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ABSTRACT 
 

This article proposes the classification of the search spaces associated with the combinatorial optimization 
problems based on the type of their constituent solutions. The spaces belonging to each identified class are 
accompanied by the corresponding graph models. Against this background, the article introduces the 
original algebra allowing the representation of the search spaces in the unified homogeneous form. The 
proposed algebra consists of a set of transformations given in an analytical form and illustrated by the 
modifications of the graph models constructed for the search spaces. 
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1. INTRODUCTION  
 

Solving the combinatorial optimization problems 
constitutes the keystone of modeling and designing 
the computer-based information systems. For 
example, the problem of the VLSI circuits 
partitioning could be reduced to the problem of 
finding the cuts in hypergraphs [1]. In turn, the 
quality of its solving significantly affects the 
properties of the manufactured devices such as the 
energy consumption, delays, cost of producing, etc. 

Similarly, the construction of the large-scale 
GRID and cloud computing infrastructures is 
inextricably linked with solving the tasks 
scheduling and load balancing problems in order to 
ensure the optimal usage of the available resources 
[2]. Another prime example is associated with 
scheduling packets in the wireless networks 
equipped with the relay nodes, which represents the 
variation of the multiple-choice multi-dimensional 
knapsack problem [3, 4]. 

At the same time, a number of the known 
combinatorial optimization problems formulated in 
the decision form are NP-complete [5, 6]. Due to 
the combinatorial explosion effect, the algorithms 
returning their exact solutions have the exponential 
time complexity, which underlies the inefficiency 
of their application to the large-scale problem 
instances. As a result, the efforts to solve such 
problems are intrinsically linked with the 
development of the metaheuristic algorithms aimed 

to produce the approximate solutions in a 
reasonable time. The fundamental strategy followed 
by such algorithms lies in manipulating by the 
solutions in order to shrink the explored search 
space. Looking into more detail, the search process 
implemented by the metaheuristics is based on 
performing the iterative improvements of the single 
current solution (e.g. simulated annealing, guided 
local search, tabu search) or population of solutions 
(e.g. evolutionary algorithms) [7].  

The implementations of these algorithms are 
extremely sensitive to the representation of the 
solutions comprising the search spaces associated 
with the instances of the problems. However, the 
natural form of solutions encoding is problem-
specific, which sufficiently complicates processing 
and analyzing the corresponding search spaces [8]. 
For example, the solutions of the Boolean 
satisfiability problem could be easily encoded by 
the bit vectors indicating the values taken by the 
variables. On the contrary, the solutions of the 
traveling salesman problem naturally are 
represented by the permutations of the graph’s 
vertices [7, 9]. Notice that the form of solutions 
encoding is particularly acute when designing the 
adaptations of the metaheuristics for the specialized 
computer architectures such as the graphical 
processing units due to the need for managing the 
memory allocation [10].  

Clearly, the sets of the equal-length strings 
defined over the binary alphabet constitute the most 
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canonical way for representing the search spaces. 
However, for a number of problems such encoding 
requires performing the non-trivial transformations 
of the search spaces. Therefore, the objective of this 
article is to propose the algebra for transforming the 
structure of the search spaces to the unified 
homogeneous form. 

 
2. CLASSIFICATION OF THE SEARCH 

SPACES ASSOCIATED WITH THE 
COMBINATORIAL OPTIMIZATION 
PROBLEMS 

 
The primary challenge in achieving the intended 

objective is that the well-known definitions of the 
combinatorial optimization problem [11, 12] are 
formulated without detailing the structure of the 
search spaces. Consequently, due to such 
insensitivity, these definitions could not be used as 
a basis for classifying the search spaces and their 
constituent solutions. This causes the need for 
introducing the new more detailed definition of the 
combinatorial optimization problem, which 
constitutes the first significant contribution of this 
article. 

