
Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3613

 ELICITING SECURITY REQUIRMENTS FOR MOBILE APPS:
A REPLICATION STUDY

1NOORREZAM YUSOP, 2MASSILA KAMALRUDIN, 2MOKHTAR MOHD YUSOF,

2SAFIAH SIDEK

1 Faculty of Communication and Information Technology, Universiti Teknikal Malaysia Melaka,

MALAYSIA
2 Innovative Software System and Services Group, Universiti Teknikal Malaysia Melaka, MALAYSIA

E-mail: 1p031320001@student.utem.edu.my, 2{massila, mokhtaryusof, safiahsidek}@utem.edu.my

ABSTRACT

Mobile applications (mobile apps) are becoming a common medium for conducting transaction, saving data
and exchanging information online. However, an important issue that has been overlooked is the emphasis
on security issues at the early stage of mobile apps development. It has become a common practice among
requirements engineers to deal with security issues after the mobile apps have been developed. This
scenario has led to the failure of developing secure and safe mobile application based on the needs of the
users. Motivated by this problem, we propose an automated support tool to assist requirements engineers to
elicit security related requirements at the early stage of mobile apps development. This paper reported a
replication of a study from our previous work that describes our user study and tool support, called
MobiMEReq. This tool uses SecEUCs and SecEUIs prototype model to automatically elicit the security
attributes requirements of mobile apps. In this paper, we reported the results drawn from an experiment of a
user study to compare the capability of the MobiMEReq in relation to the manual approach. The results of
the user study show that the tool support has higher accuracy rate in comparison to the manual approach to
extract security attributes elicited from functional requirements. This implies that our tool is able to help
requirements engineers to easily elicit security attribute requirements of mobile apps.

Keywords: Security requirements, Security attributes, Mobile apps, Security requirements elicitation

1. INTRODUCTION

Mobile applications (mobile apps) are becoming
a common medium for conducting transaction,
saving data and exchanging information online.
However, an important issue that has increasingly
become a concern is the lack of emphasis on
security issues at the early stage of mobile apps
development. Issues related to securities are
commonly being dealt with at the later stage of
developing the mobile apps. Further, it has been a
frequent practice among requirements engineers to
ignore or incorrectly elicit security-related
requirements during the early stage of mobile apps
development. This practice, if not tackled may lead
to the failure of developing a secure and safe
mobile application.

There are several reasons why this issue
needs to be addressed. Firstly, there are possibilities
that the requirements engineers fail to elicit correct
security requirements while conducting the

elicitation because they may face difficulties to
understand the terms and knowledge of the security
[1]. Secondly, the quality of software development
is highly dependable on the process of capturing
correct and consistent requirements from client-
stakeholders. However, this process is often
difficult, time consuming and error prone [2][3].
Motivated by this problem, we propose an
automated support tool to assist requirements
engineers to elicit security related requirements at
the early stage of mobile apps development.

We believe that the automated support tool
for eliciting security related requirements at the
early stage of mobile apps development is crucial
due to the following reasons. Firstly, the complexity
of the Common Criteria (CC) of the security
requirements makes it difficult to understand,
especially the novice requirements engineers [3].
CC describes the requirements in two categories: 1)
the functional requirements, and 2) the assurance
requirements. In security behavior, the CC is

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3614

described in both types [4]. Developers tend to
make mistakes when determining the right security
requirements and attributes because they need to
identify the requirements and attributes personally
without any supports, such as the automation or the
manual training. Secondly, there is no predefined
instruction provided to the user when using the GUI
for dynamic analysis. This leads to various
challenges in completing the security identification
process [5][6][7]. The aforementioned scenario
indicates the need for an automation that can help to
elicit security requirements and attributes,
especially for novice requirements engineers.

Several approaches have been proposed to
tackle the problems mentioned. For example, Haley
et al. [8] proposed an approach to support security
requirements elicitation and analysis. They
proposed a method to construct a system context
using a problem-oriented notation. However, due to
the complexity of the proposed approach, they
require experts to construct the setting and analysis.

