
Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3652

FORMALIZATION OF VERSIONING RULES FOR XML
SCHEMA USING UML CLASS DIAGRAM

1HANANNI AMAN, 2ROSZIATI IBRAHIM
1Department of Software Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), MALAYSIA
2Department of Software Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), MALAYSIA

E-mail: 1hanani@uthm.edu.my, 2rosziati@uthm.edu.my

ABSTRACT

In agile software development methodology, XML schema is used for developing the web applications. The
major problem in using the agile software development methodology is capturing the software requirements
especially when versioning occurred in XML Schema. This paper presents how to capture software
requirements for document changes when versioning occurred in XML Schema. UML Class Diagram is
used in addressing the versioning rules. Once the versioning rules are captured, these rules are then being
formalized for better understanding of the versioning problem occurred in XML Schema.

Keywords: XML Schema, Versioning Rules, Traceability, UML Class Diagram, Document Changes

1. INTRODUCTION

XML is very popular in web community in
sharing and transferring data between applications.
The document and schema are multiplying and it
needs to be maintained. Management of XML
schema and document is very tedious and time
consuming because of the XML nature itself. XML
commercial tools offer editing XML document and
schemas, specify validation in the document,
organize and manage related files. Some tools assist
with nice graphical interface, highlight validation
error and view xml in tree structure. If any editing
or updating of the file, every tool will keep the final
editing as a file. However, any changes in XML
schema or document cannot be traced after the file
is saved.

Keeping changes is one of the important
criteria in managing a file. The idea of keeping the
changes in version concept arises when XML needs
to keep track of the changes. This is because any
changes occurred may change any requirements for
the designer and end user. Hence the software
developed based on it will have a different version.
Software versioning is a process used in agile
development to give unique names or numbers
when changes occur in state of the software. The
number assigned to the version is in increasing
order within a given version number category based
on major or minor new developments. Underlying
of versioning process is how to handle any changes

occurred. Hence this paper addresses the issues of
versioning rules. The rules for versioning are
captured first. Class diagram is used to capture the
changes occurred in XML Schema. Then the
versioning rules are being formalized. The formal
method is used for the formalization of versioning
rules. The formal rules are then being tested using
the case study to see the effectiveness of the
versioning rules for the traceability link between
the two class diagrams.

The rest of the paper is organized as
follows: Section 2 is the related work regarding the
research areas and Section 3 is the preliminaries
discussion regarding the XML Schema and UML
Class Diagram. Section 4 presents the versioning
rules for the XML Schema and Section 5 discusses
the formalization of the versioning rules. The case
study is presented in Section 6 and finally, Section
7 is the conclusion of this paper.

2. RELATED WORK

 Keeping changes in XML starts when Tan
& Goh [1] suggest a need to highlight changes and
differences between a preceding version or a
variant and the original standard of XML. The
authors also emphasize when new functionalities
establish, preceding XML need to be kept for
maintenance purpose. It is about compatibility issue
with XML based standard. As the XML standard
evolves, Cavalieri et al. [2] focus on updated

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3653

schema effect when a XML standard, XQuery is
applied using a language called eXupdate [3].
Finally, keeping primitive changes of XML files is
proposed by Brahmia et al. [4]. Their paper focused
on Part 0 in W3C recommendation group.
However, every change is based on the XML
schema only. Any changes effect on conceptual
level is not shown in previous research. Other
researchers [5, 6] have seen the bigger picture of
evolving and managing XML schema using class
diagram change requirements. The change is on the
conceptual model and makes the XML schema
evolves and changes. However, forward direction
does not show the reality of XML changes impact
on conceptual models.
 In software engineering area, more
researchers focus on forward engineering of XML
which is generating XML document from
conceptual model [7, 8, 9, 10, 11, 12 and 13].
Forward engineering is a method to generate XML
schema from conceptual model. However, research
on generating conceptual model from XML
application gain less focus. The reverse engineering
for XML is also important as forward engineering
because it is an alternative way to assist Agile
developer generates conceptual models for
communication and documentation purposes.
 In software development process, XML
schema modification needs to be maintained
consistently by using the documentation method.
The XML schema modification involves textual
changes caused by the changes issue such as
schema style changes [14], requirement changes
[12, 7, 14, 15], adaptation to new XML technology
[2], and integration with other XML schema [4].
The changes impact needs to be understood by end
users, designers and software developers.
Therefore, this paper addresses the issue of changes
in XML documents by formalizing some of the
important rules for document versioning (that is
when changes occurred). To see the effectiveness of
the versioning rules, a case study is also presented
in this paper for evaluation of the versioning rules.