Definition 1. The combinatorial optimization 
problem is represented by a set of instances given 
in the form of pentuples , , , , ,I P ϕ= Φ Ψ  where 
  denotes the finite (or countably infinite) search 
space associated with the particular instance. This 
space encompasses the combinatorial 
configurations X and is constructed by applying the 
generating combinatorial operator   to the finite 
(or countably infinite) base set { }1,..., .nP p p=  
Moreover, each instance I is equipped with the 
indicator function { }0: ,1ϕ →  taking the value of 
1 for all configurations X ′∈  satisfying the 
constraints of the problem. The optimality of all 
elements X ∈  is reflected by the family 

{ }1,..., mf fΦ =  of the objective functions 
:if → R  defined over the entire configuration 

space   and the collection { }1,..., mextr extrΨ =  of 

the optimization criterions { }min,maxiextr =  for 
all functions .if  

In the context of such formulation, the 
configurations X comprising the search space   
represent all possible solutions of the problem 
instance I. Notice that according to Definition 1, the 
elements of both set P and space   are isolated 
from each other. Obviously, there always exists the 
uncountable infinite set U P⊃  in which any 

element p P∈  could be surrounded by the non-
empty punctured neighborhood ( )N p U⊆  such 

that ( ) .N p P = ∅


 The isolation of all 
configurations X ∈  could be demonstrated in a 
similar manner. This clearly shows that 
Definition 1 does not cover the continuous 
optimization problems. 

Remark that by virtue of introducing the families 
of the functions Φ  and criterions ,Ψ  Definition 1 
is sufficiently flexible to cover the multi-objective 
optimization problems. At the same time, in the 
simplest case of the single-objective problems, the 
families Φ  and Ψ  contain respectively just one 
function f and criterion extr, i.e. 1.m =  As a 
consequence, the instances of such problems could 
be represented in the simplified form 

, , , , .I P f extrϕ=    
Let us denote by ′ ⊆   the set of all feasible 

solutions satisfying the constraints of the problem 
instance I, i.e. ( ) 1.ϕ ′ =  Under such approach, the 
exact solution for the instance I of the single-
objective problem takes the form of the 
configuration 0X ′ ∈ ′  such that the value ( )0f X ′  
constitutes the global minimum or maximum 
(depending on the criterion extr) of the objective 
function  f over the set ′ . Notice that the instance 
of the combinatorial optimization problem might be 
deprived of the feasible solutions in the case of 

.′ = ∅  
The generating combinatorial operator   

ensures filling the configuration space   with the 
structures implementing different forms of the 
relationship between the elements of the base set P 
(such as the combinations, permutations, selections, 
etc.). Accordingly, the instances of the 
combinatorial optimization problems could be 
equipped with the configuration spaces   of 
various types, which substantially differ in 
representing the elements  .X ∈  In spite of the 
huge variety of possible concrete implementations 
of the   operator, we can indicate four 
fundamental classes of the search spaces  . Let us 

introduce the notations ( )i  and ( )iX  for the 
spaces belonging to the i-th class and their 
constituent configurations. Remark that the search 
space ( )i′  composed of the feasible solutions 

( )iX ′  belongs to the same class as the complete 
space ( ) ( ).i i′⊇   
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Looking into detail, the classification proposed in 
this article distinguishes the classes whose 
representatives are: 

1. The spaces (1)  whose elements are 
represented simply by the unordered sets 

{ }(1)
1,..., tX x x P= ⊆  deprived of the 

repeated elements. 
2. The search spaces (2)  composed of the 

multisets that allow the multiple occurrences 
of the constituent elements but are 
indistinguishable from the perspective of their 
order. The solutions contained in such spaces 
have the form of pairs (2) ,UX X θ=  
including of the underlying ordinary set of 
elements UX P⊆  associated with the 
multiplicity function 1: .UXθ ≥→ N  The 
image of any element Up X∈  under the 
function θ  reflects the number of all its 
occurrences in the configuration (2).X  

