
Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3230

A REVIEW OF FINDINGS ON AGENT SPAWNING AND

MOBILITY

OSAMA TREEF ALSHAKI, MOHD SHARIFUDDIN AHMAD, MOAMIN A. MAHMOUD

College of Computer Science and Information Technology, Universiti Tenaga Nasional

E-mail: osamashaki@gmail.com, sharif@uniten.edu.my, moamin@uniten.edu.my

ABSTRACT

Mobile agent technology is becoming more popular and has been implemented in many areas. Several

research have been conducted to address its challenges including two of the most important which are agent

spawning and agent mobility. This paper reviews the mobile agent technology, the background concept of

mobile agent cloning and spawning, agent mobility as well as the problems faced by many researchers

during their research on mobile agent. Various mobile agent types are also discussed. The paper finally

proposes a new agent spawning and mobility models to resolve some of the researchers’ problems.

Keywords: Agent Architecture, Mobile Agent, Agent Cloning, Agent Spawning

1. INTRODUCTION

Recently, the distributed agent concept has

become a new computing paradigm in Internet

distributed computing, including mobile computing.

Mobile agent cloning and spawning are some of the

most important techniques that are deployed for

performing distributed tasks. The cloning technique

may not be the best approach in real network

environments mainly due to the fluctuation of

network traffic, such as connection failures or

heavy traffic on the network. For better

performance, it is necessary that mobile agents be

more sensitive to the network conditions.

We can classify agents, which are distributed

over the network, into two types: static and mobile

agents [1]. The static agent has the function of

providing a mobile agent with node resources.

Mobile agents are allowed to travel from one node

to another. A mobile agent migrates to a node

where services are being provided, and then returns

to its starting point, namely the home node, after

obtaining a service offered remotely [2]. One of the

major potential application areas for mobile agents

is distributed information retrieval, which involves

access to a huge amount of data across a network

[3, 4, 5]. In conventional distributed computing, the

distributed information retrieval process is carried

out through a direct connection mechanism, such as

Remote Procedure Calls (RPC), which accesses the

distributed database directly from a remote area.

In this paper, we review the mobile agents, agent

types, agent cloning and spawning and propose

models for agent spawning and mobility, an

alternative approach to the problem of local agent

overloads. Our paradigm entails that agents may

spawn, pass tasks to others, migrate to another host,

execute a specific task and die. The rest of the paper

is organized as follows: Section 2 reviews the

related work in software agent technology and

mobile agent, and discusses some work on agent

cloning and mobility. Section 3 presents a

discussion of the review. Section 4 proposes a

framework for agent spawning and mobility.

Section 5 presents a framework for dynamic

spawning of agents and Section 6 concludes the

paper.

2. RELATED WORK

2.1 Agent Architecture

Researchers working in the area of agent

architecture are concerned with the design and

construction of agents that enjoy the properties of

autonomy [6], reactivity, pro-activeness [7, 8], and

social ability [9, 10, 11]. Wooldridge [12] states

that agent architecture is essentially a map of the

internals of an agent — its data structures, the

operations that may be performed on these data

structures, and the control flow between these data

structures. Three classes of agent architectures can

be identified [13]:

• Deliberative or symbolic architectures are those

designed along the lines proposed by

traditional symbolic AI.

• Reactive architectures are those that eschew a

central symbolic representations of the agent’s

environment, and do not rely on symbolic

reasoning, and

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3231

• Hybrid architectures are those that marry the

deliberative and reactive approaches [9].

Wooldridge and Jennings [13] indicate that agent

architectures can be viewed as software engineering

models of agents and identify the above mentioned

classes of agent architectures. Wooldridge [12]

considers four classes of agents. Table 1 enumerates

and gives a short description of each class. In our

opinion, most agents follow one of the following

four architectural classes.

Table 1: Agent classes

Description Agent class

In which decision making is realized through logical deduction

(Wooldridge, 1999).

1. Logic based agents

In which decision making is implemented in some form of direct

mapping from situation to action (Wooldridge, 1999).

2. Reactive agents

In which decision making depends upon the manipulation of data

structures representing the beliefs, desires, and intentions of the agent

(Wooldridge, 1999).

3. Belief-desire-

intention (BDI)

agents

In which decision making is realized via various software layers, each

of which is more-or-less explicitly reasoning about the environment at

different levels of abstraction (Wooldridge, 1999).

