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ABSTRACT 
 

The development of recommender system research has expanded to various applications. Recommender 
system issues can be analyzed from many perspectives such as user rating strategy, user preferences and 
text mining. User rating strategy and user preferences are associated with user behavior to find suitable 
recommended items. Text mining is considered the most related field to database management and web 
search queries. The relation to the database query, it needs suitable query algorithm web search and user 
profiling strategy. Our paper survey showed that Latent Semantic Analysis (LSA) method has a better 
chance to solve recommender system issues especially in web search and user profiling. By comparing with 
restaurant samples, we describe adequate measures to evaluate the recommender system quality in user 
profiling. Some algorithm can provide benefits to improve the quality of personalized recommendations 
that are tailored to user attributes. Further research can provide newer algorithm to handle cold start 
problem and sparse data from both text mining and mining computation perspectives. 
Keywords: Latent Semantic Analysis, Restaurant, food menu Recommendation, Semantics, User Behavior. 
 
1. INTRODUCTION 

 
Recommender systems are prominent 

machine learning applications that have been 
widely studied anywhere [1]. Recommender 
system provide feature to active user g to 
recommend rated items to other users [2]. The 
systems facilitated the users to filter large 
amounts of data and make informed choices. 
However, recommender systems still contains 
many issues especially in their accuracy and 
predictability. To improve accuracy, many 
scholars have proposed algorithms such as 
collaborative filtering, hybrid, and content based 
algorithms.  

To handle predictability, they expanded 
the research focus of recommender system into 
various innovative usage from context-aware to 
latent information synthesis. it encouraging 
researchers to expand to business and education 
applications [3]. In addition, in handling text 
mining issue, many scholars have included data 
of user activities and social content sharing (e.g., 
user behavior, user trust network, random walk, 
and k-means top rating) [4]. 

From a collaborative perspective, 
traditional collaborative screening approaches 
are very popular for predicting user preferences 
and product recommendations [5]. It calculated 

cross similarity among users with rated items. In 
addition, it applied heuristic methods to combine 
the user-rated items to reflect active users 
preferences. Such methods have improved the 
system performance into higher accuracy [6]. 

As the development of recommender 
research is very large, we generalize 
recommender system studies and their results 
into systematic literature review with 
adaptability to their applications. Scholars have 
identified how to improve recommender system 
performance by analyzing the user -items 
attributes and their relationships based on the 
history of activity between users and items. The 
system recorded the user activity as history or 
behavior pattern. In addition, the system also has 
feature to support the user to provide rating to 
recommend preferred items to other active user 
[7]. This approach required item attribute value 
with valid source from active users. A failure to 
get the valid sources will lead to Cold Start 
problems due to lack of valid information about 
products attributes in the database [8]. Another 
problem in the system is large range of value 
ranges between the first rated product with the 
last rated product which raised diversity of item 
values in the product listing. It scrambles the 
users preferences toward suitable items and 
provide mismatch recommendation with the user 
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attributes. Such issue is so-called long tail 
phenomenon. This is due to the large 
concentration of users which focus only on 
popular items while less popular items are lack 
of user attention. It impact on the system to 
display the item. Finally, user has no choice to 
get the information from majority of users and 
rating from other active users.  
1.2. Paper contribution  

The purpose of this paper is to find a 
strategy ranking users and user preferences 
associated with user behavior to find the 
recommended items using LSA algorithm. This 
study attempts to prove that the use of the LSA 
Algorithm and the cosine resemblance approach 
and its modifications can identify features related 
to the product. 

This paper summarized the various 
recommender system studies especially from the 
problems and solutions that scholars have 
examined and resolved. It also summarized 
algorithms with robust performance and 
interesting to be studied further to improve their 
accuracy and effectiveness. Finally, this paper 
provided example of case study for the future 
direction to focus on the problems encountered 
with scholars in improving the recommender 
accuracy. 

This paper consisted five parts. the first 
part proposed trend of recommender system 
topic. The second part provided definition and 
development of recommender system studies. 
The third section explained robust algorithms, 
methodologies and implementation. We also 
give an example of the implementation in simple 
problem, e.g., to measure the rating in restaurant 
recommendation. The Section four discussed 
conclusions and our short analysis. The fifth part 
contains suggestion and future direction. 
 