3. The search spaces (3)  comprised of the 
chains that are sensitive to the order of the 
elements but do not presuppose their 
duplications. In this case, each configuration 
is given by the set UX P⊆  paired with the 

function { }: 1,2,...,U UX Xδ →  reflecting 

the order of elements, i.e. (3) , .UX X δ=  In 

particular, ( )p tδ =  shows that the element 

Up X∈  occupies the t-th position in the 

solution (3).X  
4. The spaces (4)  whose elements are 

represented in the most sophisticated form of 
the “ordered multisets” encapsulating the 
information about the order of the elements 
that could be repeated. In turn, the solutions 
comprising such spaces could be represented 
by quadruples (4) , , ,UX H X θ λ= , where H 
denotes the auxiliary set equipped with the 
function { }: 1,2,...,H Hλ →  specifying the 
order of its elements. On the other hand, the 
set H is constructed from the underlying set 

UX  and function 1: UXθ ≥→ N  in the 
following way: 

( ){ }1,..., .i

i U

p
i i

p X
H p pθ

∈

=


 

For example, the instances of the 0-1 knapsack 
problem are generated from the base sets P 
composed of n items associated with the prescribed 
values of the weight ( )w p  and cost ( )c p . These 
instances are equipped with the configuration 
spaces (1)  that include 2n  unordered sets 

(1)X P⊆  reflecting all possible variants of packing 
the knapsack represented as the combinations of the 
items p P∈  produced by the operator . 
Obviously, such spaces belong to the first class 
according to the proposed classification. The 
limitation of the maximum load capacity of the 
packaged knapsack Q is taken into account by the 
function ϕ  that outputs the value of 1 only for the 

configurations (1)X ′  satisfying the following 
condition: 

( )
(1)

.
p X

w p Q
′∈

≤∑  

In turn, the pursuit of packing the knapsack with 
the most valuable items leads to introducing the 
criterion maxextr =  and specifying the next 
objective function: 

( ) ( )
(1)

(1) .
p X

f X c p
′∈

′ = ∑  

For contrast, let us consider the modified version 
of this problem that allows adding the multiple 
copies of any item to the knapsack. Its instances are 
equipped with the search spaces (2)  of the second 

class, while their constituent configurations (2)X  
are the multisets representing the combinations of 
the elements p P∈  with repetitions. 

It is noteworthy that some combinatorial 
optimization problems exhibit several natural 
schemes of generating the instances equipped with 
the search spaces of different classes. A prime 
example is the traveling salesman problem for the 
graph ( ),G V E=  whose instances could be 

associated with the third class space (3)  

composed of the configurations (3)X  reflecting the 
permutations of the vertex set V that serves as the 
base set. However, this problem could be 
characterized by the alternative set of instances 
having the first class spaces (1)  comprising the 
V -combinations of the edges .e E∈  In this case, 
the base set is represented by the collection of 
edges E.  

Finally, let us take a look at the modification of 
the traveling salesman problem allowing the 
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multiple visits of each node .v V∈  The instances of 
such problem could be equipped with the fourth 
class spaces (4)  whose elements (4)X  represent 
the permutations with repetitions of the set V. The 
alternative way involves the formation of the 
instances accompanied by the second class spaces 

(2)  including the combinations with repetitions of 
the edges .e E∈  These examples clearly insinuate 
the possibility of transforming the search spaces, 
which is discussed more fully in the remainder of 
this article. 

 
3. REPRESENTATION OF THE SEARCH 

SPACES BY THE GRAPH STRUCTURES 
 
Since according to Definition 1 all solutions are 

constructed from the elements of the base set, the 
structural organization of the search space   could 
be described in the form of the undirected bipartite 
graph ( ) ( ), , .P X PXS V V E=  The vertices of its 

first part P
Pv V∈  are in line with the elements of 

the base set P, while the nodes of the second part 
X

Xv V∈  embody the configurations X ∈ . 
Notice that the forbidden solutions belonging to 

′   are ignored in the structure of the graphs 

( )S  , which ensures considering the problem 

constraints. Moreover, each vertex X
Xv V∈  is 

equipped with m weight coefficients reflecting the 
values of the weight functions { }1,..., mf f  for the 
corresponding configuration .X  In turn, the 
collection (set or multiset depending on the class of 
the modeled space  ) PXE  contains the edges 
connecting the nodes that belong to the different 
parts of the graph ( ).S   In particular, each edge 