4. Layered

architectures

2.2 Agent Communication Languages (ACLs)

The difficulty to precisely handle coordination

and communication increases with the size of the

agent-based software to be developed. A number of

languages for coordination and communication

have been proposed [14]. Weίβ [15] enumerates a

list of such languages. Table 4 describes the most

prominent examples of agent communication

languages (ACLs) according to Weίβ [15].

Table 2: Most prominent agent communication languages

Description Agent communication

language

It is perhaps the most widely used agent communication language

[15].

1. KQML

(“Knowledge Query

and Manipulation

Language”)

 It is the communication language used in the ARTIMIS system [15].

ARCOL has a smaller set of communication primitives than KQML,

but these can be composed [15].

2. ARCOL

(“ARTIMIS

Communication

Language”)

It is an agent communication language that is largely influenced by

ARCOL [15]. Together FIPA-ACL, ARCOL, and KQML establish a

quasi-standard for agent communication languages [15].

3. FIPA-ACL

(FIPA Agent

Communication

Language)

It is a logic-based language that has been designed to express any kind

of knowledge and meta-knowledge [15]. KIF is a language for content

communication, whereas languages like KQML, ARCOL, and FIPA-

ACL are for intention communication [15].

4. KIF

(“Knowledge

Interchange Format”)

It aims at explicitly representing and applying coordination

knowledge for multi-agent systems and focuses on rule-based

conversation management [15]. Languages like COOL can be thought

of as supporting a coordination/communication (or “protocol-

sensitive”) layer above intention communication [15].

5. COOL

(“Domain independent

coordination

Language”)

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3232

2.3 Mobile Agent

Mobile agents are independent, smart programs

that move through a network, seeking and

interacting with various available/compatible

services on a user’s behalf. Mobile agent systems

use specialized servers to interpret the agent’s

behavior and communicate with other servers on

the network. They have inherent navigational

autonomy and find their path through the network.

Such agents can operate independently and perform

tasks autonomously, if so desired. The runtime

environment could be a closed-proprietary system

or the open Java environment.

Mobile agents can be executed on all types of

computers because their agent code should not have

to be installed on every machine that is being

visited. They use mobile code systems like Java and

JVM (Java Virtual Machine) and classes get loaded

at runtime via the network [16].

Mobile agents are operating instructions, or

programs, that can be transmitted from a user’s host

to a remote host to perform specific tasks.

Flexibility (or mobility) is the fundamental facet of

mobile agents. A mobile agent appends its own

performance, transfers to an alternative host, and

remains to proceed at the break point [17].

Instead of transmitting data across the network, a

mobile agent migrates to a geographically separated

node, performs its task there and then returns to the

original node (home node) bearing a result.

Therefore, the mobile agent can utilize the

bandwidth of the network more efficiently than one

accessing the distributed database using a direct

connection, especially when data transmission is the

bottleneck of the task [18, 19, 20, 21].

Consequently, mobile agents reduce network

traffic, overcome network latencies and enhance

robustness and fault-tolerant capabilities of

distributed applications [22, 23, 24].

It is important that mobile agents monitor the

conditions of a network. The status of the network

constantly changes in the Internet world. Therefore,

a mobile agent, which is sensitive to the conditions

of the network, can accomplish retrieval work more

effectively [25, 26]. Along with the module which

monitors network conditions, access to network

status history can help mobile agents establish a

static plan [27, 28]. It is very important to establish

a static plan for mobile agents before mobilizing it.

When mobile agents use past information about

network conditions, system overhead, due to the

reaction of mobile agents to the environment of the

dynamic network, can be reduced. They can arrive

at their destination more quickly in normal network

traffic conditions, if they know the short cut. This

means that the possibility of arriving at the

destination in a timely manner increases. Planning

the courses of mobile agents is called Mobile Agent

Planning (MAP). MAP is one of the important

techniques used to complete a given task efficiently.

2.4 Advantages of Mobile Agent Programming

The following are the primary advantages of

mobile agents:

• They facilitate high quality, high performance,

and economical mobile applications.

Applications employing mobile agents

transparently use the network to accomplish

their tasks, while taking full advantage of

resources local to the machines in the network.

