
Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3403

A RULE-BASED PREDICTION METHOD FOR DEFECT

DETECTION IN SOFTWARE SYSTEM

1
B. DHANALAXMI,

 2
Dr.G.APPA RAO NAIDU,

3
Dr.K. ANURADHA

1
Associate Professor, Department of Information Technology, Institute of Aeronautical Engineering,

Hyderabad, Telangana, India
2
Department of CSE, JBIET, Moinabad, Hyderabad, Telangana, India

3
Department of CSE, GRIET, Hyderabad, Telangana, India

E-mail:
1
bdhanalaxmi4@gmail.com,

2
apparaonaidug@gmail.com,

3
kodali.anuradha@yahoo.com

ABSTRACT

Software is a complex object that consists of different modules with changing degrees of defect occurrence.

By efficiently and appropriate predicting the frequency of defects in software, software project managers

can better utilize their workforce, cost and time to obtain better quality assurance. This paper proposes a

rule-based prediction (RBP) method for defect detection and for planing the better maintenance strategy,

which can support in the forecast a defective or non-defective software module before it can deploy for any

software project. The RBP extends the Ripple-down rule (RDR) classifier method to construct an effective

rule-basedmodel for accurately classifying the software defects. The method will enhance the software

defect prediction so that software testers can spend more time in testing those components which are

expected to contain errors. The experiment evaluation is performed over a software repository datasets and

the obtained results showa satisfactory improvement.

Keywords: Defect Detection, Rule-based Prediction, RDR Classification, Software system

1. INTRODUCTION

The defect prevention method does not always

prevent defects in the application below test

because the application is so complex and

impracticable to identify all the errors or faults. The

defect detection technology complements the defect

prevention effort and uses both methods together to

enhance the likelihood that the test team will

achieve the identified test objectives and goals. The

presence of "defect prevention strategies" not

simply reflects anelevated level of test field

maturity, but also represents the most cost-effective

expenditure associated with overall testing efforts.

A variety of methods, tools, techniques and

methods to prevent defects are proposed, but they

all seem to be insufficient n accurate prediction.

More work is still to be adopted to prevent defects

in terms of technology and the schemes that are

used.

In the case of errors detected in the development

lifecycle, requirements specifications it can be

prevented errors from migrating from design and

design to code. Defect prevention is critical to the

quality of the organization. The main purpose of

quality costs is not to decrease costs but to provide

costs in appropriate investments. It should not be

delighted as a waste of time while stipulating deep

participation. Instead, it should consider saving

time, money, and resources it needs. It can save as

many reworks as it needs when defects appear in

the final or post-delivery period. At every stage of

the software lifecycle, defect prevention should be

introduced to prevent failures early, take corrective

action to eliminate them and avoid their recurrence.

A software defect prediction framework is a system

that can predict whether a given software module is

defective. Typically, software failure prediction

models are trained utilizing software measures and

fault data composed from earlier developed

software releases or related projects. Models can be

applied to program modules with unknown defect

data.

The features or attributes of the software defect

prediction data set affect the presentation and

usefulness of the defect prediction model. Most

experiments related to fault prediction are

performed in a machine learning tool or

environment called "WEKA", and some are

performed in "MATLAB". The machine learning

approach consists of constructing predictive and

classified software modules and analyzing defects

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3404

according to defects, one of the important features

of the software. A variety of data mining

procedures such as "Decision Tree", "Bayesian

Belief Network" (BBN), "Artificial Neural

Network" (ANN), "SVM", and "clustering" are a

few of the techniques commonly used to predict

software defects. One of the important and effective

research in the areas of software engineering is

software defect prediction. Defects imperfection

prediction artifacts provide a listing of source code

defects so that QA team can successfully allocate

insufficient resources in confirming the software by

additional work on source code where defects occur

frequently. As software projects grow in a large

amount, the defect analytics technology

participatesin an important character in keep up of

the design and reduce time-to-market plays with

reliable software products. Even the measurement

of defect analysis and existing models cannot

provide good predictive performance generally.

