to variable and 
reading/printing the data from the variable using 
scala language with spark APIs without cache.  
Here we are just showing only top 30 rows.  Please 
refer figure 2 for assigning  the data to variable and 
reading/printing the data from the variable using 
scala language with spark APIs with cache 
mechanism. Here we are just showing only top 30 
records.  
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Figure. 1. Memory access without cache. 

 

Figure. 2. Memory access with cache. 

Please refer figure 3 and figure 4 for memory 
access time with and without cache using the 
naming convention based on the size of the file i.e; 
OneMB.txt is having the info about OneMB size 
text file memory access time, OneMB.txt is 
showing that 500ms without cache and 97ms with 
cache where as TwoMB.txt is showing that 
TwoMB file memory access time is 16ms and 25ms 
with Cache and without cache respectively. OneMB 
file is having huge values  either with cache(97ms) 
or without cache(500ms) compared to any other file 
size from 2MB till 10MB, since that is the first time 
it is accessing the data. The data between TwoMB 
and ThreeMB is having little difference so While 
the file size is getting increased the time is getting 
down little bit since the data is almost common 
between OneMB and TwoMB , TwoMB and 
ThreeMB and so on. Please refer the table 1 for the 
values, from table it is seen that for the file size of 
1000 KB, time required by HDFS is 500 
milliseconds and that for HDFSCache is 97 
milliseconds. We can observe that the  values are 
getting down from top to bottom while the file size 
is getting increased , the reason is if we use the 
distinct file data then the time will goes up as we 
increase the file size . Here the files are having 
almost same data with little bit difference. So the 

time is getting down. In this architecture Direct 
cache memory technique has been used ,i.e the 
memory blocks are directly placed to cache 
memory. If the cache memory is full we need to use 
algorithms like Least Recently used , Adaptive 
Replacement Cache and Most recently used  
replace the cache word with memory word. We can 
further improve the memory access performance 
using set associative cache memory technique 
where we can store set of words in the same line, so 
that we can allocate most number of memory words 
at cache as compared to Direct Mapping Cache. 
Please refer graph1 for the time reduction while 
using HDFS Cache. 

 

Figure. 3. Memory Access Time with and without 
cache. 
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Figure. 4. Memory Access Time with and without 
cache. 

Table 1: Memory AccessTime for HDFS without  and 
with cache 

 

 
Graph .1.Memory Access Time for HDFS without  

and with cache 

2.1.1 Namenode 
HDFS stores metadata on Namenode, and the 

application data is stored on the datanodes. The 
namenode detects failed DataNodes , unavailable 
replicas and other causes of data corruption. When 
we startup the Namenode it will do the these three 

things: The NameNode reads into memory the 
contents of the fsimage file it has, thus obtaining 
the HDFS file system state. The NameNode loads 
the edit log and replays the edit log to update the 
metadata it loaded into memory in the previous 
step.The NameNode also updates the fsimage file 
with the updated HDFS state information[16]. The 
NameNode starts running with a fresh , empty edits 
file. The DataNode daemon connects to NameNode 
and send it block reports that list all data blocks 
stored by a DataNode.Using Inodes files and 
directories will be  represented on the NameNode. 
Inodemaintains  attributes like permissions 
modification and access time, namespace and disk 
space quotas. Blocks on the datanode contains the 
file data and the replication factor is depends on the 
configuration parameter used in the HDFS 
configuration.Namespace in the namenode is 
having information related to blocks and datanode 
info information of the file.  An HDFS client 
waiting to read a file first contact the NameNode 
for the locations of data blocks comprising the file 
and then reads block content from the DataNode 
closest to the client. In write operation  the client 
requests the NameNode to nominate a set of 
DataNodes to write the data in block replicas. Once 
client receives set of datanodes the data will be 
written to datanodes in pipeline fashion [7,8]. 