( ),P X
k j PXv v E∈  reflects the inclusion of the base 

set element kp  in the configuration .jX  
Taking into account the classification of the 

configuration spaces proposed in the previous 
section, we should emphasize that the type of the 
graph ( )S   significantly depends on the class of 
both spaces   and ′ . In particular, the first class 

spaces (1)  are represented by the simple (i.e. 

deprived of the parallel edges) graphs ( )(1) .S   On 

the contrary, the search spaces (2)  of the second 
class are described in the form of the multigraphs 

( )(2) .S   Their multisets PXE  include the parallel 

edges that are needed for reflecting the repeated 
entries of the base set elements in the 
configurations. For the third class spaces (3) , the 

graphs ( )(3)S   are simple but additionally 

equipped with the weight function defined over the 
set of edges PXE . The value of this function for 

each edge ( ),P X
k jv v  reflects the position of the base 

set element kp  in the solution (3)
jX  and equals 

( ).kpδ   The fourth class spaces (4)  constitute 
the most complicated case for representing and are 

reflected by the multigraphs ( )(4)S   with the 

weight function defined over the multisets of edges 
.PXE  

 
4. OPERATIONS FOR UNIFICATION AND 

HOMOGENIZATION OF THE SEARCH 
SPACES STRUCTURE 

 
In summing up the previous section, the search 

spaces of the first class are the most convenient for 
the analysis and representation in terms of the 
graph structures. This underlines the desirability of 
converting the spaces (2) , (3) , and (4)  into the 
equivalent first class spaces. 

Definition 2. The operation of the search space 
unification involves representing the problem 

instances ( ) , , , ,iI P ϕ= Φ Ψ  for which 

{ }2,3,4i∈  in the new form 
(1) , , , , .I P ϕ∗ ∗ ∗ ∗ ∗= Φ Ψ  Accordingly, all search 

spaces belonging to the first class are referred as 
having the unified structure. 

This operation could be reduced to implementing 

the transformations ,P X
i i   such that 

( )P
i PP ∗=  and ( )( ) (1).X i

i X X ∗=  Here the 

transformation P
i  ensures translating the base set, 

while X
i  converts all possible configurations.  

Let us demonstrate that the specification of the 
transformations P

i  and X
i  is sufficient for 

constructing all components comprising the tuple of 
the resulting instance I∗ . In particular, the space 
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(1)∗  is obtained simply by substituting all 

configurations ( ) ( )i iX ∈  with the corresponding 

outputs ( )( )X i
i X . The family of criterions Ψ  

remains unchanged under the unification, while the 
functions f ∗ ∗∈Φ  and ϕ∗  are defined on the new 

domain (1)∗ . Let us represent the function ϕ  by 

the set of pairs ( )( )( ) ( ),i iX Xϕ . Under this 

representation, the function ϕ∗  could be 
constructed by replacing these pairs with the 

modified ones ( ) ( )( )( ) ( ),X i i
i X Xϕ . Moreover, 

the objective functions f ∗ ∗∈Φ  could be formed in 
the similar manner. 

Obviously, the unification does not affect the 

cardinality of the search space, i.e. ( ) (1)i ∗=  . 

Notice that the transformations P
i  and X

i  are 
applied only to the base sets and configurations of 
problem instances equipped with the search spaces 
belonging to the i-th class. 