They process data at the data source, rather

than fetching it remotely, allowing higher

performance operation. They use the full

spectrum of services available at each point in

the network, such as GUI’s for the user and

database interface on servers. They make best

use of the network as they travel [29].

• They enable the use of portable, low-cost,

personal communications devices. Network

support, including security, is contained in a

lightweight server which manages the

movement of agents in the network. Coupled

with the sophisticated, self-contained

programming model afforded by agents, this

permits a small footprint to be achieved on user

devices, without sacrificing functionality for

the application.

• They permit secure Intranet-style

communications on public networks. Security

is an integral part of the Mobile Agent

framework, and it provides for secure

communications even over public networks.

Agents carry user credentials with them as they

travel, and these credentials are authenticated

during execution at every point in the network.

Agents and their data are fully encrypted as

they traverse the network. All this occurs with

no programmer intervention.

• They efficiently and economically use low

bandwidth, high latency, error prone

communications channels. The agent network

employs a store and forward mechanism to

transfer agents between nodes. This is well-

suited to the problematic nature of many

communications channels, especially in the

mobile arena. Queuing and persistent

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3233

checkpoints enhance this further, to the point

that agents can use such channels with no

degradation in reliability or response. Because

the agent’s data processing takes place locally

at the source, the network has no effect on the

agent as it executes.

Marzo et al. [30] discussed many agent mobility

approaches focusing on messengers. They said that

mobile agents are mobile threads of execution and

collaboration. The construction of novel couriers

(messengers) at run time, and development of a

cluster of couriers for courier alliance are

incorporated in the flexibility facets of couriers.

These characteristics appear relatively parallel to

multi-agent systems (MAS) with spawning.

Conversely, exploitation of a communal memory

and depending on it for their operation of couriers is

a major dissimilarity - insupportable in MAS as it

suggests a resilient constraint on their

independence.

2.5 Agent Cloning

Agent cloning is creating and activating a new

agent with exactly the same capacities, capabilities

as a possible response to an agent overload. Agent

overloads are due, in general, either to the agent’s

limited capacity to process current tasks or to

machine overloads. Other approaches to overloads

include task transfer and agent migration. Task

transfer, which occurs when overloaded agents

locate other agents which are lightly loaded and

transfer tasks to them, is very similar to processor

load balancing. Agent migration, which requires

that overloaded agents or agents that run on an

overloaded machine (these loads are different but

may correlate) migrate to less loaded machines, is

closely related to process migration and to the

recently emerging field of mobile agents [31]. A

main difference between load balancing and agent

cloning is that while the first explicitly discusses

machine loads and agent migration, the latter, in

addition, considers a different type of load - the

agent load.

Cloning is a superset of task transfer and agent

migration; it includes them and adds to them as

well. Cloning does not necessarily require

migration to other machines. Rather, a new agent is

created on either the local or a remote machine.

Note that there may be several agents running on

the same machine, and having one of them

overloaded does not necessarily imply that the

others are overloaded (although we expect some

correlation between overloads). Agent overload

does not imply machine overload, and therefore

local cloning (i.e., on the same machine) may be

possible. As mentioned in the load balancing

literature [32], within a distributed system there is a

high probability of having some of the processors

idle, while others are highly loaded. Cloning takes

advantage of these idle processing capacities.

To perform cloning, an agent must reason about

its own load (current and future) and its host’s load,

as well as capabilities and loads of other machines

and agents. Accordingly, it may decide to create a

clone, pass tasks to a clone, merge with other

agents, or die. Merging of two agents or self-

extinction of underutilized agents is an important

mechanism to control agent proliferation with

resulting overload of network resources. Detailed

consideration of this problem, however, is outside

the scope of this paper.

To avoid communication overhead in trying to

access and reason about remote hosts, reasoning

regarding cloning begins by considering local

cloning. When this is found infeasible or non-

beneficial, the agent proceeds to reason about

remote cloning. If remote cloning is decided upon,

an agent should be created and activated on a

remote machine. Assuming that the agent has an

access and a permit to work on this machine, there

may be two main methods of performing this

cloning:

• Creating the agent locally and letting it migrate

to the remote machine (similar to a mobile

agent).

• Creating and activating the agent on the remote

machine.

While the first method requires very little on the

part of the remote machine, it requires mobilization

properties as well as additional local resource

consumption. The second method, while avoiding

mobilization and local resource consumption,

requires that a copy of the agents’ code be located

on the remote machine. Similar requirements also

hold for mobile agent applications [33, 34], since an

agent server or agent dock is required. Nonetheless,

the amount of this code is small.