Because every organization tries to keep this data

confidential, it cannot publish data sets that can be

used in experiments. One of the most commonly

available data sets includes the MDP and

PROMISE repositories provided by NASA. In this

paper, we propose a "rule-based prediction" (RBP)

method for efficient defect prediction in software

systems. The most important purpose of RBP is to

build an effective rule-based model to accurately

classify software defects. We also use NASA

repository data sets to evaluate proposals.

The following paper is categorized as Section-2

discusses the related works, Section-3 discusses the

proposed rule-based prediction method in detail,

Section-4 presents the experiment evaluation

utilizing the datasets and section-5 discusses the

conclusion of the paper.

2. RELATED WORKS

Software defect prevention proposals are mainly

based on tools, techniques, methods and standards

[11], [17]. This is one of the most active areas of

research in software engineering, [9], [21], [10],

[17], [19], [15]. Because the defect prediction

model provides a list of buggy software artifacts,

QA teams can efficiently assign limited resources

to test and investigate software products [10], [21],

[15].

A. Needs of Defect Prediction

Defect analysis at the early stage reduces time [6],

cost, cost, and resources essential. Knowledge of

entering faults and process can prevent defects. The

study of this knowledge will improve quality and

analyze the root cause of defects can prevent the

occurrence of defects. Analysis of the main reasons

may take two types: "logical analysis" and

"statistical analysis". Logical analysis is a human-

orientedinvestigation that needs specialized

knowledge in products, processes, improvement

and the environment. Checks logical connection

among errors (effects) and error (reason), and

statistical analysis based on empirical learning of

similar projects or projects generally written [18].

There are many ways to detect defects such as

"inspection", "prototype", "testing" and "accuracy

calibration" [7]. Formal testing is the most effective

and expensive method of quality control to detect

defects at an early stage of development [8], [9].

Prototyping understands the specific requirements

to help eliminate some of the shortcomings in

defect elimination. Testing is one of the most

effectual techniques. It can escape through the early

detection of defects [10] which can be detected

during the test. Improve accuracy, especially in the

coding phase, to determine the best way to go.

Precision tuning is the most effective and

economical way to create software. Defect

prevention can be accomplished by automating the

development process. Several tools are offered to

analyze the necessity of the stage. The tools

available are the requirements for being too costly.

It can automate the compliance checks, but this

cannot be an automatic integrity check. The tools

used in this step include requirements management

tools, recorder requirements tools, requirements and

validation tools. Design tools include "database

design tools", "application design tools", and

"visual modelling tools" such as "Rational Rose".

Even tools such as "code generation tools", "code

testing tools", and "code coverage analysis tools"

can be used to automate testing steps. Several tools

such as "defect tracking tools", "configuration

management tools", and "test procedure generation

tools" are available at every stage of development.

B. Existing Defect Prediction Models

Many defect prediction models are based on

"machine learning". Depending on what to predict

the machine learning models fall into two forms:

"classification" and "regression". As the innovative

machine learning techniques are being developed,

"active or semi-supervised learning methods" that

were used to build a good defect prediction models

[14], [15]. In addition to machine learning models

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3405

or statistical models, such as "BugCache" [19] have

been projected.

The Figure.1 illustrates the frequency of use of the

"defect prediction model" in representative defect

prediction in the literature [4]. Because "statistical

models" based on machine learning have been

considered for anextensive time, "classification and

regression models" dominate. In the proposed

BugCache [29], there have been several studies

examining the BugCache model as well as case

studies in [12],[13],[16].

.

Figure.1: Utilization frequency of defect prediction

models

Kim et al. [23] suggested a new "defect prediction

model" termed as "change classification". Change

classification can be directly beneficial to

developers, as opposed to the common failure

prediction model because the change classification

model can provide immediate predictions every

time a developer changes to source code files and

commits to the "version control system" [21].