The transformation 2
P  translates the initial base 

set P into the following one: 

( )
21

2
1

,..., ,i
n

mP
i i

i
P p p

=

 =  
 


  

where n denotes the cardinality of the set P, while 
2
im  is the maximum value of ( )ipθ  among all 

configurations )(2) (2 .X ∈  Notice that the set 

( )2
P P  holds ( )2

1 1n
ii m

=
−∑  more elements than 

the initial set P. In turn, the transformation 2
X  

ensures representing each concrete configuration 
(2) ,UX X θ=  in the next form: 

( ) ( ){ }(2) 1
2 ,..., .i

i U

pX
i i

p X
X p pθ

∈

=


  

In simple terms, any element ( )2
k P
ip P∈  

corresponds to the k-th copy of the element ip P∈  

appearing in the solutions )(2) (2 .X ∈  Fig. 1a 
shows the simplified example of the second class 
search space (2)  represented by the multigraph 

structure ( )(2) .S   In this case, the base set 

includes the elements 1,p  2 ,p  and 3p , while the 

space (2)  encompasses two solutions (2)
1X  and 

(2)
2X . For example, the configuration (2)

1X  is 
composed of the element 2p  and three copies of 
the element 1.p  As is evident from Fig. 1a, the 
existence of n copies of the base set element in one 
configuration is reflected in the corresponding 
multigraph by the “dipole” structure composed of n 
parallel edges.  

The result of performing the unification of this 
space is presented in Fig. 1b. Notice that the 

vertices ,
P
i kv
∗

 correspond to the elements k
ip  of the 

base set ( )2 .P P  The representation of all copies 
of the elements ip P∈  by the separate elements 

(distinguished by the index k) in the set ( )2
P P  

leads to the elimination of all parallel edges in the 
corresponding graph structure. Therefore, the 
resulting graph given in Fig. 1b is simple. 

 
Figure 1: Graph Structures Representing the Sample of 

the Second Class Search Space (a) and the Result of 
Implementing the Operation of Its Unification (b) 

On the contrary, the transformation 3
P  produces 

the following output set: 

( )
31

3
1

,..., ,i
n

mP
i i

i
P p p

=

 =  
 


  

where 3
im  is the maximum cardinality of the 

underlying set UX  such that i Up X∈  among all 

solutions 3(3) ( )X ∈ . Similarly to the previous 

case, the cardinality of the resulting set ( )3
P P  is 

larger by ( )3
1 1n

ii m
=

−∑  compared to the initial set 

P. At the same time, the appropriate transformation 

3
X  translates the argument configurations 
(3) ,UX X δ=  into the next ones: 
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( ) ( ){ }(3)
3 .i

i U

pX
i

p X
X pδ

∈

=


  

In short, each element ( )3
k P
ip P∈  corresponds 

to the element ip P∈  contained in the 

configurations 3(3) ( )X ∈  at the k-th position. Fig. 
2a depicts the example of the third class search 
space (3).  Its structure is illustrated by the graph 

( )(3)S   whose edges are accompanied with the 

weight coefficients reflecting the values of the 
function .δ  In particular, the configuration (3)

1X  
includes the elements 1p  and 2p  located 
respectively at the first and second positions. 
Fig. 2b presents the structure of the search space 
obtained after implementing the operation of the 
unification. The more close inspection shows that 
the information encoded by the weight coefficients 
in Fig. 2a is expressed in Fig. 2b by the index k of 

the vertices ,
P
i kv
∗

 representing the elements 

( )3 .k P
ip P∈  
At the same time, the formation of the base sets 

representing the outputs of the transformation 4
P  

involves the appropriate consideration of both 
ordering and repeating of the elements in the 
configurations 4(4) ( )X ∈ . Thus, the expression 

for the sets ( )4
P P  takes the following 

complicated form: 

( )
4,,1

4 ,..., ,i

k
i H

k mP k
i i

p P

P p p
′

∗∈

 =  
 



  

where 4
im ′  is the maximum value of ( )

Up X pθ
∈∑  

among all configurations (4)X  such that i Up X∈ . 