Since the agent’s own load and the loads of other

agents vary over time in a non-deterministic way,

the decision of whether and when to clone is non-

trivial. Prior work has presented a model of cloning

based on prediction of missed task deadlines and

idle times on the agent’s schedule in the RETSINA

multi-agent infrastructure [35, 36].

Suppose a clone has been created and activated.

Several questions remain with respect to this clone.

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3234

These regard its autonomy, tasks, lifetime, and

access to resources. Autonomy refers to an

independent versus a subordinate clone. Having

been created and activated, an independent clone is

not controlled by its creator. Therefore, such a clone

continues to exist after completion of the tasks

provided by its initiator agent. Hence, a mechanism

for deciding what it should do afterward is

necessary. Such a mechanism must allow the clone

to reason about the agent and task environment, and

accordingly decide whether it should continue to

work on other tasks (if necessary and the

computational resources allow), merge with others,

or perform self-extinction.

A subordinate clone will remain under the

control of its initiator. This prevents the

complications arising as in the independent clone

case (i.e., it is not necessary to decide what to do

after the tasks delegated to the clone are

accomplished). However, in order to manage a

subordinate agent, the initiating agent must be

provided with a control mechanism for remote

agents. Regardless of the details of such a

mechanism, it requires additional communication

between the two agents, thus increasing the

communication overhead of such a cloning method

and the MAS’s vulnerability to communication

flaws. In addition, control of other agents is a

partially centralized solution, which might violate

the reason for using MAS in the first place.

2.6 Cloning Initiation

An agent should consider cloning if:

• It cannot perform all of its tasks on time by

itself or decompose them so that they can be

delegated to others.

• There is no lightly loaded agent that can

receive and perform its excess tasks (or

subtasks when tasks are decomposable).

• There are sufficient resources for creating and

activating a clone agent (on either the same

machine or a remote one).

• The efficiency of the clone agent and the

original agent is expected to be greater than

that of the original agent alone.

The necessary information used by an agent to

decide whether and when to initiate cloning

comprises parameters that describe both local and

remote resources. In particular, the necessary

parameters are as follows:

• The CPU and memory loads, both internal to

the agent (which results from planning,

scheduling and task execution activities of the

agent) and external (on the agent host and

possibly on remote hosts).

• The CPU execution speed (measured using

standard methods e.g., MIPS), both local and

remote. The load on the communication

channels and their transfer rate, both local and

remote.

• The current queue of tasks, the resources

required for their execution, and their

deadlines.

• The future expected flow of tasks.

To acquire the above information, an agent must

be able to read the operating system variables. In

addition, the agent must have self-awareness at two

levels, at agent internal level and at MAS level.

Internal self-awareness should allow the agent to

realize what part of the operating system retrieved

values are its own properties (i.e., agent internal

parameters). System-wise self-awareness should

allow the agent to find, possibly via middle agents

[37], information regarding available resources on

remote machines. Without middle agents (e.g.,

matchmakers), servers that are located on the

remote hosts can supply such information on

request.

2.7 Agent Spawning

Agent spawning is similar to agent cloning but it

includes creating and activating a new agent with

different capacities and capabilities [38, 39, 40].

While agent cloning is a possible response of an

agent to overloads, agent spawning includes, in

addition, consideration of the data transfer

necessary for task execution and it relaxes the

requirement of creating an identical copy of the

original agent. Thus, spawning further enhances

efficiency of network utilization and reduction of

communication and computation loads.

A proxy agent is obligated to take its duty,

contemplate the present and forthcoming

transmission of the load of its host and other

machineries, suggested by Shehory et al. [41]. The

reasoning for spawning agents begins with

distinguishing the kinds of issues that are needed to

be fixed. There are two possible issues: (1) volume

and competence, in other words, an agent is

overloaded with a complicated and heavy task that

requires time and skills, and (2) bulky material

transmission necessities, in other words, network is

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3235

overloaded by many requests for data from different

sources.