2.1.2 Datanode 
The datanode is a commodity hardware having 

the GNU/Linux operating system and datanode 
software. The cluster is having number of 
datanodes.  These nodes manage the data storage of 
their system.As per the client request datanode 
performs operations on the file .Datanode manages 
blocks as per the namenode instructions. Namenode 
will be hvaing handshaking mechanism with 
datanodes at the startup. During handshake, the 
namespace ID and software version of DataNode is 
verified with the NameNode. Based on the success 
of the match the datanode position will be 
continued with the namenode. In the failure case of 
the match the DataNode will automatically shuts 
down. Namespace ID is assigned to the file system 
instance when it is formatted.  
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Figure. 5. HDFS Architecture 

A newly initialized DataNode without any 
namespace ID can join the cluster and it will 
receive the cluster's namespace ID. Datanode will 
be recognized using  its unique storage ID.If we 
restart the datanode with different ip address or port 
in this case aswell storage ID is usefull to recognize 
the datanode. When you startup a datanode , it 
connects to the NameNode and performs a 
handshake to verify the namespace ID and the 
Datanode's software version. Following the initial 
registration with the Namenode, all datanodessend 
two pieces of information to the Namenode 
periodic hearbeats that showsthe are alive and a 
block report that shows block information. Each 
DataNode send block report to the NameNode to 
identify the block replicas in its possession. First 
block report is send during DataNode registration 
and the subsequent block reports are sent at every 
hour. This helps the NameNode to keep an up-to-
date view of where block replicas are located on the 
cluster. Each DataNode send heartbeat to 
NameNode to confirm that it is operating and its 
block replicas are available. Default heartbeat 
interval is 3 seconds and if no heartbeat signal is 
received at NameNode in 10 minutes, the 
NameNode will mark the DataNode as unavailable. 
To fulfill this datanode position NameNode 
schedules creation of new replica of those blocks 
on another DataNode. Refer figure.5 for HDFS 
architecture. 

 

2.1.3 MapReduce 
MapReduce is a programming model for 

processing and generating large datasets. It 
provides a series of transformations from a source 
to a result data set.  In a simplest case, the input 
data is fed to the map function and the resultant 
temporary data to a reduce function. The developer 
only defines the data transformations. Hadoop 
MapReduce job manages the process of how to 
apply these transformations to the data across the 

cluster in parallel[15].User specifies a map function 
and a reduce function. The map function process a 
key/value pair to generate an intermediate 
key/value pair. The reduce function merges all 
intermediate values associated with same 
intermediate key.In general we can say that a 
MapReduce job consists of two steps: map and 
reduce, Map processes the original input file in a 
parallel fashion and transforms it into an 
intermediate output. Reduce is the summarization 
step processes all relevant records together. We 
need to configure MapReduce environment using 
mapred-env.sh file[16]. The programs written are 
inherently parallel and execute on a large cluster of 
commodity servers. The runtime system take care 
of all internal details like details of splitting the 
incoming data into number of parts, programs 
execution scheduling and  handling machine 
failure. 

The MapReduce library group together all 
intermediate values associated with same 
intermediate key and pass them to reduce function. 
Reduce function accept an intermediate key and a 
set of values for that key and merges together these 
values to form a smaller set of values just say like  
zero or one output value is produced per reduce 
invocation. Iterator function will be used to supply 
intermediate values to users reduce function. Refer 
figure 6 for MapReduce Architecture.  

 

 
Figure 6. MapReduce Architecture 

2.1.4 Data Distribution in HDFS 
HDFS support operation to read, write and 

delete file as well as to create and delete directories. 
For reading a file, the HDFS client request the 
NameNode for the list of DataNodes that host the 
replicas of the data blocks of the file. Then it 
directly contacts the DataNode and request the 
transfer of desired blocks. During writes, the client 
request the NameNode to choose a list of 
DataNodes that can host the replicas of the first 
block of the file. After choosing the DataNodes 
,client establishes a pipeline from node to node and 
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sends the data block. After storing the first block, 
namenode will send next set of blocks once it 
receives request from datanode for second set. New 
pipeline will be established between the new set of 
DataNodes and client sends the further bytes of the 
file [7]. 