2. LITERATURE REVIEW  
 
2.1. Machine Learning 

Machine Learning is a virtual machine 
which contains learning algorithm and allows 
computers to identify and gain real-world 
knowledge from the users [9]. Through machine 
learning, the system can work some tasks based 
on the training and testing datasets. More 
formally, Schnabel, et al., [10] stated that 
machine learning has ability to learn from user 
experience and human behavior if suitable 
algorithm is added. Although machine learning 
originally has been introduced in the 1950s, the 
revised concept has studied as a separate field till 

1990s. Currently, machine learning are used in 
several fields such as computer science[9], 
business [11], advertising [12] and medicine 
[13].  
2.2. Type of machine learning  

Learning is the process of acquiring 
knowledge. Humans naturally learn from 
experience and remembering to shape their 
ability to reason. Conversely, computers do not 
learn by reasoning, but learn by algorithm and 
code programming. Currently, there are a large 
number of machine learning algorithms in 
literature. They can be classified based on the 
approach used for the learning process. There are 
four main classifications, e.g., supervised [9], 
unsupervised [14], semi- supervised [15] and 
reinforced machine learning [16]. 
2.2.1. Controlled learning  

Controlled learning is a process of 
training to provide machine with training data, 
correct answers and certain classification rule 
[17]. It is also so-called classification machine. 
The classification machine has task to learn 
based on the training data and testing data and 
then gaining real data for analysis and 
recommendation, i.e., book classification in 
bookstores. A training set contains training data 
and answer as a listed items of books to classify 
each book into correct groups. Here, the 
information or attributes about each book may be 
a title, author, publisher or even text in the book 
content [16]. The machine learns and tested with 
the training set to detect and record the item 
history automatically. When a new book arrives 
at a bookstore, the machine can classify the 
books (items) based on the classification 
algorithm. 
 
2.2.2. Supervised learning 

Supervised Learning has main 
characteristic, e.g., the training data is 
accompanied by learning targets sets 
representing input vector and target dataset [9]. 
The machine learning with the a model can meet 
required target of learning for specific purposes, 
e.g., classification, regression, ordinal regression, 
and rating.  
 
2.2.3.Unsupervised Learning 

In the unsupervised learning, the 
training data is not accompanied by target 
dataset. It has objective to build a model that can 
find hidden variables or components in the 
training data [14]. The characteristic of 
unsupervised learning can be used for unique 
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purposes such as density estimation, clustering, 
dimensionality reduction, Topical content 
extraction, and random recommendation.  
2.2.4. Semi-supervised Learning 

 Combination of supervised and 
unsupervised approaches have brought new 
model of learning machine. It needed adequate 
modified training data to reach target dataset for 
each input vector [17]. Semi-supervised learning 
machine have main component. 
2.2.5. Reinforced Learning 

The learning objective is how the 
machine act based on the input from the 
environment. The machine can observe their 
environment based on some validated parameters 
to monitor dataset progression [16]. Each action 

provide input to data progression as reference 
and improve learning algorithm automatically.  
2.2.6. Transfer Learning  

The purpose of transfer learning 
machine is to simplify the learning process on 
customized problem to be used for other 
problems. It used training data which not 
accompanied by learning targets to reshape new 
structured model to find real-time data. The 
model can be combined with feature extraction 
and topical modeling. The machine also have 
ability to separate the algorithm into categories 
based on clear classification and reduce the data 
variations based of established algorithms, e.g. 
incremental vectors and matrix factorization. 

 
Table 1.Summary of machine learning research on for recommender systems 

References  Methods Advantages  Disadvantages 
Cai et al., 
(2010) 

CollabNet, a new 
algorithm used gradient 
slopes to study relative 
contribution of active users 
to rate similar items into 
item list. It provided 
summary of 
recommendations 
generated by the 
recommender system. 

CollabNet's recommendation is 
based on datasets evaluation of 
commercial products by using 
online social networks algorithm. It 
showed higher performance above 
standard recommender system 
algorithms. 

CollabNet scalability is still 
limited to big database. 

Salakhutdinov, 
et al., (2007)  

Restricted Boltzmann 
Machines 
(RBM’s).  

The study provide a tabular data 
model, such as a user's movie 
rating. 

It used Maximum Margin 
Matrix Factorization to handle 
barrier to cover overall 
strength factor rather than their 
number. It required splitting of 
a rare semi-definite dataset to 
evaluate system performance. 

Veena & Babu 
(2015) 

Apache mahout.  It handled challenges in 
recommender system based of 
collaborative filtering such as 
scalability and sparsity data. 

Some algorithms that cannot 
be parallelized over stochastic 
issues. 

Wang (2015) Bayesian. It carry out in-depth representation 
learning for collaborative content 
and filtering information for the 
assessment matrix. 

collaborative content and 
filtering information needs 
more customized deep learning 
model.  

Tewari et al., 
(2013) 

Matrix Factorization 
method  

The method provided good 
approximate analysis solution for 
posterior data distribution.  

The nature of scaling has not 
been studied. 