3. PRELIMINARIES

This section describes two important
factors in formalizing the versioning rules: XML
Schema and UML Class Diagram. The XML
Schema is used to address the versioning rules in
web applications. UML Class Diagram is used for
traceability link to detect document changes for
XML Schema. XML Schema and Class Diagram
are used to formalize the versioning rules.
Versioning occurs when there are changes in a

XML schema based from the previous XML
schema.

2.1 XML Schema

XML Schema is used for developing web
applications. It has rigorous specification of XML
document. XML schema consists of rules that
define the constraint of each element in the XML
document which provide a mean for defining the
structure, content and semantics of XML
documents in more detail [16]. If any element and
attributes in XML document satisfy the constraint
in the schema, a valid report will be generated.

XML schema consists of 5 components
[16, 17]. They are type definition, element
declaration, attribute declaration, attribute group
definition and model group definition. Table 1
gives the definitions of XML schema components.

Table 1: XML Components description

XML Schema
components

Definitions

Type
definitions

To constraint the structure of
element and attribute used in
XML document.
Consist of simple type definition
and complex type definition.

Element
declaration

An association of a name with a
type definition, either simple or
complex.
It also has an attributes within.
Each element may occur more
than once in the schema.

Attribute
declaration

An association between a name
and a simple type definition,
together with occurrence
information.

Attribute group
definitions

A group of attribute declaration
with a name of the group. This
group is embedded in element
together in complex type
definition or element or with
attribute in an element.

Model group
definition

An association between a name
and a model group, enabling re-
use of the same set in several
complex type definitions

An XML schema component is a primary
component in setting element in XML document. In
addition of that, elements need to be relating to
other XML schema components. Figure 1 shows
the example of XML schema.

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3654

Person

- lastname
- firstname

+ SetName
+ GetName

FocusGroup

- staffid

- EvaluateForm

PostGraduateStudent

- matrixno

PgForm

- detailinfo

+ GetForm
+ Submit
+ View
+ Evaluate

- FillUpForm

<?xml version="1.0" encoding="utf-8"?>
<schemaxmlns:xs="http://www.w3.org/2001/XM
LSchema">
 <element name="book">
 <complexType>
 <sequence>
 <element name="title"
type="xs:string"/>
 <element name="author"
type="xs:string"/>
 <element name="character"
minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="name"
type="xs:string"/>
 <element name="friend-of"
type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <element name="since"
type="xs:date"/>
 <element
name="qualification" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="isbn"
type="xs:string"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

Figure 1: Example Of XML Schema

Based from Figure 1, the 5 components in XML
Schema are used using the tagging. The XML
Schema shows that one element named <book>
contains attribute named <isbn> with string type.
Other element named <title>, <author>, and
<character> is nested in the <book> element. Each
<title> and <author> element has string type. While
<character> element has a set of element named
<name>, <friend-of>, <since> and <qualification>
nested with it. <name>, <friend-of> and
<qualification> element also use string type.
Meanwhile, <since> element uses date type.
<character> element may occur within <book>
element either no element or maximum
unbounded. Occurrences for other element that
nested to <book> element, which is <title> and
<author> occurs once only. <friend-of> element
occur either no element or maximum unbounded
relate to <character> element. Based on this
example, XML Schema can be understood easily.
However using this format of the XML Schema

presentation is difficult for the user to review the
contents of the application.

2.2 UML Class Diagram

UML (Unified Modelling Language) [18] Class
Diagram is used during design phase of software
development life cycle (SDLC). Under SDLC four
main phases are used when developing any
software or system. They are analysis, design,
implementation and testing. During design phase,
software specification will be developed using
UML. UML specified 12 diagrams which include
use-case diagram, class diagram and others.
 The class diagram is the main static
analysis diagram [18]. It shows the static structure
of the model for the classes and their relationships.
They are connected to each other as a graph. Each
class has its own internal structures and its
relationships with other classes. Figure 2 shows an
example of a class diagram for Monitoring System
of Postgraduate Students.