HDFS provide APIs to retrieve the location of a 
file block in the cluster. APIs are useful to schedule 
the task to the node where data are located, thereby 
improving the read performance. This allows the 
application to set the replication factor of a file. 
Three is the defaultreplication  factor. For  
frequently accessed or critical files , setting the 
replication factor improves their tolerance against 
faults and increases the read bandwidth. Refer 
figure 7 for HDFS write operation. 

 

 

 

Figure. 7. HDFS Write Operation 

2.1.4.1 Images and Journal  
The inodes and the list of blocks that define the 

metadata of the name system are called the image. 
Entire Namespace image is available in RAM. 
Checkpoint is the location in Namenode where 
persistent record of the image stored in the  local 
native filesystem of the namenode. The operations 
or transactions on the HDFS will be recorded by 
Namonode in write ahead log called journal in its 
local native filesystem.The jouranl file flushed and 
synched before the acknowledgement after 
tranaction initiation by client.NameNode will not 
change the checkpoint file. During restart 
checkpoint file will be written when requested by 
the administrator or by the CheckpointNode.When 
ever administrator requested for new checkpoint 
file  During startup the NameNode initializes the 
namespace image from the checkpoint, and then 
adopt the  changes from the journal.  

A new checkpoint and an empty journal are 
written back to the storage directories before the 
NameNode starts serving clients.For improved 

durability, redundant copies of the checkpoint and 
journal are typically stored on multiple independent 
local volumes and at remote Network File System 
servers. Single volume failure will be saved by first 
choice where as failure of the entire node will be 
protected by second choice. If the NameNode 
encounters an error writing the journal to one of the 
storage directories it automatically excludes that 
directory from the list of storage directories. The 
NameNode automatically goes  down if no storage 
directory is available. The NameNode is having a 
multithreaded capability and processes requests 
simultaneously from multiple clients. Saving a 
transaction to disk becomes a performance issue  
since all other threads need to wait until the 
synchronous flush-and-sync procedure initiated by 
one of them is complete. In order to improve the 
performance in  this process, the NameNode groups 
couple of  transactions. When one of the 
NameNode's threads starts  a flush-and-sync 
operation, all the transactions grouped at that time 
are committed together. Remaining threads only 
need to check the status that their transactions have 
been saved and do not need to initiate a flush-and-
sync operation.The Namespace image is the file 
system metadata that describes the organization of 
application data as directories and files. A 
persistent record of the image saved  to disk is 
called a checkpoint. For each client-started 
transaction, the change is saved in the journal, and 
the journal file is flushed and manages the synch 
before the change is committed to the HDFS client. 
The NameNode is a multithreaded system and 
process request simultaneously from multiple 
clients. To optimize the saving of transaction to 
disk, the NameNode batches multiple transactions 
initiated by different clients. Remaining threads 
only need to check their transactions have been 
saved and do not need to initiate a flush-and-sync 
operation [8]. 

2.1.4.2 CheckpointNode 
Checkpointing is the process that creates a new 

fsimage and the edit log . Once the edit log reaches 
a specified threshold or when a certain period of 
time elapses, the new entries in the edit log are 
committed to the fsimage file.While the edit log 
segments are quite small in comparison with the 
fsimagefile , if you dontreguraly update the fsimage 
file with the edit log transactions, the edit log could 
get pretty large itslef, this will delay the start of the 
Namenode. Checkpointing periodically merges the 
latest fsimage file with the edit log, creating a brand 
new up to date fsimage. This helps the Namoenode 
load its final in memory state directly from the 
fsimage file instaed of having to reoplay a vast 
number of files from the edit log. When a 
NameNode starts up, it merges the fsimage and 
edits journal to provide an up-to-date view of the 
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file system metadata. The checkpoint node and 
Namenoderequires same storage capacity. So these 
two runs on different machines.  

We can configure checkpoint node and web 
interface using dfs.namenode.backup.address and 
dfs.namenode.backup.http-address variables.There 
are two checkpoint configuration parameters one 
for maximum delay between two consecutive 
checkpoints(dfs.namenode.checkpoint.period, set to 
1 hour by default), and the number of 
uncheckpointed transactions on the NameNode 
which will force an immediate checkpoint, even if 
the checkpoint period has not been 
reached(dfs.namenode.checkpoint.txns, set to 1 
million by default). Latest checkpoint will be 
always available at the Namenodes directory. So it 
is for the namenode to read the checkpoint if 
necessary. Multiple checkpoint nodes may be 
specified in the cluster configuration file.The 
CheckpointNode periodically combines the existing 
checkpoint and journal to create a new checkpoint 
and an empty journal. The system can start from the 
most recent checkpoint if all other persistent copies 
of the namespace images or journal are unavailable. 