Another approach has been proposed by
El-Hadary et al.[9]. They proposed a method to
capture security requirements for software systems.
The method allows for early integration of security
requirements with software development using
problem frames. It also identifies security
requirements with the aid of previous knowledge
through the construction of security catalogue [9].
However, the proposed method is limited to certain
domain categories and does not elicit security
requirements for security attributes.

Highlighting the importance of security
knowledge, Berger et al. [10] claimed that software
engineers lack the security knowledge although this
body of knowledge is easily accessible. They
argued that both the software engineers and
developers have problems in selecting the relevant
piece of security knowledge and they have
difficulties to extract and make decision for their
design or requirements.

Studies to reuse security knowledge to
assist software developers in eliciting security
requirements in a systematic way have been
conducted by using different approaches, such as
security problem frames [11], misuse cases
templates [12], and anti-models patterns [13]. These
approaches are used to form generic model based
on catalogues not specified for a particular
application. Thus, the developer can reuse such
generic models and templates [14][15].

Our study was a replication of experiments
conducted in a previous study [16] on eliciting

security attributes to assess the ability and coverage
of our tool approach. Similar to our previous work
[17], a user study was conducted to gauge the
ability of the requirements engineers to elicit the
security related requirements from a set of business
requirements of a mobile app.

This paper describes a proactive approach
of a tool support that automatically elicits security
requirements of mobile apps using Essential Use
Cases (EUCs) and Essential User Interface (EUI)
prototype models as well as a replication of study
from [16] in a different study. In this paper, firstly,
we describe the background of the study. Secondly,
we present the research methodology of our user
study. Next, we describe the results of the
experiment that compares the performance of the
tool in eliciting security attributes to the same
requirements samples as per discussed in [17].
Further, we discuss a study that aims to prove its
correctness in eliciting a range of security attributes
from several sets of security requirements. Next, we
describe the validity of experiments result. Finally,
we discuss the implications of these studies and the
prototype as well as our future work.

Based on our earlier finding [16], that
engineers are poor in eliciting correct security
requirements. Hence, this study is conducted to
investigate further problem with different set of
respondents in order to gain consistent findings.

This study is aimed to answer the following:

1. Can replication study help to elicit security
requirements is better than manual approach?

2. Does the replication of study is help to
overcome the issues elicitation?

3. How the replication of study use for target
usefulness of tool evaluation?

2. BACKGROUND AND MOTIVATION

2.1 Security requirements attributes
Security requirements attribute as well as

security attribute can be defined as any piece of
information that may be associated with a
controlled implicit entity or user for the purpose of
implementing a security policy. However, it is not
necessarily be implemented directly in data
structures [18]. Figure 1 (A) [19] describes the
security related for security requirements and
Figure 1 (B) describes the attributes used for each
security related requirements.

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3615

 [20] [21] [22][23] [24]

Figure 1: Security Requirements And Its Related Security
Attributes

In this study, security requirements

address the security issues at the early stage of
system design, while accommodating the complex
needs of different stakeholders. Based on our
previous work [25], the security requirements were
found to be similar for mobile application
development, and they are normally considered at
the later phase of the system or mobile apps
development.

2.2 Essential Use Case (EUC) and Essential

User Interface (EUI)
The EUC approach, sometimes called as a

business use case has been defined by Constantine
and Lockwood as a “structured narrative, expressed
in a language of the application domain and of
users, comprising a simplified, generalized,
abstract, technology free and independent
description of one task or interaction that is
complete, meaningful, and well-defined from the
point of view of users in a role or some roles in
relation to a system, and that embodies the purpose
or intentions underlying the interaction” [26].
Biddle defined that the main objectives of EUC is
to support better communication between the
developers and stakeholders via a technology-free
model and to assist better requirements capture.
This allows for the capture of specific details
relevant for the intended design [27]. Figure 2
shows the example of natural language
requirements (lefthand side) and EUC (right hand
side) when capturing the requirements (adapted
from [26]). The natural language requirements from

which the important phrases are extracted
(highlighted in yellow) are shown on the left hand
side of Figure 2.