Though, the modified classification model is

besideintense for actual use because the model

consists of more than 10,000 features [16]. Turhan

et al. [24] implemented a nearest neighbour filter

applied (NN filter) is used to improve inter-

company fault prediction performance. The basic

idea behind NN filters is to accumulate related

source instances in the objective instance to learn

the prediction model. In other terms, if it can build

a prediction model utilize a selected source instance

with data characteristics similar to the target

instance, the model can be better performed when

predicting the target instance over the model

learned to utilize all source instances. The NN filter

selects 10 source illustrations for each target

instance as the nearest neighbours. To evaluate the

performance of inter-company fault prediction

utilizing NN filters were conducted utilizing 10

proprietary data sets from NASA and SOFTLAB

[24].

Most existing work on troubleshooting depends on

declarative specification rules [5] [6] [7] [4]. These

conditions usually determined manually identify the

main features that characterize a defect, especially

utilizing a combination of quantitative (metric),

structural and/or lexical information. However, in a

deep scenario, the number of possible defects that

can be described manually with the rules can be

very large. Dimensions software typically utilized

to analyze method efficiency and product software

quality for the projects. Failure assessment is

carried metrics software and effectively used to

predict faults. For each fault, the rule represented

by the metric combination requires significant

remediation to find the threshold appropriate for

each metric.

The software is a complex object that consists of

different modules with varying degrees of defect

frequency. Therefore, it is significant to predict a

defective software module before it deploys a

software project to plan anim proved up holding

schemes. Premature knowledge of faulty software

modules can facilitate it plan efficient process

improvement at a reasonable time and cost. This

can direct to enhanced software releases as well as

higher customer fulfillment. Software modules are

categorized into two categories, either defective or

non-defective, and are mostly predicted utilizing a

binary classification model. We take advantage of

these two classes for suggestions on how to classify

and evaluate data sets.

3. PROPOSED RULE-BASED PREDICTION

METHOD

The Rule-Based Prediction (RBP) is a classification

method that is designed for accurate defect

measurement and prediction, which is an important

issue in much software because of indirect

measurement and is based on a number of metrics.

The RBP method inherits the methodology of

Ripple-down rules (RDR), which is a direct

classification method. The RDR algorithm has

improved efficiency by reducing the number and

accuracy of rules by improving the results. In our

study, we used fault identifiers utilizing the static

code properties defined by "McCabe" [26] and

"Halstead" [27]. These are "module-based metrics"

and modules are the smallest functional unit in the

entire system.

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3406

Figure.2: Proposed RBP Methodology

Generally, before it creates a failure prediction

model and uses it for predictive purposes, it must

first determine the learning scheme or learning

algorithm that it will use to build the model.

Therefore, the predictive performance of learning

plans should be established especially for prospect

data.

The framework consists of two modules:

1. Learning Phase of RBR Method

2. Defect prediction phase.

A. Learning Phase

In this framework, the proportion of splitting

utilized to assess the effectiveness of everyone

predictive model was first used. That is, every first

data set is divided into two fractions and

anidentifierlearns within 60%, and the left over is

40%.The ripple-down rule consists of a data

organization and a knowledge gaining scenario.

The knowledge of human experts is accumulated in

the data structure. Knowledge is implied into a set

of rules. In the knowledge acquisition scenario, the

process of transferring the knowledge of human

experts to the RBR's knowledge-based system is

described.

Alogrithm-1 shows the pseudo-code view of RBR:

The code consists of two nested loops. External

Loop selects the class value, and the inner loop

creates a rule that applies to the class. The function

returns a combination "best_clause" only example

in terms of covering the current class. RBR uses a

simple heuristic algorithm choice of the term,

which is based on the probability that a certain

classification of certain attribute-value pairs. The

following conditions are usually added conditions

to choose the most positive and least negative

pattern example. This is given by the ratio z / s,

where s is the "number of examples chosen by the

term", and z is a "positive number". The rule is

added until the rule selects only the positive

example (i.e., until z = s). RBR ensures that the rule

set is complete. All examples are enforced by at

least one rule and are consistent. All examples are

expected to belong only to one class.