2.1.4.3 BackupNode  
The Backup node provides the same 

checkpointing functionality as the Checkpoint 
node, as well as having an in-memory, latest copy 
of the file system's  namespace that is always 
synchronized with the active NameNode state[1]. 
Along with accepting a journal stream of file 
system edits from the NameNode and persisting 
this to disk. The same copy of the edits will be 
saved by Backup node namespace in memory, 
which is the backup of the namespace. The Backup 
node does not need to download fsimage and edits 
files from the active NameNode in order to create a 
checkpoint, as it is happening with a Checkpoint 
node or Secondary NameNode, since it is having  
an up-to-date state of the namespace state in 
memory. The Backup node checkpoint process is 
better  than checkpoint process as it only needs to 
save the namespace into the local fsimage file and 
reset edits.As the Backup node maintains a copy of 
the namespace in memory, and the  RAM 
requirements are the same as the NameNode. The 
NameNode supports one Backup node at a time. No 
Checkpoint nodes may be required if a Backup 
node is in use.  

Usage of multiple Backup nodes concurrently 
will be supported in the future. The Backup node is 
configured in the same manner as the Checkpoint 
node. The command bin/hdfsnamenode -backup is 
used for starting the BackupNode. Two 
configuration parameters used in the 
backup/checkpoint node are 

dfs.namenode.backup.address, 
dfs.namenode.backup.http-address configuration 
variables.Use of a Backup node provides the option 
of running the NameNode with less responsibilities 
like no persistent storage, assigning all 
responsibility for persisting the state of the 
namespace to the Backup node. Using -
importCheckpoint option we can start the 
NameNode, along with specifying no persistent 
storage directories  dfs.namenode.edits.dir for the 
NameNode configuration. 

It creates periodic checkpoints and in addition it 
maintains an in-memory, latest  image of the file 
system namespace that is always synchronized with 
the state of the NameNode. The BackupNodeallows 
the journal stream of namespace transactions from 
the active NameNode, and saves them to its own 
storage directories. The same transactions will be 
applied to its own namespace image in memory. If 
the NameNode fails the BackupNode's image in 
memory and the checkpoint on disk is a record of 
the latest namespace state. It can perform all 
operation of the regular NameNode that do not 
involve modification of the namespace or 
knowledge of block locations. 

2.1.4.4 FileSystem Snapshots  
HDFS Snapshots are read-only point-in-time 

copies of the file system. Subtree of the file system 
or the entire file system can be taken as Snapshots. 
Data backup, protection against user errors and 
disaster recovery are the some common use cases 
of snapshots. Snapshots can be taken on any 
directory once the directory has been set as 
snapshottable. Simultaneously 65,536 snapshots 
will be accommodated by snapshottable directory. 
There is no limit on the number of snapshottable 
directories. Administrators can set any directory to 
be snapshottable.  We need to delete all snapshots 
inside any snapshottable directory before deleting 
the snapshottable directory. Nested snapshottable 
directories are currently not allowed. A directory 
cannot be set to snapshottable if one of its 
ancestors/descendants is a snapshottable 
directory.File system snapshot helps to persistently 
save the current state of the file system. It helps to 
rollback in case of failure during upgrade. This 
helps HDFS to return to the namespace and storage 
state as they were at the time of snapshot. Each 
DataNode creates a copy of storage directory and 
hard links existing block files into it.  

When a data block is removed, it removes only 
the hard link and block modification during append 
use copy-on-write technique. Thus old block replica 
remains untouched in their old directory [4]. HDFS 
implements a single write, multiple-reader model. 
The client that opens a file for writing is granted a 
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lease for that file and no other client can perform 
write to the file. The lease is revoked when the file 
is closed. After writing data to the file, the user 
application explicitly calls hflush operation. 
Current packet is pushed to the pipeline and hflush 
operation waits until all DataNodes in the pipeline 
acknowledges the successful transmission of the 
packet. This makes all data written before hflush 
operation visible to readers [9]. 