In turn, the set HP∗  is defined as follows: 
41

1
,..., ,i

n
m

H i i
i

P p p∗

=

 =  
 


 

where 4
im  denotes the maximum value of ( )ipθ  

among all configurations 4(4) ( )X ∈ . 
The presence of the auxiliary set H in the 

structure of the tuples (4) , , ,UX H X θ λ=  
provides the opportunity to present the expressions 
for the outputs produced by the transformation 4

X  
in the next simple form: 

( ) ( ),(4)
4 .

k
i

k
i

k pX
i

p H

X p
λ

∈

  =  
  



  

Thus, the unification of the fourth class search 
spaces requires the combination of the techniques 
used for unifying the second and third class spaces. 
The example of implementing such operation is 

shown in Fig. 3. Remark that the nodes , ,
P
i k lv
∗

 of the 

resulting graph reflect the elements ,k l
ip  of the 

base set ( )4 .P P  

 
Figure 2: Structure of the Sample Third Class Search 
Space (a) and Its Modification in the Process of the 

Unification (b) 

 
Figure 3: Graph Models Constructed for the Instance of 

the Fourth Class Search Space (a) and Its Unified 
Variant (b) 

Another challenging issue that dramatically 
complicates the analysis of the search spaces 
structure is associated with unequal cardinality of 
the configurations (1)X  comprising the search 
spaces (1)  of some real problems. For example, 
the problem of finding the longest path between the 
vertices ,s tv v V∈  in the graph ( ),G V E=  has a 
number of possible solutions constructed from the 
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different number of edges e E∈ . In order to deal 
with such situations, this article introduces the 
following operation:  

Definition 3. The operation of the search space 
homogenization is applied to the problem instances 

(1) , , , ,I P ϕ= Φ Ψ  having at least two solutions 

(1) (1) (1), jkX X ∈  such that (1) (1)
jkX X≠  and 

consists in their transition to the new form 
(1)ˆ ˆ ˆˆ, , ,ˆ ,I P ϕ= Φ Ψ  in which all solutions 

(1) (1)ˆX̂ ∈  have the equal cardinality. The search 
spaces are referred as having the homogeneous 
structure if they have the unified structure and 
encompass only the configurations having the equal 
cardinality. 

Similarly to the previous case, the implementation 
of this operation comes down to specifying the pair 

of transformations ˆ ˆ,P X   such that 

( )ˆ ˆP PP =  and ( )(1) (1)ˆ ˆX X X= . These 

transformations are given by the following 
expressions: 

( ) { }0 1

1

ˆ , ,
n

P
i i

i
P p p

=

=


  

( ) { } { }(1) 1 (1) 0 (1)ˆ .X
i i i iX p p X p p X= ∈ ∉



  

In simple terms, the transformation ( )ˆ P P  
performs “splitting” each element ip P∈  into the 

pair of the new elements { }0 1,i ip p . In turn, the 

configurations ( )(1)ˆ X X  are required to include 

exactly one element from each such pair, which 
clearly shows the equalization of their cardinality. 

  
Figure 4: Graph Models Demonstrating the Structure of 

the Sample First Class Search Space Before (a) and After 
(b) Performing Its Homogenization 

 
Figure 5: Diagram Illustrating the Main Stages of 
Transforming the Problem Instances in Order to 
Construct the Search Spaces Having the Unified 

Homogeneous Structure 

Fig. 4 depicts the example of the search space 
homogenization. In particular, the graph model 
constructed for the initial non-homogeneous space 

(Fig. 4a) includes the vertices 
(1)

1
Xv  and 

(1)
2
Xv  

reflecting the solutions (1) (1)
1 2

(1),  X X ∈  and 
having the degrees of 3 and 1, respectively. On the 

contrary, the nodes 
(1)ˆ

1
Xv  and 

(1)ˆ
2
Xv  of the graph 

given in Fig. 4b represent the configurations 
formed after performing the homogenization of the 
search space. Note that both these nodes have four 

adjacent vertices ˆ
,
P
i kv  corresponding to the 

elements k
ip  of the base set ( )ˆ ,P P  which 

clearly illustrates the effect of the homogenization. 