 
3. Collaborative Filtering 

Collaborative filtering is the newer 
mode of recommender system that process the 
data with filtering approach [18]. It also 
evaluated items through active user evaluation 
about other user opinions to gain attribute value 
rating [16]. Collaborative filtering performs 

filtering activities based on similarity of 
consumer characteristics and product attributes 
to provide new information to users [19]. The 
user and/or item lists are filtered by system to 
provide information based on the likeness pattern 
of user group. The differences of interest in 
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group members are classified into new category 
that may be beneficial to other group members. 

Generally, the recommendation process 
consisted three steps, eg, finding similar user, 
making neighborhood, and counting prediction 
based on selected neighbors [20]. Collaborative 
filtering generated item predictions or item 
recommendations for targeted users after the 
items has rating value. Items consisted of 
interesting topics or thing such as books, films, 
arts, articles, or travel destinations. Ratings 
consisted of (a) scalar numerical value of integer; 
(b) binary value of bolean, agreeing or 
disagreeing, good or bad; (c) unary value 
indicated user history activity that the user has 
observed or purchased items or rated items [20]. 
Unary value can be combined with binary value 
to provide user rating of positive or negative 
about product item rating value.  

The availability of rating values 
indicated information connecting the user with 
the preferred items. Ratings can be collected 
explicitly, implicitly, or a combination between 
explicit and implicit. The explicit rating is 
obtained when the user is asked to provide an 
opinion on a particular item. implicit rating is 
earned through the user intention. The 
unavailability of rating values will lead to the 
items are not recognized by machine learning 
and not displayed to users even though the 
product is existed in the database system.  
 
4. COLLABORATIVE FILTERING AND 

LATENT SEMANTIC ANALYSIS  
Collaborative filtering has been 

proposed by many scholars{21]. They divides 
collaborative filtering algorithms into two 
different classes according to theoritical and 
practical aspects, eg, non-probabilistic and 
probabilistic algorithms. For probabilistic 
algorithm, it represented probability distribution 
to calculate rating prediction of items i and v to 
provide recommended rating list. It used 
equation 1[22].  

௨ܲ,௜ ൌ
∑ೡ	൫௥ೡ,೔∗௦ೠ,ೡ൯

∑ೡ	௦ೠ,ೡ
	…………..(1)  

Total sum of v and i represent the rating 
prediction (r) and calculated by scramble rating 
value to get latent rating value. For non-
probabilistic algorithm, it represented random 
distribution to calculate scrambled rating 
prediction and provide latent rating results. The 
famous non-probabilistic algorithm is the nearest 

neighbors algorithm. The algorithm is divided 
into two classes, eg, user-based and item-based 
approaches. Both algorithms are discussed 
below.  
4.1. User-Based Collaborative Filtering 

The user-based nearest neighbor 
algorithm used statistical techniques to find a set 
of users or neighbors and sorted based of their 
unique attribute weighting values. The neighbors 
attribute weighting values must have historically 
agreed with the targeted users. Once a group of 
neighbors are formed, the system uses different 
algorithms to combine the neighbors' preferences 
lists to produce the N-top predictions or a group 
of item recommendations for active users [23]. 

Practically, users with highest purchase 
value is then become focus of attention that 
system will provide more facility and supports 
[24]. This method arises as a solution to problem 
of limitations (sparsity) and scalability and time 
and memory issues.  
4.2. Item-based Collaborative Filtering 

item-based collaborative filtering are 
quite like item-based collaborative filtering. 
Instead of calculating the similarity between two 
users, the system focused on the similarity 
between two items [25]. The system used 
computational similarity method between two 
items and find predicted items by counting the 
weighted sums of different item ratings on 
individual users.  

Item-based collaborative filtering 
contains recommendation algorithm based on 
similarity relationship between rated items and 
purchased items. From the level of item 
similarity, then they are divided by parameters of 
user needs to obtain product usability value. It is 
also so-called Item-to-Item Collaborative 
Filtering [26].  

 
4.3. Cosine-based Similarity 

Cosine-based similarity worked on the 
concept of statistical cosine where two items are 
considered as two vectors in the dimension m 
user space [27]. The similarity between them is 
measured by calculating the cosine angle 
between two vectors. For item list, the similarity 
between item i and j will form new direction and 
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distance between the groups as represented by 
equation 2.  