3 PROPOSED METHOD 

3.1 Problem Statement 

Improving the cache performance in DataNode: 
Once all the blocks in cache filled with data, then 
we cannot write down the data to cache block and 
need to remove the data from the cache to 
accommodate the new data i.e, swapping the data 
word from cache to main memory is required to 
copy the new word into cache which causes more 
number of swappings, increases the read operation 
time, which will reduce the performance of the 
HDFS cluster.This is the problem in the existing 
architecture. 

3.2 Proposal 

We can use Set Associative Cache Memory 
where it will store more number of data words since 
it is having high number of blocks compared to 
Directcache mapping technique. 2-way set 
associative cache memory is having two words  of 
data in each line , 4-way set associative cache 
memory is having 4 words  of data in each line and 
n-way set associative cache memory  is having n 
words of data in each line. The hit ratio will 
improve as the set size increases, because more 
words with the same index but different tags can 
reside in cache. Compared to DirectMappingCache 
technique this will take extra logic cost in 
comparators and cache miss penalty as well. Once 
the data is available in Cache memory in this 
process this will take less time compared to 
DitrectMappingCache. A second-level cache helps 
improve performance with less database calls, 
keeping the entity data local scope to the 
application. The application interacts with normal 
entity manager without knowing about the cache. 
The second level cache is responsible for caching 
objects across sessions. When this is active, objects 
will first be searched in the cache and if they are 
not found, a database query will be fired. In a CPU 
cache, a write buffer can be used to hold data being 
written from the cache to main memory or to the 
next cache in the memory hierarchy. A victim 
buffer is a type of write buffer that stores dirty 
evicted lines in write-back caches so that they get 
written back to main memory. Cache prefetching is 

a technique used by computer processors to boost 
execution performance by fetching instructions or 
data from their original storage in slower memory 
to a faster local memory before it is actually 
needed. In the proposed implementation we are not 
considering these hardware optimization 
techniques. 

Refer figure 8 for proposed architecture. Map-
Reduce framework will provide cache facility to 
cache files needed by applications. Hadoop 
framework will ensure the cached data availability 
on each and every data nodes DN1,DN2 and 
DN3(in file system, not in memory) as shown in the 
figure 8 where your map/reduce tasks are running. 
Datanodes are having Set associative cache 
memory configured inside each datanode. You can 
access the cache file as local file in your Mapper Or 
Reducer job. Cache memory  is having two sets of 
data along with tag info. If the address is 00000  
this is the tag followed by index[11]  as shown in 
the figure 8 this will match for tag using  00 address 
followed by the index 000 , now the data is 5670. In 
this set associative cache memory we can store two 
sets of data for the same tag value like 01 000 and 
00 000. Cache system checks whether requested 
file is available in cache local memory or not. If 
requested file is available then request is fulfilled 
by cache. Hence here we can avoid disk access to 
fetch a file. Else client communicates with 
DataNodes to check whether requested file is 
present in their local memory. If file is available 
then request will be processed. Else if file is not 
available in cache local memory then file is fetched 
from disk by using HDFS API. The same will be 
copied to local cache memory for future reference. 

 
Figure. 8. Hadoop Distributed File System  

Architecture  with SetAssociativeCacheMemory 
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4 IMPLEMENTATION  

Refer figure 9 for the Implementation 
architecture using Set Associative Cache Memory. 
NameNode is connected withDatNodes and 
DataNodes are having internal CacheMemory with 
Set Associative Cache Memory(SACM) 
architecture. Whenever client sends request for read 
or write data file this will be searched in cache 
memory inside DataNode. If the data is available in 
the cache memory that will be used for read or 
write purpose. If the file is not available then that 
will be accessed from disk using HDFS API. In  Set 
associative cache memory, each word of cache can 
store two or more words of memory under the same 
index address. Each index address refers to two 
data words and their associated tags. The hit ratio 
will improve as the set size increases because more 
words with the same index but different tags can 
reside in cache. Compared to DirectMappingCache 
technique this will take extra logic cost in 
comparators and cache miss penalty as well. Once 
the data is available in Cache memory in this 
process this will take less time compared to Direct 
Mapping Cache since number of data blocks are 
less and swapping is high in Direct Mapping Cache. 