EUI prototyping is a low fidelity
prototyping approach [28]. It supplies a general
idea that corresponds to UI, but does not supply the
full detail of UI. Further, it focuses on the
requirements rather than the design, representing UI
requirements without the need for prototyping tools
or widgets to draw the UI [29]. EUI prototyping
extends from and works in tandem with the semi-
formal representation of EUCs. By focusing on the
users and their usage of the system, rather than the
system features [30], it helps clients and the
requirements engineers to avoid from being misled
or confused by chaotic, rapidly evolving and
distracting details. Figure 3 shows the example of
EUI prototype, comprising the EUCs.

Figure 2: Example Of Textual Natural Language
Requirements (Left) And Example Of Essential Use Case

(EUC Model) (Right)

Figure 3: Example Of EUI Prototype From EUC Models

Security
Requirements

Authorizatio
n

Authenticati
on

[-Username
-Password

-Radius
-SecureID

Encryption Nonrepudiati
on

-Public Key
Certificate

-X.509
Certificate

-Symmetric
encryption
-Attribute

Based
Encryption

-Digital
Signatures

Digital
Messages
Receipts

A

B

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3616

2.3 Security Essential Use Case (SecEUC) and
Security Essential User Interface (SecEUI)

SecEUC is a security pattern library that
comprises security related EUC, while SecEUI is
the security related EUI. A collection of SecEUCs
has been defined by Yahya et al. [31], in which
they developed a security pattern library that
comprises security related EUC, known as the
SecEUCs and security related essential interaction
identified as the SecEI pattern library. Examples of
the SecEI and the SecEUC are shown in Table 1.
They used EUC model to capture security
requirements from business requirements to allow
requirements engineers to identify and capture the
security requirements consistently.

For the purpose of this study, we chose the
SecEUC, SecAttributes and Mobile Security pattern
library as well as their model in order to conduct an
in-depth analysis that could help to capture and
validate security requirements from business
requirements and mobile apps. The SecEUC library
patterns, based on EUCs were generated from
normal business requirements, while the SecEI
library patterns were based on the essential
interactions found in the textual requirements
related to security elements. The development of
SecEUC pattern library was an adaptation from the
works by [32][33][34][35]. This approach has led
to the identification of associated security elements
that were based on the definitions from the basic
security services. The Mobile security pattern [36]
was used to support the extraction of the security
related attributes [16] from the security
requirements.

The patterns are generic and could support
different domain of application.

Table 1: Example Of Seceuc Pattern Libraries [28].

3. STUDY METHOD

This section describes the design of our
user study. Aiming to investigate the ability of the
tool to assist requirements engineers to elicit correct
security attributes from business security
requirements, this study is a replication of our
previous work, which also has a similar aim.

Case study was used in comparison to the
previous [16], but with the same level of
complexity. This level of complexity is verified by
an expert. Further explanation is as follows:

3.1 Subject of the Study

The subjects of this study were 50 third-
year students of a public university in Malaysia,
namely the Universiti Teknikal Malaysia Melaka
(UTeM). At the time of the study, these students
were enrolled in a course of software testing and
quality assurance.

Prior to the study, they were given a
written informed consent form, and all of them
agreed and volunteered to participate in this
experiment. The participant were informed that: (i)
the experiment is not mandatory, (ii) they will be
observed while performing the task, (iii) they were
not evaluated on their performance and (iv) data
collected will be used only for research purposes.

3.2 Study Materials

The study materials consisted of a tutorial
and a set of security requirements sample. The
tutorial explained the SecEUC and SecEUI model
that are used as the requirements model in this
experiment. Participants were also provided with a
requirements sample for Mobile i-Health apps in
the form of use case scenario as given below.