,ሺ݅݉݅ݏ ݆ሻ ൌ cosሺ		ଓ	ሬሬሬԦ. 	ଔ	ሬሬሬԦ	ሻ ൌ
		ప	ሬሬሬԦ.	ఫ	ሬሬሬԦ

ห|	ప	ሬሬሬԦ|หమ∗ห|	ఫ	ሬሬሬԦ|หమ
 … (2)  

 
4.4. Correlation-based Similarity 

 Correlation has been used widely in 
statistical term. It used similarity between two 
items which measured by calculating correlation 
of the set of users who rated the set of items. The 
correlation represented by similarity between 
item i and j and also the rating values owned by 
each union (U) which composed by u, i and j. the 
similarity between I and j is given in equation 3 
[28]. 
,ሺ݅	݉݅ݏ ݆ሻ ൌ

∑ೠ∈ೆ	ሺோೠ,೔ିோ೔ሻሺோೠ,ೕିோೕሻ

ට∑ೠ∈ೆ	൫ோೠ,೔ିோ೔൯
మ
	ට∑ೠ∈ೆ	൫ோೠ,ೕିோೕ൯

మ
	
………….(3) 

 
4.5. Adjusted Cosine Similarity 

The computation of similarity with 
basic cosine need huge size of data which 
sometimes difficult for small dataset size. this 
case has one obvious drawback, and this needs 
modification for scoring scale among different 
users with small dataset size. The issue are then 
resolved with Adjusted Cosine Similarity 
approach as proposed by Chen [29]. The 
similarity approach which using this scheme has 
a goal to spread the value between items with the 
level of small rating distribution. The Adjusted 
Cosine Similarity algorithm can modify the 
value of similarity between items. In addition, 
the algorithm also can estimated the frequent 
change of items and user relationship. It 
predicted similarities by forming an offline 
similarity model that automatically saves time 
and memory for counting when a user accesses a 
list of items. The popular similarity model which 
implemented in recommender systems is given 
in equation 4. 
,ሺ݅	݉݅ݏ ݆ሻ ൌ

∑ೠ∈ೆ	ሺோೠ,೔ିோೠሻሺோೠ,ೕିோೠሻ

ට∑ೠ∈ೆ	൫ோೠ,೔ିோೠ൯
మ
	ට∑ೠ∈ೆ	൫ோೠ,ೕିோೠ൯

మ
	
……….(4)  

5. Weakness of conventional recommendation 
system 

All recommendation systems have 
certain limitation in the way they operate. 

Collaborative filtering has privacy issues and 
cold-start issues which are associated with a lack 
of appraisal for either new users or new items 
[21]. On the other hand, content-based 
recommendation systems tend to be too specific 
and require wide array of content in order to 
fulfill the user needs. 

However, there are better developments 
with scholars suggesting recommendations based 
on user participation approach to mend the 
weakness. In addition, some system are 
upgradable to provide better recommendation 
result. scholars have proposed other approach 
such as knowledge-based recommendations and 
latent attribute analysis. They required 
knowledge techniques and expert system in order 
to overcome the “knowledge bottleneck” issue in 
collecting user activity data and user profiles 
[30].  

Scholars have proposed new model to 
handle both issues by integrating social media 
database to build online social user profiling and 
analyze the user contextual information. The 
system is also so-called context-aware system 
which connecting user and product items with a 
list of predicted recommendations to understand 
trends and user situation. 

Thus, the contextual relationship is 
associated with mathematical and statistic 
activity. The contextual relationship has an 
advantage to handle the sparse data information 
since it extracted and summarized meaning of 
the word applied by user to a particular text 
section[31]. It helps the system to perform 
information retrieval, content analysis and 
semantic strategy. Such semanticization derived 
models and predict the user activity patterns and 
their preferred items[32]. Such semanticization 
with latent content has brought new insight to the 
development of modified recommender system. 
This brings scholars to try a new technique 
called Latent Semantic Analysis (LSA). 
5.1. Latent Semantic Analysis (LSA)  

Latent Semantic Analysis (LSA) has 
been proposed by many scholars[33]. The 
approach has been widely used for deducing 
semantic information from social user tag 
database. LSA reduces issues of using social 
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tags, such as, synonyms, user errors, data 
scarcity. It increased search result and prediction 
robustness in large data collections [34]. the 
prediction robustness is main charactistic of 
value decomposition especially in multiple 
matrix analysis.  
ܯ ൌ ௗ,௥ܦ ∗ ∑௥,௥ ∗ ௥ܶ,௟

௧ 	………………(4) 

It is estimated based of matrix 
computation and prediction. For example, D and 
T are two orthogonal matrices and R is rating 
which must be minimum to establish matrix rank 
M. ∑௥,௥ is the diagonal matrix which formed by 

diagonal entries contain all the single values  
stored in descending order. The matrix D and T 
are the left and right single vectors. To get nth 
rank of D and T, we can modify LSA to keep 
only single value labelled k and its associated 
vectors M is the rank-k approach of M.  
ܯ ൎ ᇱܯ ൌ ௗ,௞ܦ ∗ ∑௞,௞ ∗ ௞ܶ,௟