We can explain our experimental setup with one 
example. Consider 5 datanodes having local cache 
memory setup using set associative cache memory 
technique. Since the space issue here we can 
consider only two datanodes . The files are 
scatterred across the datanodes. The Namespace is 
maintaining datablock and datanode  info. When 
HDFS Cleint sends request for file info this will be 
verified in datanode local cache. If the data is 
available this will be fetched from local cache, if 
not that will be accessed from disk using HDFS 
API. 2-way set associative cache memory is having 
two words  of data in each line , 4-way set 
associative cache memory is having 4 words  of 
data in each line and n-way set associative cache 
memory  is having n words of data in each line. 
Here the given example/figure 9 is showing 2 -way 
set associative so it is having two sets of data along 
with tag info. If the address is 00000  this is tag 
followed by index  as shown in the figure 9 this will 
match for tag using  00 address followed by the 
index 000 , now the data is 5670. In this set 
associative cache memory we can store two sets of 
data for the same tag value like 01 000 and 00 000. 
In Direct Mapping Cache technique the words 
available at cache is always less than the words 
available at set associative cache memory 
technique. At any instant of time the availability is 
high so we can reduce the trips to visit memory, i.e, 
we can have less average memory access time in set 
associative cache memory.  This is how we can 

validate the performance of set associative cache 
memory is better than the direct mapping cache. 

 
Figure. 9. DataNode Architecture with 

SetAssociativeCacheMemory 

5 EVALUATION 

The results are here for Average Memory 
Access Time (AMAT) using the cache time 
analyzer [14] for set associative mapping technique. 
Refer figure 10 for Cache Time Analyzer [14]. This 
Cache time analyzer demonstrates Average 
Memory Access Time analysis for the cache 
parameters we specify. 

 
Figure.10.  Cache Time Analyzer 
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Write-through cache  is the technique where  
every write operation to the cache is accompanied 
by a write of the same data to main memory. When 
this is implemented, then the input/output processor 
need not consult the cache directory when it reads 
memory, since the state of main memory is an 
accurate reflection of the state of the cache as 
updated by the central processor. Although this 
scheme simplifies the accesses for the input/output 
processor, it results in fairly high traffic between 
central processor and memory, and the high traffic 
tends to degrade input/output performance.The 
block is modified in the main memory and not 
loaded into cache is what we called "No write 
allocate" and the block is loaded on a write miss, 
followed by the write-hit action is what we called 
"Write allocation on Miss".Write-back cache is the 
technique the central processor updates the cache 
during a write,but actual updating of the memory is 
deferred until the line that has been changed is 
discarded from the cache. At that point, the 
changed data are written back to main memory. 
Write-back caching yields somewhat better 
performance than write-through caching because it 
reduces the number of write operations to main 
memory. The information is written only to block 
in the cache. The cache block once it is modified 
will be written to main memory. To reduce the 
frequency of writing back blocks on replacement, a 
dirty bit will be used. This status bit indicates 
whether the block is dirty (modified while in the 
cache) or clean (not modified). If it is clean the 
block will not be  written on a miss.  Dirty data 
means  the data in the cache if it is modified but not 
modified in main memory. Whereas, dirty bit 
(modify bit) is a cache line condition(status) 
identifier,its purpose is to indicate whether contents 
of a particular cache line are different to what is 
stored in operating memory.If we try to write to an 
address that is not already contained in the cache 
this is called a write miss. Percentage of memory 
accesses that are reads or writes (we are treating 
them as %reads and %writes), data found in cache 
is cache hit and data not found in cache is cache 
miss. If the data is not available in cache, then 
processor loads the data from memory to cache, 
which results an extra delay is called miss penalty. 
Using the following formula[14] we can calculate 
the Average Memory Access Time(AMAT) with 
22% writes, 10% dirty data, 40 Miss Penalty 
(cycles), 1 Hit Time(cycles), 6 Memory hit 
(cycles)and block size is 16Bytes. Clocks 
MemWrite is the write time in clock cycles for a 
single write. 