“This mobile application named i-health apps
could support mobile online application based on
patient health monitoring. I-health provides highly
secure information for patient. For this scenario,
patient must register their information as a member
so that the system can allow patient to access the
application. Patient will login to i-health to view
patient information and details such as the
username, password, identity card no, phone no
and email from their console. Patient also can
choose the menu selection option to view the
patient medical record exercise. Patient is
compulsory to do exercise 3 times a week based on
the exercise classification and all of these need to
be recorded in the patient exercise console
provided. Patient can modify certain information
related to the mobile apps. This i-health provides
automatic notification to patient with incomplete

SecEI SecEUC SecCtrl
Check
username

Identify
self

Authentication

Check
password
Verify
username
Make payment

Make
payment

Transaction Complete

payment form

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3617

exercise. It also provides patient monthly summary
report for doctor record.”

The associated SecEUC model derived from the
sample requirements as shown in Table 2 is also
given to the participants.

Table 2: The Seceuc Generated From I-Health Apps
Security Requirements Scenario

Functional Req. SecEUC

Register Form
Login Identify Self
Menu Option Option
Patient record View Record
Notification Alert
Monthly Report Report

3.3 Variable Selection
We also identified the independent and

dependent variables relevant to our study. The
dependent variable provides some sort of behavior
or response [37]. The dependent variables of our
study are i) the participant’s comprehension level,
and ii) time taken to elicit security attributes from
the SecEUC model. The comprehension level is to
measure the participants’ ability and skills. The
comprehension level was measured by checking the
correctness of the elicitation security attributes to
the SecEUC model. Additionally, time was used to
measure the efforts required to elicit security
attributes from the security requirements model.

Zowghi and Gervasi [38] have suggested
that correctness has at least two different
perspectives: i) the formal point of view,
correctness is usually meant to be a combination of
consistency and completeness. Consistency refers
to a situation where a specification contains no
internal contradictions whereas completeness refers
to a specification that entails everything that is
known to be true in a certain context; ii) the
practical point of view, correctness refers to the
satisfaction of business goals. This indeed is the
kind of correctness which is more relevant to the
customer, whose goal is to have a newly developed
system to meet his overall business goal. Our focus
in this study is the formal point of view, which is
the combination of consistency and completeness
of the security attributes.

Table 3 displays our correctness
measurements in this experimentation. As
described in Table 3, we have two security
attributes for the login procedure in our tool tracing

from the pattern library. We defined that correct
answer and wrong answer given by the participants.
Specifically, the participant has a correct security
attributes when he or she generates similar security
attributes from our pattern library. Meanwhile, a
participant’s response is considered as wrong
security attributes if none of the defined security
attributes matches with our pattern library.

3.4 Experiment Procedure

The experiment was conducted during one
of the teaching and learning sessions in a computer
lab. The main task in the experiment is to request
the participants to manually elicit the security
attributes from EUC model. Prior to that, they were
given a short description of the conduct of the
experiment. We also provided a tutorial session that
gives the participants the theory of SecEUC model
in detail and an example on the process of eliciting
security attributes from the model. They were given
20 minutes to understand the concept and some
hands-on examples during the tutorial session.
Then, the participants were requested to attempt the
following tasks. Before the experiment, the
participants are requested to: i) Read the sample on
i-health mobile apps business requirements for 5
minutes; and b) write their matric card number on
the sheet given.

Further, during the experiment, we
informed the participants the specific time to start
the task. They are expected to: i) Write the security
attributes on the provided sheets; and ii) Once they
have completed the task, write down the specific
end- time and call the researcher.

4. RESULTS
4.1 User study: Manual vs. Automatic

Extraction
We compared the correctness and the

performance of the tool with the manual extraction
of the requirements by 50 novices as describes.
Based on the result shown in Table 3, the
automated tool produced 90% correctness in
comparison to only to 42% correctness from the
manual approach, as reported in [25]. In
comparison to our previous work [16] it is found
that the result of perform in term of correctness and
time taken are nearly similar as per Table 4. This
implies that our tool automated has the ability to
elicit an almost correct security attributes than the
manual approach. However, the 10% errors made
by the automated tool were its failure to capture the
“PatientId” for register requirements, “ExerciseId”
in patient record requirements and “ContactNo” in
monthly report. It is believed that the failure of the

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3618

tool to capture these requirements is due to the
passive structure phrases written in the requirement.
Based on the high percentage of correctness
demonstrated by the tool, we can conclude that
MobiMEReq is able to facilitate the participants to

capture correct security attributes. Further, the time
taken to execute the extraction process only took 1
second in comparison to the manual approach
which took approximately 30 minutes to extract the
security attributes by the participant in [17].