௧ ……………(5)  

M is used in LSA to represent semantic 
space. k is the number of potential vector in the 
LSA space representing a set of latent variables. 
This potential vector represented latent value 
with certain correlation rule in sparse data 
matrix. Furthermore, the generated latent 
variable(s) representing targeted groups with 
highly correlated relation, it must still represent 
original data value. It potentially has an 
advantage to reduce the amount of noise 
associated with the irregular relationship and 
random semantic information.  
5.2 Estimation of user-item relationship 

To get weighting tags or labels of 
product lists, we use frequency of display as 
weighting term. The weighting approach provide 
information about the frequency of users to 
select or prefer item tags and to assign weight 
values to each items in certain groups so that a 
priority tag can be established as calculated list. 
It represented the frequency of occurrence of 
items and their attributes based of appearance of 
each item on their lists. Such frequency-based 
weighting tags is also so-called tokenization as 
effort of filtering headword from the contents of 
user history. Therefore, the total frequency of 
occurrence of items and their attributes are 
selected to shape the user-item relationship 
which given in equation 6.  

௜௝ݓ ൌ ݐ ௜݂௝ ൈ ௜௝ݓ ቀሺlog ቀ
ே

௡
ቁ ൅ 1ቁ………(6) 

The equation showed that weighting is 
influenced by N, n and R as the total of all 
rating, total user giving rating nth and weight to 
the nth item based of the user preferences or the 
item position in the prediction. For big database, 
it can be modified by clustering approach in 
form of Log (N/n). Therefore, it gives clustering 

of frequencyሺlog ቀ
ே

௡
ቁ ൅ 1. 

  
5.3. Singular Value Decomposition (SVD)  

One of the modified LSA is Singular 
Value Decomposition (SVD) to perform matrix 
decomposition. SVD decomposes matrix of 
frequency with multiple matrices member into 
three matrices D, Σ and T to represent product 
feature terms. SVD analyzed the relationship 
between a set of values as a series of users and 
items which shape discrete dyadic domains 
called two-mode data [35]. Supposed that a 
series of users have rated a group of items, and 
then the system can create a coordinate matrix 
M. Each relationship of a user with an item is 
represented by a row vector, while each term of 
ranking or degree between first and second user 
is shown using a column vector. The relationship 
represent a single-value decomposition (SVD) to 
an M-dimensioned user-item matrix, and an 
estimate of low-level matrix M can be used to 
define a SVD pattern in relationship of active 
user and their preferred item. Both user group 
and item group can be divided into subgroups 
representing their respective product 
classification. For example, item group can be 
divided into two matrices of U and V.  
ܯ ൌ ܷ∑்ܸ………………(7)  

Where U and V are matrices with 
orthonormal columns represented rated item and 
unrated item. To find their intersection (eg, 
்ܷܷ ൌ ்ܸܸ ൌ  it applied Σ as a diagonal ,(ܫ
matrix whose diagonal element is the 
accumulation area containing average or 
clustered value of both U and V. in total, the 
general pseudocode for LSA is given in 
Algorithm 1. The algorithm is modified from 
[12].  
input:  ݊ ൈ݉ item-user matrix ܯ, Product 
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feature set S, number of ranked single 
value, number of extracted attributes 
for each item-user relationship n.  

output: array Σ containing product 
classification, average clustered value 
of U and V as related item-user 
relationships.  

 begin  
  initialize associated array Σ 
  ܷ,∑, ்ܸ ← Averageሺܯ, ݇ሻ 	
ܯ   ← 	ܷ ൈ ∑ ൈ ்ܸ  
  for s ∈ S do  
   weighting s ሺݓ௦ሻ ←Matrixሺܯ, ݇ሻ 
   Initialize similarity list sim 
   ݅ ← 1 
   foreach column vector ݓ of ܯ do  
   sim[i]←  ݓ.௦ݓ
   ݅ ← ݅ ൅ 1  
  end  
  sort(sim) 

  
relatedFeatureList←top nth rank(sim, n, 
M) 

  S(s) ←ranked user-item relationship list  
  end  
  return S  
 end 
 

The algorithm works by initializing a 
list with ݉݅ݏ equation to measure the column 
vector w of M and sorting the related feature lists 
to get top nth rank related features from the 

similarity of ݊ ofܯ. To strengthen the search 
results, the semantic comparisons with the SVD 
method can be combined with certain statistical 
computation to find the closest relationship of 
both groups into search query. The search results 
will be matched with standardized training data. 
This is done to bring up closest unrated items 
that have a similar position but still lack of rating 
value and user preferences.  