ReadHitContribution :%Reads * Hit_rate * 
HitTime 

ReadMissContribution:%Reads*MissRate*((Mi
ssPenalty+HitTime)+(%Dirty*MissPenalty))  

Write Hit Contribution: %Writes * HitRate * 
HitTime 

WriteMissContribution: %Writes*MissRate* 
MissPenalty. Average Memory access Time has 
been collected for different input factors like Write 
Back policy and Write Through Policy  using No-
write Allocate on miss and Allocate on Miss 
methods on each policy with different units on 
CacheSize, Associativity and BlockSize[14]. 

Refer figure 11 for Write Back-No Write 
Allocate cache write policy. Table 2 shows the 
results along with the associativity for the block 
size 16. Average Memory Access Time (AMAT) is 
decreasing once we increase the associativity from 
2 till 8. For the cache size 2 , the top row shows that 
the time is decreasing once we increase the 
associativity level i.e for 1-way associativity is 
taking 6.14ms whereas 2-Way associativity is 
taking 4.9897 ms , 4-Way is taking 4.35 ms and 8-
Way is taking 3.83ms.The time is going down 
while we are increasing the associativity level. We 
can observe the same in table as well as in graph. 2 

 

 
Figure. 11. Write Back -No Write Allocate 
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Table 2: AMAT with different associativity levels: 
Write Back -No Write Allocate 

 

 

 
Graph.2. Write Back-No Write Allocate with different 

Associativity levels:Block Size 16Bytes 

 

Refer figure 12 for Write Back - Allocate on 
Miss cache write policy. Table 3 shows the results 
along with the associativity for the block size 16. 
Average Memory Access Time (AMAT) is 
decreasing once we increase the associativity from 

2 till 8. For the cache size 2 , the top row shows that 
the time is decreasing once we increase the 
associativity level . We can observe the same in 
table3  as well as in  graph. 3. 

 
Figure. 12. Write Back - Allocate On Miss 

Table 3. AMAT with different associativity levels: 
Write Back - AllocateOn Miss 
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Graph.3. Write Back- Allocation On Miss with 

different Associativity levels:Block Size 16Bytes 

Refer figure 13 for Write Through - No Write 
Allocate cache write policy. Table 4 shows the 
results along with the associativity for the block 
size 16. Average Memory Access Time (AMAT) is 
decreasing once we increase the associativity from 
2 till 8. For the cache size 2, it shows that the time 
is decreasing once we increase the associativity 
level. We can observe the same in table 4 as well as 
in graph. 4. 

 

Figure. 13. Write Through - No Write Allocate 

Table 4. AMAT with different associativity levels: 
Write Through -No Write Allocate 

 

 
Graph.4. Write Through- No Write Allocate with 

different Associativity levels: Block Size 16Bytes 

Refer figure 14 for Write Through - AllocateOn 
Miss cache write policy. Table 5 shows the results 
along with the associativity for the block size 16. 
Average Memory Access Time (AMAT) is 
decreasing once we increase the associativity from 
2 till 8. For the cache size 2, the top row shows that 
the time is decreasing once we increase the 
associativity level. We can observe the same in 
table 5 as well as in graph. 5 

 



Journal of Theoretical and Applied Information Technology 
31st August 2017. Vol.95. No.16 

 © 2005 - Ongoing JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
4046 

 

 
Figure 14. Write Through - Allocate On Miss 

Table 5: AMAT with different associativity levels: 
Write Through - AllocateOn Miss 

 

 

 
Graph.5. Write Through- Allocate On Miss with 

different Associativity levels:Block Size 16Bytes 

 