Table 3: Correctness Between Manual Extraction And Automated Validating Tool

Functional

Requirement
Answers

No. Correct answers No. Wrong answers

Manual
Tool

Tracing
Manual Tool Tracing

Register

Username 46 50 4 0

Password 46 50 4 0

Email 45 50 5 0

PatientId 47 49 3 1

ContactNo 45 50 5 0

Login
Username 48 50 2 0

Password 48 50 2 0

Menu Option

MenuId 14 50 36 0

Username 14 50 36 0

Password 8 50 42 0

Patient record

Email 22 50 28 0

PatientId 25 50 25 0

ContactNo 20 50 30 0

RecordId 10 50 40 0

ExerciseId 10 47 40 3

Username 32 50 18 0

Password 32 50 18 0

Notification

NotificationId 3 50 47 0

RecordId 5 50 45 0

PatientId 9 50 41 0

Username 8 50 42 0

Password 8 50 42 0

Monthly Report

StaffId 12 50 7 0

PatientId 14 50 3 0

ReportId 9 50 41 0

Email 6 50 44 0

ContactNo 6 48 44 2

Username 15 50 35 0

Password 14 50 36 0

Correctness ratio

621 1394 765 6

42% 90% 58% 10%

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3619

Table 4: Comparison Between Experiment 1 [16] And
Experiment 2 Correctness Between Manual Extraction

And Automated Validating Tool
Experiment Experiment 1

[16]
Experiment 2

Correctness ratio 46% 42%

Tool tracing 95% 90%

Time taken 25 minutes 30 minutes

5. DISCUSSION

Based on our observation during the conduct of the
experiment and the comparison analysis between
the correctness of the automated validating tool and
the manual extraction of the previous, it was found
that the automated tool facilitated the participants to
extract almost more than double correct security
attributes in comparison to the manual extraction.
Specifically, the automated extraction process took
just over 1 second to execute in comparison to the
average duration of half hours taken to extract the
security manually by the participants. The accuracy
of the manual elicitation is 42%, while the accuracy
of the automated elicitation facilitated by
MobiMEReq is 90%. On the other hand, the
percentage of incorrect extraction security attributes
from the MobiMEReq is lower than the manual
approach, which is 10% in comparison to 58%
respectively.

In summary, these results indicate that
MobiMEReq embedded with the SecAttributes
pattern library [16] has higher accuracy rate in
comparison to the manual approach to extract
security attributes elicited from functional
requirements. Based on the result, it is proven that
the tool is useful in helping novice requirements
engineers and software developers from different
background to extract security attributes. The result
for this experiment shows that generally, the
participants agreed that the tool is helping them to
elicit correct security attributes from the functional
requirements.

The result on this study and previous work
is significant which both of work is agreed that the
tool is helping them to elicit correct security
attributes from the functional requirements.

6. VALIDITY OF RESULTS EXPERIMENTS

In this section, we discuss the validity of
the experimental results to highlight the limitations
and strengths of the study. There are two distinct
forms of validity, which researchers are concerned

about when using experimentation, namely the
internal and external validity [39].

Internal validity measures the cause-effect
relationship identified in a study [40]. Examples of
internal validity are history, pre-testing, maturation,
instrumentation, sampling bias and mortality. For
the purpose of our study, the historical effect was
addressed by ensuring that all participants
conducted the experiment at the same time and
place. For the pre-test effect, we purposely made
sure that the all the participants were properly
trained and given sufficient theoretical knowledge
before they begin the experiment as described in
Section 3. They were also not aware of the main
objective of experimentation. With respect to
maturity effect, we made sure that the participants
were clearly informed that their response will be
treated anonymously and they were not evaluated
on their performance. This was achieved by asking
them to read and sign the consent forms. With
respect to instrumentation effect, the participants
were recalibrated by using the questionnaires as
measurement instrument for consistency.
Additionally, the results of the participants were not
compared to one another because they differ in
some important aspects. Finally to address the
sampling bias, we made sure that participants are
all students who enrolled in the same course.