Table 2.Summary Of Existing Research On Collaborative Filtering With Latent Semantic Analysis Method 

References  Methods Advantages  Disadvantages 
Liu et al., 
(2012) 

Latent Semantic 
Analysis (LSA) to 
identify product 
features in movie 
items. 

Movie reviews are 
generated from feature-
based summarization. 
Rating systems and 
review-summarization can 
be extended to other 
product review domains 
easily. 

Currently, feature-based 
summarization provides result of 
summarized text. Although the 
summary phrase is about product 
features and opinion words, these 
sentences are derived from various 
movie paragraphs or reviews to 
reduce the problem. Thus, this is a 
challenge of future work to achieve 
a better eloquence of 
summarization. 

Hyung et al., 
(2012) 

Latent Semantic 
Analysis (LSA).  

A new approach to 
recommending music 
based on text analysis, 
identifying the semantic 
meaning of the document 
to find similar stories. 

One of the most important limits in 
the study is biasing when it 
detected polysemies. Polysemies 
are words that have many 
meanings. 

Ticha, et al., 
(2014) 

Hybridization of User 
Semantic and 
Collaborative Filtering 
used the Rocchio 
algorithm.  

The approach provides 
solutions to scalability 
issues, and reduces the 
problem of sparsity data by 
reducing data dimensions.  

It only used content-based 
approach. 

Akther (2012)  Latent Semantic 
Analysis 

The approach has ability to 
recommend the 
community to foreign 
member without joining 
the community. It has 
advantage of dimensional 
reductions to reduce the 
limitations associated with 
the spectrum. 

It excluded recommend item or 
user.  
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4. RESULT AND DISCUSSION  
4.1. Example of Latent Semantic Analysis 
Case  

We provide example of latent 
semanticization process that the system will 
learn to estimate the user preferences in 

restaurant. It implemented LSA and database of 
user purchase history for food menu as 
illustrated by the table below. The number of 
restaurant menus are attributed to each 
restaurant, the system will learn that a user has 
certain preferences. 

 

 

Source: http://tripadvisor.co.id 
  

Table 3. Restaurant Ratings Based On Number Of 
Menus Ordered 

Ranking  Restaurant Name Total  

1.  ViaVia  1429 
2.  Jejamuran  1285 
3.  Mediterranea Restaurant 836 

4.  Milas  560 
5.  Nanamia Pizzeria Mozes 547 

6.  Verandah Alfresco 518 

7.  Roaster and Bear 266 

8.  The Sawah  189 
9.  Nanamia Pizzeria 

Tirtodipuran 
159 

10. Canting Restaurant 152 

Source: http://tripadvisor.co.id 
 

Table 3 described how the user rated 
menu which they like from various restaurants. 
The table will sort this user preference toward 
varied menus and various restaurants. It 
established rating parameters for both menus and 
restaurants while a search query is performed. 
Having found the rated restaurant and prioritized 
user preferences, Table 4 showed that the system 
will check the labels contained in the top 
restaurants, then the label will be termed, and the 
restaurant will be referred to as a document. It 
calculated the frequency of a menu or food 
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appears as a label on each restaurant, or called 
the process of Term Frequency (TF).  

 
Table 4. Table Of Rated Restaurants And Their 

Menu Labels 
Ranking  Restaurant 

Name 
Label 

1.  ViaVia Italian, French, Pizza, 
Vegetarian Friendly, 
Vegan Options, 
Gluten Free Options 
Friendly, Vegan 
Options, Gluten Free 
Options 

2.  Jejamuran  Asian, Indonesian, 
Vegetarian Friendly, 
Vegan Options, Halal 

3.  Mediterranea Italian, French, Pizza, 
Mediterranean, 
European, Vegetarian 
Friendly 

4.  Milas Asian, Indonesian, 
Vegetarian Friendly, 
Vegan Options, 
Gluten Free Options 

5.  Nanamia 
Pizzeria 
Mozes 

Mediterranean, 
Italian, Halal, 
Vegetarian Friendly, 
Vegan Options 

6.  Verandah 
Alfresco 

European, Asian, 
Indonesian, Halal 

7.  Roaster and 
Bear 

Italian, American, 
Cafe, European, 
Asian, Indonesian, 
Vegetarian Friendly, 
Halal, Vegan Options 

8.  The Sawah  Asian, Indonesian, 
Halal, Vegetarian 
Friendly, Vegan 
Options 

9.  Nanamia 
Pizzeria 
Tirtodipuran 

Mediterranean, Halal, 
Vegetarian, Friendly, 
Vegan Options 

10.  Canting 
Restaurant 

Bar, European, 
Indonesian, 
American, Asian, 
Fusion, Vegetarian 
Friendly, Halal 