In the event of encumbers, the main agent is

triggered to (1) divide a complicated task into

subtasks and (2) spawn light version of agents and

delegate these subtasks to the spawned agents. This

operation would effectively reduce the time

required to complete the task by one agent. The

reduction in time equals the required time by one

agent divided by number of spawned agents, e.g. if

a task take 10 minutes by one agent and in case this

agent is able to spawn 100 light version agents to

complete the task, then the time will be 10 /100,

which equals 6 seconds.

There are two types of spawning, local and

remote. However, remote spawning could be

initiated when local spawning is unworkable due to

overloaded network in sending the agents out as

described in the second issue and when remote

spawning is unquestionable. There are two

approaches to execute remote spawning: (1)

generating a proxy in the vicinity, and allowing it to

transfer to a remote machine; or (2) generating and

actuating the proxy on the remote machine.

When an agent is overloaded (i.e., it cannot

complete the subtasks in its subtask waiting list

before their respective deadlines or it has too many

neighbors to keep with), the agent creates a new

agent to handle parts of its load. The agent has two

options, namely cloning or spawning an agent.

Specifically, for a single agent, spawning is

triggered when the task load exceeds the agent’s

ability to complete on time, given the agent’s

current status and resource level. In this condition,

the agent spawns some new agents and assigns the

most beneficial tasks and corresponding resources

to them. These spawned agents are subordinates of

the original agent, but they cannot establish

relations with other agents. When the spawned

agents complete the assigned tasks, they become

idle and if they are idle for a pre-defined period, i.e.

when no more subtasks need to be completed, they

are terminated by the main agent to save relation

management load.

On the other hand, cloning happens when an

agent has too many neighbours, which means that

the agent has a heavy overhead for managing

relations with other agents. In this situation, to

avoid possible communication congestion, the agent

clones an agent which has the same resources as

itself, and assigns some neighbours to the cloned

agent. The main agent keeps a peer relation with the

cloned one. Contrary to the spawned agent, the

cloned agent cannot be destroyed by the main

agent. Instead, the main and cloned agents rejoin

together, once the total number of neighbours is less

than a pre-defined threshold.

2.8 Why is spawning necessary?

While agent cloning is a possible response to

overloads, agent spawning includes, in addition,

consideration of the data transfer necessary for task

execution and it relaxes the requirement of creating

an identical copy of the main agent. Thus, spawning

increases the ability of a multi-agent system to

perform tasks and reduces network congestion,

enhances efficiency of network utilization and

reduces communication and computation loads. We

can say that spawning improves agents’

performance and by using a spawning mechanism

they can complete their tasks sooner.

3. DISCUSSION ON THE REVIEW

In this paper, we discuss about software agent

technology and software agent cloning and

spawning. While there are few research papers on

agent spawning, many researchers Shehory et al.

[41] have raised and pointed out some problems on

agent spawning or cloning. These problems are:

1. What is are the optimal conditions for

spawning or cloning to maximize the benefits

of these two processes?

2. What is the optimal number of agents that

should be spawned or cloned?

3. Do we have to spawn as many agents as we

can or and if we do so, will it affect the

network utilization?

4. Does cloning or spawning negatively affects

the performance of a network?

5. What security issues are there that should be

considered if we spawn or clone an agent and

transfer it to another host in a network?

4. A PROPOSED AGENT SPAWNING AND

MOBILITY FRAMEWORK

The preliminary theory of our proposed

framework is based on a heavyweight agent, α,

which is tasked to access public information from

many different sites. Its design gives it the ability to

reason on knowledge, actions, plans and

communication so much so that transferring itself to

the sites would severely affect its performance due

to bandwidth constraints. Agent  then decides to

spawn n agents, a1, a2, . . ., an, each of which is

conferred specific functions and plans to access and

gather the public information from the sites such

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3236

that its overall plan is fulfilled. Figure 1 illustrates the spawning and mobility scenarios.

Figure 1 The Spawning And Mobility Concept

Being familiar with the nature of the issue that

ought to be resolved, reasoning about spawning

involves large information transfer requirements or

capacity and capability overloads. Agent overloads

are due to either the agent’s limited capacity to

process current tasks, or machine overloads. The

following scenario explains the agent’s actions in

case of these two problems occur.

An agent, which is encumbered, should permit

other agents that are capable of executing tasks. As

soon as every agent is encumbered, they should

permit newcomers to execute the tasks and make

use of unexploited assets. On the other hand,

relocating to other hosts is permissible for agents.