• Ripple-Down Rules

Knowledge-based systems with animmense

structure of thoughts and regulations are currently

routinely used in many applications. Gaining

knowledge of these systems when new

environments arise is a constant prerequisite as the

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3407

system grows and becomes more difficult due to the

interplay of rules. The "ripple down rule

mechanism" creates a bi-directional reliance among

rules so that rule activation is simply examined in

the perspective of last rule activation. If the

assertion of the main regulation is true for a

scrupulous personality, the conclusion about the

individual is expressed if there is no dependent.

However, if it is 'true', the rule and its dependents

are tested in 'Where appropriate' and the original

conclusion is only claimed if the premise of the

institution is true to the legal object. Conversely, if

a certain individual construction principal rule is

false, then the conclusion is not only maintained,

but if it have an "if-false" dependence, and its

needy will also be tested. Thus, the "ripple-down

rule" is a "binary decision tree" is different from the

standard decision tree to determine the point that it

uses a sophisticated branch, and it does not make

exhaustive provision to settle all cases, decisions on

the internal node. This disparity with the standard

tree, where the entire decisions are the source node.

However, the functionality of the "standard

decision-tree" claims that only one decision node is

active in each case. This is effortless to maintain, as

it should be taken into account only the nodes of a

past event if there are errors in reaching decisions.

The expansion of the ripple-down rule involves a

very simple statistical decision process to create a

regulation that is recursively termed in the

remaining data set to produce "if-true" and "if-

false". It is a very natural in pointing rule. Figure.-3

shows the fault analysis, which offers a "statistical

control algorithm" used to fit. The case in the area

under consideration for the share is displayed as a

rectangle off rectangle fault. The rectangle with the

defect D0 is the rectangle that the Induct tries to

determine the rule. If the premise of the currently

proposed rule applies, it will be displayed as an

outer ellipse. An internal ellipse indicates a

collapsed set that applies when a supplementary

article is added to the principle rules.

Figure.3: Inducing ripple-down rules

There are three stages to creating a principle rules.

First, the generally frequent diagnosis in the

fraction under deliberation is opted for as the object

description. Second, the area is started without a

clause. Third, the combination of the value of each

property that has been tested is available on the best

possible terms and selected according to statistical

tests in detail below. Fourth, the time that the

provision of such tests determined whether the rules

have improved. If there is an improvement, the

process can be repeated for the third step,

otherwise, the product will finish ruling with the

rule output.

The data construction is related to a "decision tree".

Everyone node has a rule and the arrangement of

this rule is "IF cond1 AND cond2 AND ... AND

condNTHEN conclusion". "Cond1"is a clause of

the 0 or 1 evaluation. For instance, if "A=1", then

"is Greater (A,5)" and

"average(A,">",average(B))".

Everyone node has precisely two supporting nodes,

the supporting nodes are associated with the node

by "ELSE" or "EXCEPT". An instance of "RDR

tree" which described repeatedly is given below:

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3408

 B. Defect Prediction Phase

The methodology of defect predictive phase is

straightforward. It consists of an"identifiercreator"

and "defect prediction". During the identifier

construction phase, a learning plan is selected.

Predictive variables are created with the selected

learning plan and full historical data. The end result

is the average of all surroundings. This shows that

the assessment actually cover up all the data.

Therefore, building identifiers utilizing all historical

data is expected to improve the simplification

capability of built identifiers. After the identifier is

created, novel data is pre-processed in

anequivalentmanner as historical data, and

afterward the identifier built can be utilized to

predict software faults with latest pre-processed

data. The difficulty of "empirical prediction

induction" is specified by a "universe of entities",

E, "a target predicate", Q, and a "set of possible test

predicates of the form", S on entities in E, to utilize

them to create a set of rules from which the

intention predicate could be conditional specified

the assessments of the test predicates. For the

intention of the "statistical analysis", the

appearances of S and Q which do not substance.

One should consider S as anidentifier to select those

"e" out of several separations of E for which to

claim "Q(e)", and measure up to the assortment

method of the regulation with that of indiscriminate

identified, the enquiries to find “what is the

probability that random identification of the same

degree of generality would achieve the same

accuracy or greater" is been shown with help of the

Figure.4.