Source: analysis result 
4.2. Estimation of user-item relationship 

To get weighting tags or labels of 
restaurant, we use frequency as weighting term. 
The weighting approach provide information 
about the frequency of users to select or prefer 
menu tags and to assign weight values to each 
food in the restaurant so that a priority tag can be 
established as calculated list. It represented the 
frequency of occurrence of menu or restaurant 
based of appearance of each item on the list of 
restaurants or lists of menu. Such frequency-
based weighting tags are also so-called 
tokenization as effort of filtering headword from 
the contents of user history. Therefore, the total 
frequency of occurrence of the selected menu or 
restaurant shapes the user-restaurant relationship 
values.  
4.3. Frequency of occurrences of word in 
user-restaurant relationship selection 

We use equation 7 to estimate the user-
item relationship. The user is customer and the 
item is the restaurant. To get weighting tags or 
labels of restaurant, we use frequency as 
weighting term. The weighting approach provide 
information about the frequency of users to 
select or prefer menu tags and to assign weight 
values to each food in the restaurant so that a 
priority tag can be established as calculated list. 
It represented the frequency of occurrence of 
menu or restaurant based of appearance of each 
item on the list of restaurants or lists of menu. 
Such frequency-based weighting tags are also so-
called tokenization as effort of filtering 
headword from the contents of user history.  

 Each selection can have a different 
total term. It is necessary to normalize based on 
the size of the term owned by dividing the initial 
selection to total relationships (Table 5). The 
result is normalized on other lower term that has 
been selected by the system. Table 6 and Table 7 
showed the relationship and the selected 
combination of user and restaurant menus.  

Table 5. Normalized Frequency Of Occurrence 

 
Tag  

Frequency of occurrences Sum of 
does 
contain 
tag 

ViaVi
a 

Jejamur
an 

Mediterr
anea 

Milas Nanamia Verand
ah 

R and 
Bear 

The 
Sawah 

Pizzeria Canting 

Italian 0.100  0.250  0.125  0.135    4 
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 Source: analysis result  
 

Table 6. Frequency-Based Selection Result And Their Weighting Term 
Tag  Clusterin

g 
frequenc
y  

Frequency in single restaurant  
ViaVia Jejamura

n 
Mediterra
nea 

Milas Nanamia Veranda
h 

R and 
Bear 

The 
Sawah 

Pizzeria Canting 

Italian 0.100 0.135  0.256  0.125  0.135    
French 0.100 0.150  0.125        
Pizza 0.184 0.132  0.125        
Vegetari
an 
Friendly 

0.184 0.176 0.186 0.135 0.122 0.125  0.122 0.235 0.125 0.211 

Vegan 
Options 

0.184 0.160 0.198  0.133 0.125  0.120 0.162 0.171  

Gluten 
Free 
Options 

0.200 0.200   0.133       

Asian 0.100      0.125     
Indonesi
an 

0.100  0.184  0.133  0.122  0.122  0.142 

Halal 0.100  0.176   0.125 0.122 0.154 0.164 0.145 0.221 
Mediterr
anean 

0.125   0.152  0.250    0.125  

Europea
n 

0.250   0.164   0.136 0.120   0.156 

Cafe 0.125       0.120    
Bar 0.250          0.124 
America
n 

0.125       0.125   0.154 

Asian 0.125  0.154  0.222   0.250 0.154  0.156 
Fusion 0.250           

Source: analysis result  
 

 
 
 
 

Table 7. Frequent Displayed Result With Weight C 

Keyw
ord  

Frequ
ency 
of 
single 

Clust
ering 
frequ
ency  

Frequency*
clustering 
frequency  

restau
rant  

Veget
arian 
Frien
dly 

0.5 1.568 0.874 

Source: analysis result 
 

French 0.100  0.135        2 
Pizza 0.100  0.135        2 
Vegetarian 
Friendly 

0.100 0.184 0.135 0.100 0.125  0.100 0.135 0.120 0.100 8 

Vegan 
Options 

0.100 0.184  0.100 0.125  0.120 0.135 0.120  7 

Gluten 
Free 
Options 

0.100   0.100       2 

Asian      0.100     1 
Indonesian  0.184  0.100  0.100  0.135  0.100 5 
Halal  0.184   0.125 0.100 0.120 0.135 0.120 0.100 7 
Mediterran
ean 

  0.135  0.250    0.125  3 

European   0.135   0.100 0.120   0.100 4 
Cafe       0.120    1 
Bar          0.100 1 
American       0.120   0.100 2 
Asian  0.184  0.100   0.120 0.185  0.100  
Fusion            
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The next process is comparing the 
weights of search query (in this case symbolized 
by 'q') by the term weight of each relationship. 
Assume that search query is "Vegetarian 
Restaurant". When this query is entered, the 
system will perform the stemming process and 
break it down into "vegetarian" and "restaurant" 
terms. Finally, the term frequency and its weight 
are calculated. 