As soon as new tasks are assigned to the agents and

they are not competent, newcomers that are

competent enough to execute the new tasks ought to

be shaped and actuated. In view of that, there must

be a specific competence server accessible to users

and agents - localizing constituents for the required

expertise of an agent, and generate agents by means

of these constituents. If anticipated volume of

remotely-situated data required for performing a

task is bulky and is matched to the number of

agents, the agents that wish to accomplish the task

have to transfer to the location of the data, or agent

at this location should be spawned. Fig. 2

summarizes this scenario.

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3237

Figure 2 The Spawning And Mobility

The framework is described as follows:

If agent ‘A’, which has been assigned to a task, is

overloaded, it passes the task to another agent ‘B’ at

the same host, otherwise, it continues with

executing its task.

If all agents at the same host are overloaded, a

new agent, ‘C’, is cloned or spawned at the same

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3238

host with capabilities that commensurate with the

task’s complexity.

If the host itself is overloaded or the information

that is required for the task is too large, an agent,

‘D’, is cloned or spawned with capabilities that

commensurate with the task’s complexity and is

mobilized to the destination host.

For agent migration from the sender host to the

destination host, there are three steps each host will

do. For Sender:

1. Initialize migration process.

2. Capture data and state.

3. Transfer the agent.

For Receiver:

1. Receive the agent.

2. De-serialize the agent.

3. Start agent execution.

At the end of the execution, the agent dies.

5. A FRAMEWORK FOR DYNAMIC

SPAWNING OF AGENTS

We propose a framework for dynamic spawning

of agents, which is based on the rate of incoming

tasks and a heavyweight agent’s CPU load. The

heavyweight agent continuously monitors its CPU

and make a decision whether or not to spawn. If it is

unable to spawn a new agent to execute a specific

task, it only spawns a new agent and sends it to

another host to execute that task.

The issues in agent spawning involve the

following challenges; the required number of

spawned agents for a task group, the division of a

task group into actions and the number of actions

given to a spawned agent. Additionally, Shehory et

al. [41] claimed that there are necessary parameters

the heavyweight agent should use to decide whether

and when to initiate spawning. The necessary

parameters are as follows:

• The expected ratio of raw data necessary for its

tasks.

• The CPU and memory loads, both internal to

the agent and external (on the remote hosts).

• The CPU performance, both locally and

remotely.

• The load on the communication channels and

their transfer rate, both locally and remotely.

• The current queue of tasks, the resources

required for their execution and their deadlines.

• The future expected flow of tasks.

We choose these parameters for the spawning

function in order to know how many agents should

be spawned at a specific time. Figure 3 depicts a

typical scenario which shows a queue of task

groups received by the agent at a task rate, , from

which the agent estimates the duration of each task

group, t, and decides the number of actions, N, for

the spawned agents. Concurrently, it also monitors

the CPU load, , as another parameter for the

decision to spawn.

Figure 3 Dynamic Spawning Of Agents

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3239

Consequently, based on Figure 3, if σ is the

spawning function, then the number of agents

spawned is as follows:

If αi is the number of the spawned agents, then:

 σ : α × {τ, t, λ, N} → αi, (i ≥ 1) (1)

i.e., the number of spawned agents is a function

of the heavyweight agent, α, and the factors: τ, t,

λ and N where,

τ = incoming task rate

t = duration of a task group

λ = CPU load

N = number of actions in a task group.

To acquire the above information, the agent must

be able to read the operating system variables. In

addition, the agent must have self-awareness on two

levels, an agent internal level and a MAS level.

For this framework, we assume the following:

• Handle one task at a time: The heavyweight

agent receives one task per unit time, handles

it, and then receives the next one to start

handling and so on.

• No port security issues.

• Spawn N agents for each task that has N

actions.

• In a mobile agent system, the most common

type of fault that can occur is that an agent

suddenly disappears or is destroyed while

moving from one node to another. This kind of

fault is called agent crash (or simply, crash).

So, we assume that the system is otherwise

reliable (Fault-Tolerant Simulation of

Message-Passing Algorithms by Mobile

Agents)

• The transmitted mobile code runs on a new

remote host.

6. CONCLUSION AND FURTHER WORK

In this review paper, we present an introductory

concept of the research field in mobile agents. We

discuss about agent architectures and classes, agent

communication languages, agent cloning, spawning

and mobility. We then propose a new model for

agent spawning and mobility to solve the problem

of agent overload. In our further work, we shall

implement the framework utilizing the parameters

for spawning and mobilizing optimal lightweight

agent.