Figure.4: Defect investigation for statistical organize of

empirical orientation

Lets considered "Q" be the "associated entities" in

E for which "Q(e)"contains, S be the "selected

entities" in E for which "S(e)"contains, "C" be the

"correct entities" in E for which both "S(e)" and

"Q(e)" contain. It can represent as,

 (1)

 (2)

 (3)

Let's the "E, Q, S" and "C" be "e, q, s" and "c" are

cardinalities of correspondingly, and the

probability, p for getting from E which will contain

Q at a random will be computed as,

 (4)

The process of complete outlining the mechanism

of enhancing RDR approach is presented in

Alogrithm-2. It discusses a function "make_rdr"

which takes default class attributes and training set

as input to provide the new RDR rules.

In view of Figure. 4, the universe E of the entity is

part of the database below consideration, the

objective of the predicted Q is "D0", and the

extracted entity S is in the outer ellipse. Choosing

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3409

the best term for each step is based on decreasing

the probability that the result accomplish by the

assertion is accomplish by "random identification".

For "ripple-down rules", a significance decision is

whether to maintain the further common rules for

external ellipses or to add additional clauses that

correspond to internal ellipses. An external ellipse

covers additional target cases that utilize"D0" as a

diagnostic, except it contains more "D7", "D8",

"D9", etc., so it should be delighted as an exception

in the "ripple-down rule" structure. The decision is

fascinating because it does not essentially influence

the accuracy of the ultimate knowledge to stand

given the ability to handle exceptions. Relatively, it

influences the structure in expressions of

preferences for generic rules with various

exclusions relatively than definite rules with only

some exceptions. It affects the quantitative

measures of the knowledge base, such as the

number of rules and conditions concerned, but

influences the structure in a way that human experts

can present knowledge in a way that pertains to

cognitive approaches.

4. EXPERIMENT EVALUATION

The experiments were performed utilizing

algorithms implemented in the "WEKA

environment" [19] utilizing NASA - Metric Data

Program (MDP) Repository. Below we discuss

datasets, evaluation measures, and results analysis.

A. Datasets

The datasets are obtained from the "NASA-MDP

Repository" [9] which consists of 12 datasets. Data

storages contain metrics software quality attributes

in data sets, as well as an indication of whether a

particular set of data is "defective" or "non-

defective". Each data set consists of several

software units, each corresponding to many of

defects and different software code static

characteristics. The preprocessingunits contain

additional defects seen as defective. A more

comprehensive description of "code attributes" or

"the origins of the MDP data sets” are available in

[5]. The number of data sets utilized is"CM1, JM1,

KC1, KC2, and PC1", which include" static code

measures" discussed by "Halstead" and "McCabe",

along with defect rates. Table-1 presents project

narrative for every one of these data sets.

Table 1.Each Project Data Set Description

Project

Source

Code

Description

CM1 C NASA spacecraft instrument

KC1 C++ Storage management for

receiving/processing ground data

KC2 C++ Science data processing. No software
overlap with KC1

JM1 C Real time predictive ground system

PC1 C Flight software for earth orbiting

satellite

Everyone data set includes 21 software metrics

depending on the "size", "complexity" and

"vocabulary of the product". Attribute class for

each set of data relating to "TRUE", meaning

component has one or more defects and wrongly

associated with zero defects.

B. Performance Measures

Performance is calculated accordingly to the

confusion matrix shown in Table-2, which is

utilized by several researchers e.g. [14], [5]. This

illustrates the confusion matrix for the problem of

two classes with "positive" and "negative" values

class. Classifiers accuracy is measured by, "true

positive rate", "false positive rate", "precision",

"recall" and "F-measures" using a machine learning

tool known as WEKA. This tool is a provides the

groups of "machine learning algorithms" for

various data mining tasks.