Figure 2: A Class Diagram For Monitoring System Of

Postgraduate Student

Based from Figure 2, classes FocusGroup and
PostGraduateStudent are subclasses from class
Person. Class PgForm has 4 functions (GetForm,
Submit, View and Evaluate). Further details
regarding subclasses and mapping of classes and
subclasses functions with use cases can be found in
[19].

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3655

Traceability
Link

4. THE VERSIONING RULES (VR)

As stated earlier in this paper, changes
occurred in XML documents need to be understood
and documented. The issue of changes in XML
documents is addressed by using the versioning of
the XML documents. If XML document changes, it
implies that the versioning occurs. Therefore, to
address the versioning issue, two class diagrams are
used from XML schemas for versioning purposes.
 The earlier XML Schema is used to
generate a class diagram called preceding class
diagram. When maintenance process occurs, new
XML schema is introduced. This new XML schema
has been modified because of the number of XML
schema components have been changes. The
changes are visible in syntax. In order to capture
the semantic changes of the new schema, the new
schema need to be transformed into class diagram.
The same transformation is used to generate the
preceding class diagram. The modified preceding
class diagram is now called a version class diagram.
The version class diagram needs to be compared
with preceding class diagram to capture the
additional, removal and rename of class diagram
components. Figure 3 shows the scenario of this.

Figure 3: Traceability Link Between Two Class
Diagrams

 Based from Figure 3, a single change of
XML schema impacts the specification of the
requirement document too. The manual update of
requirement changes is tedious and laborious.
Therefore, when XML schema’s new version is
introduced, the requirement document needs to be
updated. When requirement changed, number of
classes in version class also changed. In this
research, a class is changed when number of
version classes is more than classes in preceding
class diagram. Figure 4 shows the versioning
occurred between two XML Schemas. Therefore, in
order to detect the changes between two class
diagrams, few steps are performed for traceability
factor. Table 2 shows the three steps performed
based from traceability link in Figure 4.

Table 2: Changes Detection In Class Diagrams

Changes Details
Step 1 Each class of both class diagrams has

been compared - level by level of the
diagrams.

Step 2 Each Added classes and Removed
classes are compared.

Step 3 Classes which have the same attribute
and same relationship are tested with
string similarity. High result of similarity
tests the changes of new versions of
class diagram.

Based from Table 2, the modification is

generated by three (3) atomic operations classified
which are additional, removal and rename
operations of XML basic components (element,
attribute, type definition, model group and attribute
group). An additional change involves in adding
any element or attribute in the schema whereas a
removal change involves any removing element of
XML components. Beside of that, rename operation
occurs when an element’s name is given new name
and maintain the set of attributes and relationship.
A rename operation involves only one (1) class that
has been renamed. Combination operation involves
combinations of these three (3) atomic operations.
These combinations will generate new semantic
changes such as migration of element to another
element where involves removal and additional at
different level of class diagram. But in this
research, a new kind of semantic changes is
proposed. The proposed combination changes occur
when a removed element from preceding class
diagram is added by two (2) new elements which
maintain the same set of attribute and relationship
as the removal element. This link is called as
traceability link.

In order to show the new combination of
atomic operations, the Versioning Rules (VR) is
introduced. It involves additional, removal, rename
and combination of these operations on element.
Tracing changes operations occur on class diagram
as class diagram represents semantic changes of
XML schema versioning.

Versioning Rule 1:
There are two (2) class diagrams that need to be
transformed from XML schemas for versioning.
The new version is a subset of preceding schemas.
The newer versions has maintained some of classes,
attributes, relationship from the preceding class
diagram, moreover new classes are added and some
classes are removed.

The preceding
class diagram

The version
class diagram

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3656

Versioning Rule 2:
The traceability factor incurred when:

 A class has been added in new version
class diagram.

 A class has been removed in new version
class diagram.

 ONE (1) class that has been removed from
preceding schema then has been added
with more than TWO (2) new similar
classes name.

 The new added classes must have the same
attributes set and association source as
preceding removed class.

The two versioning rules are important to capture
the changes occurred in XML Schema. Note that
the document changes in XML Schema are
captured thru class diagrams. These versioning
rules are then being formalized and described in the
next Section.

5. FORMALIZATION OF VERSIONING

RULES (VR)

In order to formalize the versioning rules,
we need formal definitions of class diagram and
transformation rules. These formal definitions are
already presented in our previous paper in [20]. For
consistency, we presented part of it here in order to
establish the versioning rules formula.