7. ACKNOWLEDGMENT

This project is sponsored by the Malaysian

Ministry of Higher Education (MoHE) under the

Fundamental Research Grant Scheme (FRGS) No.

FRGS/2/2013/ICT07/UNITEN/02/1.

REFERENCES

[1] Baumann J. and K. Rothermel. The shadow

approach: An orphan detection protocol for

mobile agents. In Int’l Workshopon Mobile

Agents, 1998.

[2] White J. Telescript technology: Mobile

agents. MIT press, 1997.

[3] de Krester O., A. Moffat, T. Shimmin, and J.

Zobel. Methodologies for distributed

information retrieval. In Proc. of the

Eighteenth Int’l Conference on Distributed

Computing Systems, pages 26–29, May

1998.

[4] Picco G., A. Carzaniga, and G. Vigna.

Designing distributed applications with

mobile code paradigms. In Proc. of the 19th

Int’l Conference on Software Engineering,

July 1997.

[5] Rus D., R. Gray, and D. Kotz. Autonomous

and adaptive agents that gather information.

In AAAI’96 International Workshop on

Intelligent Adaptive Agents, Aug. 1996.

[6] Mahmoud, M. A., & Ahmad, M. S. (2015,

August). A self-adaptive customer-oriented

framework for intelligent strategic

marketing: A multi-agent system approach to

website development for learning

institutions. In Agents, Multi-Agent Systems

and Robotics (ISAMSR), 2015 International

Symposium on (pp. 1-5). IEEE.

[7] Ahmed M., Ahmad M S, Yusoff M Z M,

Modeling Agent-based Collaborative

Process , The 2nd International Conference

on Computational Collective Intelligence

Technology and Applications (ICCCI 2010),

pp. 296-305, ISBN:3-642-16692-X 978-3-

642-16692-1, 10-12 November, 2010

Taiwan.

[8] Ahmed M., Ahmad M. S., and Yusoff M. Z.

M., "A Collaborative Framework for

Multiagent Systems." International Journal

of Agent Technologies and Systems

(IJATS), 3(4):1-18, 2011.

[9] Wooldridge, M. (1998). Agent-based

computing. Interoperable Communication

Networks, 1(1), 71-97.

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3240

[10] Mahmoud, M. A., Ahmad, M. S., & Yusoff,

M. Z. M. "Development and implementation

of a technique for norms-adaptable agents in

open multi-agent communities." Journal of

Systems Science and Complexity 29.6

(2016a): 1519-1537.

[11] Mahmoud, M. A., Ahmad, M. S., & Yusoff,

M. Z. M. (2016b, March). A Norm

Assimilation Approach for Multi-agent

Systems in Heterogeneous Communities.

In Asian Conference on Intelligent

Information and Database Systems (pp. 354-

363). Springer Berlin Heidelberg.

[12] Wooldridge, M. (1999). Intelligent Agents,

The MIT Press.

[13] Wooldridge, M., & Jennings, N. R. (1995).

Intelligent agents: theory and practice. The

Knowledge Engineering Review 10(2), 115-

152.

[14] Ahmed, M., Ahmad, M. S., & Yusoff, M. Z.

M. (2009). A review and development of

agent communication language. Electronic

Journal of Computer Science and

Information Technology: eJCIST, 1(1).

[15] Weiß, G. (2002). Agent orientation in

software engineering. Knowledge

Engineering Review, 16(4), 349–373.

[16] Mobile Agents an Introduction. (2014,

December 1). Retrieved from

http://www.cis.upenn.edu/~bcpierce/courses/

629/papers/Concordia-

WhitePaper.html#_Toc381690628

[17] Rongzhi Q. and S. Li, JMobile: A

Lightweight Transparent Migration

Mechanism for Mobile Agents, IEEE,

2008,pp. 1- 4.

[18] Athan A.and D. Duchamp. Agent-mediated

message passing for constrained

environments. In USENIX Mobile and

Location-Independent Computing

Symposium, 1993.

[19] Bandyopadhyay S. and K. Paul. Evaluating

the performance of mobile agent-based

message communication among mobile hosts

in large ad hoc wireless network. In Proc. of

2nd ACM Int’l Workshop on Modeling,

Analysis and Simulation of Wireless and

Mobile Systems, August 1999.