Average Memory AaccessTime (AMAT) varies 
for different Associativity level and it is decreasing 
as shown the graph.6. As shown in the table 2,3,4, 
and 5for each row the time is getting decreased as 
we move on from lower to higher associativity 
level, table 2 shows that for block size 16 and cache 
size 16 the average memory access timings are 
2.69, 2,29, 2.17 and 2.05 for associativity levels 
1,2, 4 and 8 respectively using write back cache and 
no write allocate.  As in table 3 for block size 16 
and cache size 8 the average memory access 
timings are 3.728, 3.2528, 3.0724 and 2.716 for 
associativity levels 1, 2, 4 and 8 respectively using 
write back cache and allocate on Miss policy.Table 
4 shows that for block size 16 and cache size 4 the 
average memory access timings are 4.77384, 
4.20288,3.9096 and 3.53832 for associativity levels 
1,2,4 and 8 respectively using write through cache 
and no allocate write policy. Table 5 shows that for 
block size 16Bytes  and cache size 4KBytes the 
average memory access timings are 6.9, 5.82, 
5.232, and 4.744 for the associativity levels 1,2,4 
and 8 respectively using write through cache and 
allocate on miss policy. The average access time is 
even getting down if we increase the associativity 
level, i.e, average access time with associativity 
level 8 is lower than associativity level 2 or 4. As 
shown in Table 5the average access time is 3.088 
milliseconds for associativity level 8, where as it is 
3.66, 3.944 and 4.744 for associativity levels 4,2 
and 1 respectively. Graph 6 is showing that AMAT 
is going down while increasing associativity level 
for each block size 16, 32, 64, 128 and 256. Using 
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the stats which we have had in the tables and 
graphs, we can conclude that we can decrease the 
average memory access time which includes read 
and write operations by using the set associativity 
cache levels as compared to Direct Mapping cache 
technique. Existing architecture in the Hadoop is 
having Direct Mapping cache Technique, i.e what 
we have showed in table 2, 3, 4 and 5with 
associativity level 1. As per the analysis based on 
the stats what we had the average memory access 
time for Direct Mapping cache technique 
(associativity level 1) is always higher than any 
associativity level average memory access time. So 
by implementing the set associative cache memory 
mapping technique in the Hadoop architecture, we 
can reduce the memory access time, i.e, we can 
accommodate number of data words at datanode 
itself so that map reduce client can get the data 
word from datanode itslef, instead of getting from 
memory, so reducing the average memory access 
time. 

 
Graph.6. AMAT with different Associativity levels 

Write Back - No Write Allocate  

Block Size: 16, 32, 64, 128, 256Bytes 

 

6 CONCLUSION 

The cache memory is used to store frequently 
accessed data & hence process it much more 
quickly.We have already observed the performance 
improvement using cache memory in the existing 
Hadoop environment[13]. In this paper we have 
proved that the performance further improvement 
by analysis  results using Set Associative Cache 
Memory. Set associative cache mechanism is for 
managing the interaction between main memory 
and cache memory.Based on the analysis of values 
for same cache and block size with different 
associativity levels we can say that there is 
improvement in average memory access time by 
using the set associative cache memory technique 
for mapping cache memory to main memory. The 
memory access time is even lower than the existing 
HDFS Cache architecture memory access time. So 
we can conclude that HDFS with cache is better 
than without cache[13], and HDFS Cache using 
associativity levels is even better than HDFS with 
Cache. The second level cache is responsible for 
caching objects across sessions. A victim buffer is a 
type of write buffer that stores dirty evicted lines in 
write-back caches so that they get written back to 
main memory. Cache prefetching is a technique 
used by computer processors to boost execution 
performance by fetching instructions or data from 
their original storage in slower memory to a faster 
local memory before it is actually needed. 
Hardware based prefetching is typically 
accomplished by having a dedicated hardware 
mechanism in the processor that watches the stream 
of instructions or data being requested by the 
executing program, identifies the next few elements 
that the program might need based on this stream 
and prefetches into the processor's cache.In the 
proposed architecture, these techniques have not 
been considered. The future work includesreducing 
the average memory access time even further by 
considering hardware optimization techniques such 
as second level cache, victim buffer and prefetching 
while implementing the set associative cache 
memory architecture in Hadoop Distributed File 
System. 
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