Obviously, the application of the transformation 
( )ˆ P P  results in doubling the cardinality of the 

base set. Notice that according to Definition 3, the 
operation of the search space homogenization is 
performed only for the problem instances equipped 
with the first class spaces (1) . Such limitation is 
associated with the absence of the clear and 
unequivocal concept of the “cardinality” for the 
solutions contained in the search spaces belonging 
to the other classes. On the same grounds, the 
homogeneous structure of the search space is also 
unified, while the converse is not always true. 
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5. CONCLUSIONS 
 
As shown in Fig. 5, the fundamental idea of the 

proposed algebra lies in performing two operations 
modifying the structure of the search spaces 
associated with the problem instances. In particular, 
the operation of the unification results in blurring 
the class-based differentiation of the search spaces. 
It is followed by the operation of the 
homogenization intended to equalize the cardinality 
of all possible solutions.  

As a result, the search spaces passed through both 
stages of transformation are eligible for encoding 
by the sets of the equal-length strings drawn from 
the binary alphabet. Under such encoding, the 
elements of the base set included in any solution 
could be indicated by ones in the corresponding 
string. At the same time, the opportunity to present 
the structure of the search spaces in the unified 
homogeneous form afforded by the proposed 
algebra has the drawback expressed by increasing 
the cardinality of the base sets. 

 
REFERENCES 

 
[1] W. K. Mak and D. F. Wong, “A Fast 

Hypergraph Min-Cut Algorithm for Circuit 
Partitioning”, Integration, the VLSI Journal, 
Vol. 30(1), 2000, pp. 1 – 11. 

[2] Y. Fan, Q. Liang, Y. Chen, X. Yan, C. Hu, H. 
Yao, C. Liu, and D. Zeng, “Executing Time 
and Cost-Aware Task Scheduling in Hybrid 
Cloud Using a Modified DE Algorithm”, 
Computational Intelligence and Intelligent 
Systems. Communications in Computer and 
Information Science, Vol. 575, 2016, pp. 74 – 
83. 

[3] R. Cohen and  G. Grebla, “Multidimensional 
OFDMA Scheduling in a Wireless Network 
With Relay Nodes”, IEEE/ACM Transactions 
on Networking, Vol. 23(6), 2015, pp. 1765 – 
1776. 

[4] H. Kellerer, U. Pferschy, and D. Pisinger. 
“Knapsack Problems”, Springer, 2004 

[5] A. Potebnia, “Method for Classification of the 
Computational Problems on the Basis of the 
Multifractal Division of the Complexity 
Classes”, Proceedings of the Third 
International Scientific-Practical Conference 
on Problems of Infocommunications. Science 
and Technology (PIC S&T), 2016, pp. 1 – 4. 

[6] A. Potebnia, “Representation of the Greedy 
Algorithms Applicability for Solving the 
Combinatorial Optimization Problems Based 

on the Hypergraph Mathematical Structure”, 
Proceedings of the 14th International 
Conference on The Experience of Designing 
and Application of CAD Systems in 
Microelectronics (CADSM), 2017, pp. 328 – 
332. 

[7] R. Franz, “Design of Modern Heuristics: 
Principles and Application”, Springer-Verlag 
Berlin Heidelberg, 2011. 

[8] C. Reidys and P. Stadler, “Combinatorial 
Landscapes”, SIAM REVIEW, Vol. 44, 2002, 
pp. 3 – 54. 

[9] A. K. Kamrani and E. A. Nasr, “Engineering 
Design and Rapid Prototyping”, Springer US, 
2010. 

[10] T. Van Luong, N. Melab, E.G. Talbi, “GPU 
Computing for Parallel Local Search 
Metaheuristic Algorithms”, IEEE Transactions 
on Computers, Vol. 62(1), 2013, pp. 173 – 185. 

[11] E. Aarts and J. K. Lenstra, “Local Search in 
Combinatorial Optimization”, John Wiley & 
Sons Ltd., 1997. 

[12] C. Blum and A. Roli, “Metaheuristics in 
Combinatorial Optimization: Overview and 
conceptual comparison”, ACM Computing 
Surveys, Vol. 35(3), 2003, pp. 268 – 308. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

http://www.jatit.org/

	ARTEM POTEBNIA