External validity refers to the degree to
which the results of an empirical investigation can
be generalized to and across individuals, settings
and times [40] and its confounding are interactive
effects of testing, interactive effect of sampling bias
and contrived situations [39]. To address the
interactive effects of testing, we identified that the
participants were considered as novice software
engineers with an approximately equal knowledge,
hence they may not be well-trained or be well-
trained. By the same measure, questionnaire may
pose the questions in a different way, the
participant differ to understand. With respect to
Interactive effect of sampling bias, all participants
attempted the same task. Further, the main task of
the experiment is to elicit security attributes and the
participants were not well trained in this area. In
this case, the sample of the security requirements
give to the participants was not complex, hence,
this measure helped to address the contrived
situation.

Thus, there are several positive and
negative validity result to our study. To tackle the
threats of validity, the tutorial video on this study is
needed to relate to the understanding of
requirement engineer to elicit manually and
automated generated elicitation security attributes

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3620

in order to reduce the complexity and the time
taken to complete the task.

The limitation and assumption undertaken
of this study during evaluation is: (Limitation) you
use only set of requirements and the results might
be different if you use more. (Assumption) student
knowledge level is similar with novice
requirements engineer.

7. CONCLUSION AND FUTURE WORK

The growth in mobile devices and package
of mobile apps has been an important medium to
conduct transaction, saving data and exchange
information online. In this case, each of the existing
mobile apps and approaches is useful when elicit
security requirements. However, there is a lack of
emphasis on security issues during the development
of mobile apps. Therefore, the need to provide
correct security attributes to capture security
requirements from client stakeholders is one of the
important goals to improve security requirements
elicitation. For this purpose, we proposed an
automated support tool to assist requirements
engineers to elicit security related requirements at
the early stage of mobile apps development. The
tool support is called MobiMEReq for security
requirements of mobile apps by using SecEUCs and
SecEUIs prototype model in our work [16]. In this
paper, we reported the results drawn from an
experiment of a user study to compare the
capability of the tools in relation to the manual
approach. The results of the user study indicate that
the tool support MobiMEReq is able to
automatically elicit the security attributes of mobile
apps. Our future work is to provide the end-to-end
validation approach that can capture and validate
security requirements for mobile apps.

ACKNOWLEDGEMENT:
We would like to thank Universiti Teknikal
Malaysia Melaka for its support and FRGS grant:
FRGS/1/2016/ICT01/FTMK-CACT/F00325 and
also Ministry of Higher Education (MOHE),
MyBrain15.
[1] K. Schneider, E. Knauss, S. Houmb, S. Islam,

and J. Jürjens, “Enhancing security
requirements engineering by organizational
learning”, Requir. Eng., vol. 17, no. 1, pp. 35–
56, 2012.

[2] M. Kamalrudin and J. Grundy, “Generating
Essential User Interface Prototypes to
Validate Requirements,” 2011, pp. 564–567.

[3] E. Paja, F. Dalpiaz, M. Poggianella, P.
Roberti, and P. Giorgini, “STS-Tool : Socio-
Technical Security Requirements through
Social Commitments”, 2012.

[4] M. S. Ware, J. B. Bowles, and C. M. Eastman,
“Using the Common Criteria to Elicit Security
Requirements with Use Cases,” pp. 273–278,
2006.

[5] P. Aho and T. Räty, “Enhancing Generated
Java GUI Models with Valid Test Data”, in
2011 IEEE Conference on Open Systems
(ICOS2011), September 25-28 2011,
Langkawi , Malaysia, 2011, pp. 310–315.

[6] A. Kull, “Automatic GUI Model Generation :
State of the Art”, 2012.