Rule 1: Class diagram consists of:

 Class
 Relationship

where
 Class is consists of a set of attributes and each

attribute may have multiplicity.
 Relationship is a connection between classes.

Each association may have multiplicity. There
are three (3) kinds of relationships which are
association, aggregation and dependency.

o Association is a connection between
classes that relates.

o Aggregation is a connection between
classes where a class has to be a part
of other class.

o Dependency is a connection between
classes where a class are dependent on
other class.

The formal definition of class diagram is as follow:

Definition 1: Let “cd” be a class diagram. “cd”
consists of a finite set of classes and a finite set of
relationships. Thus, class diagram can be defined
as

 ; (1)
where

The class has a set of attribute and attribute’s type.
Each attribute has a multiplicity value to show the
number of occurrences appear in each class. The
class definition is illustrated in Definition 2.

Definition 2: Let “cls be classes consist in
a class diagram. The class consists of a finite set of
attribute and relationship of a class. Thus class can
be defined as

 (2)

where
 is a set of attributes of class
 and
 denoted to type of attribute, of a class,
 with a multiplicity value
 where “multiplicity” be a multiplicity of classes
 or attribute.

Multiplicity consists of value to show the number of
minimum and maximum occurrences of association
class or attribute in each class. Thus multiplicity
can be defined as

Classes relationship is defined as “assoc” where
each “assoc” may has one of these values, which
are association, aggregation and dependency as
stated in Definition 3.

Definition 3: Let “assoc” be an association
between classes. Thus it can be defined as unary
relationship of class.

where
 (3)
where

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3657

Definition 4. Let “cdv” be a version of preceding
class diagram, “cd”. “cdv” has more number of
classes than classes of preceding class diagram,
“cd”. Thus, cdv can be defined as

 (4)
where

Based on Definition 4, versioning rules are defined.
Versioning rules define a traceability factor by
comparing two class diagrams. Changes will be
recognized as added when there are new class in
version class diagram and removed class when
there are missing class in version class diagram.
The versioning rules are shown in VR1, VR2 and
VR3.

VR1. Let “ ” be an added factor of class
diagrams where a new class, “ ” is found in
version class diagram, “cdv” as compare with
class diagram, “cd”. Thus

 (5)

VR2. Let “ ” be a removed factor of class
diagrams where class, “ ” is missing in version
class diagram, “cdv” as compare with class
diagram, “cd”. Thus

 (6)

The removed class will be the target of next
changes detection. VR1 is used for the rule where
the change detection steps are listing the added
classes on new version of class diagram and VR2 is
used when the listing are removed from the
removed classes from preceding class diagram,
where two (2) added classes must relate with one
(1) removed class. The related components between
class diagrams are classes and versioning criteria
are assoc and attribute which are presented in VR3.

VR3. Let “ ” be a traceability factor of
class diagrams where a classes,“ ” and “ ”
of version class diagram, “cdv” is evolved from a
class, “ ” of preceding class diagram, “cd” if
“ ” and “ ” of version class
diagram, “cdv” has the same “ ”of
preceding class diagram, “cd” and “ ”
and “ ” of version class diagram,”cdv”
is the same with “ ” from preceding
class diagram,”cd”. Thus,

(7)

where

Based from the versioning rules (VR1, VR2 and
VR3), any changes detected in version class
diagram from preceding class diagram will be
marked and traceability factor will become 1 (one).
If there are no changes, then the traceability will be
0 (zero).

Under SDLC, the next step after formal
specification is implementation phase. We
implement the tool based on the formal rules for
these versioning rules and transformation rules
[20]. The rules are embedded within the tool to
make the detection of changes easier. The details of
the tool named XML-DocTracker can be found in
[21]. The purpose of implementing the SML-
DocTracker is to being able to generate Software
Requirements Specification (SRS) automatically
from the XML Schema.

6. A CASE STUDY

In this section a case study is presented to
show how the versioning rules are being used for
the traceability link and to generate software
requirements for document changes. The
transformation rules are used from [22].
 Case study has been taken from Liquid
Technology web entitled Electronic Business using
eXtensible Markup Language (ebXml) [23]. This
case study based on ebXml schema involved of all
the XML construct definition (element, attribute,
attributeGroup, complexType, model group and
simpleType) titled cppa.xsd for version 1 and cpp-

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3658

cpa-2_0.xsd for version 2 [23]. ebXML is an open
specification of XML based infrastructure which
provide global use of electronic business
information for an interoperable, secure and
consistent manner sponsored by Organization for
the Advancement of Structured Information
Standards (OASIS) and UN/CEFACT.
UN/CEFACT is an organization that makes
International Electronic Data Interchange
(EDI) standards for electronic trade documents
in XML format [23].
 Table 3 shows the number of components
used between two (2) versions of ebXML schema.
This design allows reuse of both elements and
types. The design benefits the high reuse of class.
However, this kind of schema is difficult to read
and understand. The difficulties make this case
study suitable to address the versioning problems.