It gives query result for "restaurant" and 
so does the "vegetarian" compared to the term 
number of two groups after normalization. For 
example, if the query result for vegetarian and 
restaurant is displayed once, it gives value 0.5 
for each group. Therefore, the average term 
frequency for combination of vegetarian and 
restaurant after being normalized is 05.  

The set of terms of each group is 
modeled into similarity vector. It aims to see the 
similarity of query result between vegetarian 
menu vector and a restaurant reference vector 
represented by their individual search query. The 
similarity of total two vectors is calculated with 
cosine similarity equation. 

Cosine Similarity value provide 
information about how well query search result 
performance. The equation helps us to determine 
both length of vector and also the weight value. 
The length of the vector explained the direction 
of relationship between the user and item. The 
weight value or dot product simply represent the 
term that matches the search query result. 

In table 8 there are five restaurants that 
have a value, while the five other restaurants are 
worth 0. This means the rest is not displayed as a 
result of a query. The query result for the 
restaurant without term keyword “vegetarian’ are 
ViaVia (d1), Jejamuran (d2), Milas (d4), 
Nanamia (d5), Roaster and Bear (d7), The Rice 
(d8), Pizzeria (d9), and Canting (d10). When the 
term keyword “vegetarian” is included, it 
provide Demi Lovato (d6) since the system 
carries a search which tailored to user behavior 
similar with the results that will be displayed 
previously by ViaVia. 

The cosine similarity estimation can be 
repeated by taking the highest score as the 
interaction benchmark. The system can be 

configured to determine the further 
recommended restaurant which similar with 
ViaVia and Jejamuran. If ViaVia gets the highest 
result on the previous cosine similarity 
calculation, then the next iteration is enough 
ViaVia is the reference. However, because in the 
example Jejamuran get the highest value, then 
system take it as reference in finding other 
prioritized restaurant. 
 

Table 8. Table Calculation Of Cosine Similarity 

Vector space 
model-cosine 
similarity 

Vector  Cosine 
similarity 

Keyword (q)   
ViaVia (d1) q, d1 0.346 

Jejamuran (d2) q, d2 0.326 
Mediterranea(d3) q, d3 0.000 

Milas (d4) q, d4 0.176 
Nanamia Pizzeria 

Mozes (d5) 
q, d5 0.293 

Verandah Alfresco 
(d6) 

q, d6 0.000 

Roaster and Bear 
(d7) 

q, d7 0.174 

The Sawah (d8) q, d8 0.251 
Nanamia Pizzeria 
Tirtodipuran (d9) 

q, d9 0.295 

Canting Restaurant 
(d10) 

q, d10 0.286 

 
We used equation 2, the Cosine-based 

similarity where two users are considered as two 
vectors in the dimension m user space. The 
equation calculate cosine angle between two 
vectors. For restaurant list, the similarity 
between restaurant i and j will form new 
direction and distance between the groups. The 
search query for the next iteration is not an input 
from the user, but from the attributes owned by 
ViaVia and Jejamuran. The attributes can be 
compared with search query in the displayed 
restaurants list. The iteration is repeated with the 
sequence process as before. However, the result 
will be different if the cosine similarity equation 
meets various attributes from highest to low.  
 
5. CONCLUSION  

We have reviewed robust algorithms 
and their limitation in the implementation of 
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recommender systems. Latent Semantic Analysis 
is evaluated with example in this paper. The 
LSA algorithm and cosine similarity approach 
and their modification can identify product-
related features. The item features and search 
keywords can impact on the search query result 
based of weighting and frequency 
summarization. 

In our example, the restaurant 
recommendation system can provide query 
search results to display vegetarian menu 
restaurants that are often heard by users. The 
system provides recommendation based of 
Latent Semantic Analysis method. The 
classification of attributes which applied to 
restaurant needs search query to display the 
items.  
By calculating the user behavior as represented 
by their inputted search keywords, the system 
can display the restaurant recommendations after 
measuring the user keywords to predict user 
preferences and their keyword similarity. The 
use of LSA can be combined with user rating 
participation to include their customized 
attributes which so-called hybrid method. 
Further work is needed to find more advantage 
including new approach to resolve sparsity of 
data and scalability issues which not included in 
this paper.  
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