[7] N. Yusop, M. Kamalrudin, S. Sakinah, and S.
Sidek, “VALIDATION OF SECURITY
REQUIREMENTS FOR MOBILE
APPLICATION : A STUDY”, Sci. Int., vol.
2014, no. October, pp. 1451–1454, 2014.

[8] C. B. Haley, R. Laney, and J. D. Moffett,
“Security Requirements Engineering : A
Framework for Representation and Analysis”,
IEEE Trans. Softw. Eng., vol. 34, no. 1, pp.
133–153, 2008.

[9] H. El-hadary and S. El-kassas, “Capturing
security requirements for software systems”,
J. Adv. Res., vol. 5, no. 4, pp. 463–472, 2014.

[10] B. J. Berger, K. Sohr, and R. Koschke,
“Extracting and Analyzing the Implemented
Security Architecture of Business
Applications”, in Proceeding of the 17th
European Conference on Software
Maintenance and Reengineering, 2013.

[11] D. Hatebur, M. Heisel, and H. Schmidt, “A
Pattern System for Security Requirements
Engineering”, in The Second International
Conference on Availability, Reliability and
Security, 2007. ARES 2007, 2007, pp. 356–
365.

[12] G. Sindre, D. G. Firesmith, and A. L. Opdahl,
“A Reuse-Based Approach to Determining
Security Requirements”, in Proceeding of the
9th international workshop on requirements
engineering: foundation for software quality
(REFSQ’03), 2003.

[13] L. A. Hermoye, A. Van Lamsweerde, and D.
E. Perry, “A Reuse-Based Approach to
Security Requirements Engineering,” in In
Proc. 9th International Workshop on
Requirements Engineering: Foundation for
Software Quality (REFSQ’03, 2003.

[14] M. Kamalrudin, S. Sidek, M. N. Aiza, and J.
Grundy, “AUTOMATED ACCEPTANCE
TESTING TOOLS EVALUATION IN

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3621

AGILE SOFTWARE DEVELOPMENT”, in
Science International (Lahore), 2013, pp.
1053–1058.

[15] M. Kamalrudin, M. N. Aiza, J. Grundy, J.
Hosking, and M. Robinson, “Automatic
Acceptance Test Case Generation From
Essential Use Cases”, in 13th International
Conference on Intelligent Software
Methodologies, Tools and Techniques
(SOMET), Langkawi, Malaysia, September
22-24, 2014, 2014.

[16] N. Yusop, M. Kamalrudin, and S. Sidek,
“CAPTURING SECURITY
REQUIREMENTS OF MOBILE APPS
USING MobiMEReq Noorrezam Yusop”,
Asia Pacific J. Contemp. Educ. Commun.
Technol., vol. 3, no. 1, 2017.

[17] N. Yusop, M. Kamalrudin, M. Mohd Yusof,
and S. Sidek, “Meeting Real Challenges in
Eliciting Security Attributes for Mobile
Application Development”, Journal. Internet
Computing and Services., vol. 0170, no. 5, pp.
25–32, 2016.

[18] I. Krka, G. Edwards, L. Cheung, L.
Golubchik, and N. Medvidovic, “A
comprehensive exploration of challenges in
architecture-based reliability estimation,” in
Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in
Bioinformatics),, 1973, p. A comprehensive
exploration of.

[19] G. Ian, Essential Software Architecture. 2006,
pp. 1–283.

[20] “User Authentication in Mobile”, [Online].
Available:
https://sc1.checkpoint.com/documents/R77/C
P_R77_Mobile_Access_WebAdmin/41587.ht
m.

[21] P. Vilhan and L. Hudec, “Building Public Key
Infrastructure for MANET with Help of
B.A.T.M.A.N. Advanced”, in Proceeding of
the Modelling Symposium (EMS), 2013
European, Manchester, 20-22 Nov, 2013, pp.
566–571.

[22] A. Rekha, P. Anitha, A. . Subaira, and C.
Vinothini, “A Survey on Encryption
Algorithms for Data Security”, Int. J. Res.
Eng. Technol., pp. 131–134, 2015.