Table 3: Ebxml Schema Component Analysis

XML schema
component

Cppa schema Cpp-cpa-2.0
schema

Global Element 40 55
Global Attribute 4 4
Local Element 10 8
Global Complex
Type

2 5

Global Simple
Type

6 9

Group Model 0 0
Attribute Group 2 2
Element with Ref 43 53

From Table 3, the XML schemas are used to
generate the class diagrams. Table 4 shows the
analysis for the two class diagrams from the earlier
XML Schema version (Cppa) and the later version
(Cpp-cpa- 2.0).

Table 4: Ebxml Class Diagram Analysis
XML Schema Cppa Cpp-cpa-2.0
Class 48 62
Association 4 27
Aggregation 43 75
Dependency 0 0

Table 4 shows the number of components used
between two (2) versions of ebXML schema. This
design allows reuse of both elements and types. The
design benefits the high reuse of class.

We then used this case study to evaluate the XML-
DocTracker [21] for its effectiveness in tracking the
changes. The evaluation of XML-DocTracker is
compared with Necasky in [11]. XML Schema
components of both schemas are transformed based
on reverse transformation rules [22] using
XML_DocTracker tool [21]. As for evaluation, this
reverse method is evaluated and compared with
[11]. The evaluation results are shown in Table 5.

Table 5: Comparison Of Evaluation Of Two Methods
 XML_DocTracker

[21]
Necasky
[11]

XML
Schema

Cppa

Cpp-cpa-
2.0

Cppa

Cpp-
cpa-
2.0

Class 48 62 45 53
Association 4 27 0 0
Aggregation 43 75 n/a n/a
Dependency 0 0 n/a n/a

Based from Table 5, it is shown that XML-
DocTracker is able to transform more classes with
aggregation relationship. This more specific
relationship is then being used for generating the
new Software Requirements Specification [21].
Note that in earlier research done by Necasky [11],
the limitations occurred for aggregation and
dependency. They do not address aggregation and
dependency issues. Our research added these two
issues in tracking the changes in XML Schema.

7. CONCLUSION AND FUTURE WORK

 In this paper, we have presented a
formalization of versioning rules for XML Schema
using class diagram. The versioning rules are used
for traceability factors in order to detect document
changes in XML Schema. The changes of XML
documents are not easy to keep track manually.
Therefore, giving the versioning rules for the XML
document changes help to solve the document
changes issue. However, since the informal rules of
versioning rules do not have formal definition, we
formalized the rules for better understanding.
 The tool named XML-DocTracker has
been implemented based on the transformation
rules and versioning rules in order to regenerate the
documents (Software Requirements Specification)
from the XML Schema.
 For future research, the theorem prover
can be used to test the correctness of the formalized
rules. Operational semantics can also be used for
the proof theory of the formalized rules.

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3659

ACKNOWLEDGEMENTS
The authors would like to thanks Malaysian
Ministry of Higher Education (MoHE) for
supporting this research under the Fundamental
Research Grant Schema (FRGS).

REFRENCES:

[1] Tan, M., & Goh, A. (2004). Keeping Pace

with Evolving XML-Based Specifications,
280–288.

[2] Cavalieri, F., Guerrini, G., & Mesiti, M.
(2011). Updates on XML documents and
schemas. 2011 IEEE 27th International
Conference on Data Engineering Workshops,
308–311. doi:10.1109/ICDEW.2011.5767672

[3] Cavalieri, F. (2010). E X up: An Engine for
the Evolution of XML Schemas and
Associated Documents. In EDBT Workshop
Proceedings.