[20] 20 Miller L., J. Yang, V. Honavar, and J.

Wong. Intelligent mobile agents for

information retrieval and knowledge

discovery from distributed data and

knowledge sources. In Proc. of the IEEE

Information Technology Conference, 1998.

[21] Sabnani K., T. L. Porta, T.Woo, and R.

Ramjee. Experiences with network-based

user agents for mobile applications. In

Mobile Networks and Applications, 1998.

[22] Aridor Y.and M. Oshima. Infrastructure for

mobile agents: Requirements and design. In

Proc. on Int’l Workshop on Mobile Agents,

1998.

[23] Ghezzi C. and G. Vigna. Mobile code

paradigm and technologies: A case study. In

Int’l Workshop on Mobile Agents, April

1997.

[24] Wong D., N. Paciorek, and D. Moore. The

promise of javabased mobile agents for

unconstrained electronic commerce.

Communication of the ACM, 42(3):92–102,

1999.

[25] Ohsuga A., Y. Nagai, Y. Irie, M. Hattori, and

S. Honiden. Plangent: An approach to

making mobile agents intelligent. IEEE

Internet Computing, 1(4):50–57, 1997.

[26] Caripe W., G. Cybenko, K. Moizumi, and R.

Gray. Network awareness and mobile agent

systems. IEEE Communications Magazine,

pages 44–49, July 1998.

[27] Moizumi K.. Mobile Agent Planning

Problems. PhD thesis, Dartmouth College,

1998.

[28] Baek J., J. Yeo,G. Kim, andH.Yeom. Cost

effectivemobile agent planning for

distributed information retrieval. In Proc. on

Int’l Conference on Distributed Systems,

April 2001.

[29] Mobile Agent Computing. (2014, December

2). Retrieved from

http://www.tryllian.com/mobile-agents/

[30] Di Marzo G., M. Muhugusa, and C.

Tschudin. Survey of theories for mobile

agents. Working paper, The Computing

Science Center, University of Geneva,

Switzerland, November 1995.

[31] Chess D., B. Grosof, and C. Harrison,

"Itinerant agents for mobile computing,"

Tech. rep. RC 20010, IBM Res. Div., 1995.

[32] Shirazi B. A., A. R. Hurson, and K. M. Kavi,

Eds. Scheduling and Load Balancing in

Parallel and Distributed Systems, IEEE

Comp. Soc. Press, 1995.

[33] Gray R. S. et al., "Mobile agents for mobile

computing," Tech. rep. PCS-TR96-285,

Dartmouth College, Comp. Sci., May 1996.

[34] White E., "Telescript technology: Mobile

agents," General Magic White Paper, 1996.

[35] Sycara K. et al., "Distributed intelligent

agents," IEEE Expert, Dec. 1996, pp. 3645.

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3241

[36] 36- Decker K., K. Sycara, and M.

Williamson, "Intelligent adaptive

information agents," Proc. AAA/ '96 Wksp.

lntelligent Adaptive Agents, Portland, OR,

1996.

[37] Decker K., K. Sycara, and M. Williamson,

"Middleagents for the Internet," Proc. CA/

'97, Nagoya, Japan, 1997.

[38] Alshaki, O. T., Ahmad, M. S., & Mahmoud,

M. A. (2016, August). A new model of agent

spawning and mobility. In Agent, Multi-

Agent Systems and Robotics (ISAMSR),

2016 2nd International Symposium on (pp.

45-50). IEEE.

[39] Alshaki, O. T., Ahmad, M. S., & Mahmoud,

M. A, and Mahmoud M. A. "Development of

spawning and mobility model for

heavyweight software agent." Agents, Multi-

Agent Systems and Robotics (ISAMSR),

2015 International Symposium on. IEEE,

2015.

[40] Alshaki, O. T., Ahmad, M. S. "A Conceptual

Framework for Agent Spawning ," in 2014

International Conference on Computational

Science and Technology (ICCST), 2014,

ISBN: 978-1-4799-3241-2

[41] Shehory O., K.Sycara, P.Chalasani, S.Jha,An

Approach to gent Mobility and Resource

Allocation, IEEE Commun. Mag. Jul. 1998,

pp. 58-67.