[23] C. Loftis, T. Chen, and J. M. Cirella,
“Attribute-level encryption of data in public
Android databases”, (RTI Press publication
OP-0016-1309, Research Triangle Park, NC:
RTI Press, 2013.

[24] C. . Chen and W. . Tsai, “Using a Stored-
Value Card to Provide an Added-Value
Service of Payment Protocol in VANET”, in
Proceeding of the Innovative Mobile and
Internet Services in Ubiquitous Computing
(IMIS),2013 Seventh International
Conference, 3-5 July 2013, Taichun, 2013, pp.
660–665.

[25] N. Yusop, M. Kamalrudin, and S. Sidek,
“Jurnal Teknologi SECURITY
REQUIREMENTS VALIDATION FOR
MOBILE APPS : A SYSTEMATIC
LITERATURE REVIEW”, Journal.
Teknologi., vol. 34, pp. 123–137, 2015.

[26] L. L. Constantine and L. A. D. Lockwood,
Software for use: a practical guide to the
models and methods of usage-centered design.
Pearson Education (1999), 1999.

[27] R. Biddle, J. Noble, and E. Tempero,
“Essential Use Cases and Responsibility in
Object-Oriented Development”, ACSC ’02
Proc. twenty-fifth Australas. Conf. Comput.
Sci., vol. 3, no. 1, pp. 7–16, 2002.

[28] S. W. Ambler, “Essential (Low Fidelity) User
Interface Prototypes”, 2003. [Online].
Available:
http://www.agilemodeling.com/artifacts/essent
ialUI.htm.

[29] L. L. Constantine and L. A. Lockwood,
“Usage-centered software engineering: an
agile approach to integrating users, user
interfaces, and usability into software
engineering practice”, in Proceeding of the
25th International Conference on Software
Engineering (ICSE’03) 2003, IEEE Computer
Society, Portland, Oregon, 2003.

[30] S. W. Ambler, “The Object Primer: Agile
Model-Driven Development with UML 2.0
(3rd ed.) ”, 2004.

[31] S. Yahya, M. Kamalrudin, S. Sidek, and J.
Grundy, “Capturing Security Requirements
Using Essential Use Cases (EUCs) ”, in Asia
Pacific Requirements Engineering Symposium
(APRES) 2014, 2014, pp. 16–30.

[32] M. Kamalrudin, J. Grundy, and J. Hosking,
“Tool Support for Essential Use Cases to
Better Capture Software Requirements”, in
Proceeding of the of IEEE/ACM international
conference on Automated software
engineering, 2010, pp. 327–336.

[33] M. Kamalrudin, “Automated Software Tool
Support for Checking the Inconsistency of
Requirements”, in Proceeding of the 24th
IEEE/ACM International Conference on
Automated Software Engineerin, 2009.

Journal of Theoretical and Applied Information Technology
 15th August 2017. Vol.95. No.15

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3622

[34] M. Kamalrudin, J. Grundy, and J. Hosking,
“Automated Support for Consistency
Management and Validation of
Requirements”, 2011.

[35] M. Kamalrudin and S. Sidek, “A review on
software requirements validation and
consistency management”, Int. J. Softw. Eng.
Its Appl., 2015.

[36] N. Yusop, M. Kamalrudin, S. Sidek, and J.
Grundy, “Automated Support to Capture and
Validate Security Requirements for Mobile
Apps”, in Asia Pacific Requirements
Engineering Symposium (APRES), 2016, no.
November, pp. 10–12.

[37] “Designing an Experiment: The Variable and
the Groups” [Online]. Available:
http://www.tulsa.oklahoma.net/~jnichols/Expe
riment.html.

[38] D. Zowghi, “On the Interplay Between
Consistency , Completeness , and Correctness
in Requirements Evolution”, Elsevier Sci., no.
April 2003, pp. 1–37, 2003.

[39] I. . Crawford, “Marketing Research and
Information Systems”, 1997.

[40] R. K. Yin, Case Study Research: Design and
Methods Fourth Edition, vol. 5. 2009.