[4] Brahmia, Z., Grandi, F., Oliboni, B., &
Bouaziz, R. (2012). Versioning of
Conventional Schema in the tXSchema
Framework. 2012 Eighth International
Conference on Signal Image Technology and
Internet Based Systems, 510–518.
doi:10.1109/SITIS.2012.153

[5] Klímek, J., Maly, J., Mlynkova, I., &
Necasky, M. (2012). Evolution and change
management of XML based system. Journal
of Systems and Software, 85, 683–707.
doi:10.1016/j.jss.2011.09.038

[6] Polák, M., Necasky, M., & Holubová, I.
(2013). DaemonX: Design , Adaptation ,
Evolution , and Management of Native XML.
In IIWAS ’13: Proceedings of International
Conference on Information Integration and
Web-based Applications & Services (p. 484).
doi:10.1145/2539150.2539159

[7] Domínguez, E., Rubio, Á. L., Lloret, J., Pérez,
B., & Rodrı, Á. (2011). Evolution of XML
schemas and documents from stereotyped
UML class models : A traceable approach.
Information and Software Technology, 53,
34–50. doi:10.1016/j.infsof.2010.08.001

[8] Fong, J., Cheung, S. K., & Shiu, H. (2008).
The XML Tree Model – toward an XML
conceptual schema reversed from XML
Schema Definition. Data & Knowledge
Engineering, 64(3), 624–661.
doi:10.1016/j.datak.2007.10.004

[9] Franceschet, M., Gubiani, D., & Montanari,
A. (2013). A Graph-Theoretic Approach to
Map Conceptual Designs to XML Schemas.
ACM Transactions on Database Systems
(TODS), 38(1), 6.

[10] Haitao, C. (2010). A Survey to Conceptual
Modeling for XML. Proceedings 2010 3rd
International Conference Science and
Information Technology, 8, 473–477.

[11] Necasky, M. (2009). Reverse Engineering of
XML Schemas to Conceptual Diagrams. In
Proceedings 6th Asia PAcific Conference on
Conceptual Modelling (Vol. 96, pp. 117–
128).

[12] Al-Kamha, R. (2007). CONCEPTUAL XML
FOR SYSTEMS ANALYSIS. Brigham
Young University.

[13] Weidong, Y., G. Ning, G. and Baile, S.
(2006). "Reverse Engineering XML,"
Computer and Computational Sciences, 2006.
IMSCCS '06. First International Multi-
Symposiums on, vol. 2, pp. 447- 454.

[14] Amavi, J., Chabin, J., Ferrari, M. H., &
Pierre, R. (2014). A ToolBox for
Conservative XML Schema Evolution and
Document Adaptation, 299–307.

[15] Malý, J., Necasky, M., & Mlýnková, I.
(2012). Efficient adaptation of XML data
using a conceptual model. Information System
Front. http://doi.org/10.1007/s10796-012-
9375-8.

[16] XML Schema Part 0 : Primer 2nd Edition.
(2004). Retrieved from
http://www.w3.org/TR/2004/REC-
xmlschema-0-20041028/

[17] XML Schema Part 1: Structures 2nd Edition.
(2004). Retrieved from
http://www.w3.org/TR/2004/REC-
xmlschema-1-20041028/

[18] Miller G. (2003). What’s New in UML 2.0, A
Borland White Paper,
http://www.borland.com/

[19] Rosziati Ibrahimi (2009) An introduction to
object-oriented programming with UML using
Borland C++. Penerbit UTHM, Universiti
Tun Hussein Onn Malaysia. ISBN
9789832963776.

[20] Aman, H., Ibrahim, R. (2014). Formalization
of Transformation Rules from XML Schema
to UML Class Diagram. International Journal
of Software Engineering and Its Application,
8(12), 75–90.
doi: 10.14257/ijseia.2014.8.12.07

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3660

[21] Aman, H., Ibrahim, R. (2017). XML-
DocTracker: Generating Software
Requirements Specification (SRS) from XML
Schema. ICISS 2016 - 2016 International
Conference on Information Science and
Security, art. no.7885872, DOI:
10.1109/ICISSEC.2016.7885872

[22] Aman, H., Ibrahim, R. (2015). XML schema
reverse transformation: A case study. Lecture
Notes in Computer Science (including
subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in
Bioinformatics), Part IV 9158, pp. 575-586.
doi: 10.1007/978-3-319-21410-8_44

[23] EbXML Specifications. (2006).,
http://www.ebxml.org/specs/index.htm
(Retrieved June 4, 2013).

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3661

Figure 4: Traceability Link between two class diagrams from two XML Schema when Versioning Occurred