Table 2: Confusion Matrix

Actual Class

Predicted Class

 Defective Not defective

Defective TN FP

Not Defective FN TP

Defect efficiency of software predicted based on

the measure of "accuracy", "sensitivity" and

"specificity" is defined as,

• Accuracy =(TP+TN) / (TP+FP+TN+FN),

"The percentage of prediction that is

correct".

• Sensitivity = (TP) / (TP+FN), "The

percentage of positivelylabeled instances

that predicted as positive".

• Specificity = (TN) / (FP+TN), "The

percentage of positivelylabeled instances

that predicted as negative".

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3410

C. Result Evaluation

According to the best values of accuracy, we prefer

4 existing classification algorithms for comparison

evaluation. All estimated values are accumulated

and compared with dissimilar parameter

measurement performance. The accuracy of Table-

3 shows others algorithm gives a different accuracy

in a different dataset. But the average performance

is almost the same. The proposed RBR giving

better Accuracy value in compare to existing

classifier. The sensitivity and specificity measure

the compute the positive and negative instances

which are predicted from positive label instances as

shown in Table-4 and 5. In comparison with the

existing classifiers, the proposed RBP shows an

average of 20% improvisation in sensitivity and

10% in case of specificity. The graphical

comparison of results is presented in Figure.5, 6

and 7 in respectively.

• Accuracy Results

Table 3: Accuracy Results

Method

s

Naive

bayes

Oner

R

J48 RIDO

R

Prop.RB

P

CM1 83.9

4

89.13 86.2

3

75.73 85.32

KC1 83.0

5

83.29 85.5

6

70.15 86.87

KC2 77.5 71.25 80 76.25 81.25

JM1 81.2

8

79.67 79.8 81.42 82.02

PC1 88.8

2

91.45 87.8

3

89.14 92.43

Figure.5: Accuracy Comparison

• Sensitivity Results

Table 4: Sensitivity

Methods Naive

bayes

OnerR J48 RIDOR Prop.RBP

CM1 0.4 0.133 0.2 0.267 0.333

KC1 0.328 0.32 0.197 0.254 0.434

KC2 0.412 0.118 0.353 0.373 0.422

JM1 0.157 0.131 0.123 0.109 0.198

PC1 0.28 0.24 0.16 0.24 0.36

Figure-6.Sensitivity Comparison

• Specificity Results

Table 5: Specificity Result

Method

s

Naive

bayes

Oner

R

J48 RIDO

R

Prop.RB

P

CM1 0.89

3

0.789 0.94

3

0.951 0.984

KC1 0.93

2

0.898 0.95

9

0.947 0.976

KC2 0.95

2

0.921 0.87

3

0.937 0.937

JM1 0.95

7

0.954 0.99

4

0.968 0.988

PC1 0.94

3

0.935 0.98

9

0.993 0.982

Figure-7.Specificity Comparison

5. CONCLUSION

Detection and correction of defects make it easier

for developers to understand the program. To

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3411

increase the effectiveness and quality of software

development, it can take the advantage of data

mining to analyze and provide a lot of data

collected from defects in software development.

This paper presents a rule-based prediction (RBP)

method for rules that are easy to understand and

have two types of exceptions that can automatically

find the discovery rules, preventing the designer

from doing this manually. A rule is defined as a

combination of metrics/thresholds that better fits an

instance of a known design defect. This proposed

algorithm performs the same operation on everyone

node of the "Ripple Down rule tree", which adds

supplementary rules for better performance.

Nevertheless, while the algorithm can fully analyze

the statistics of all relevant cases, it does this in

response to one bad case. This task can fully

describe the effect quickly enough to change the

ripple-down rule structure arbitrarily and maintain

interaction development. In the experimental

analysis, it shows better performance in fault

prediction compared with the existing classification

approach.

REFERENCES

[1] Moeyersoms J, Fortuny EJ, Dejaeger K,

Baesens B, "Comprehensible software fault

and effort prediction: A data mining approach"

The Journal of Systems and Software. 100:80-

90, Feb-2015.

[2] Y. Chen, X. Shen, Peng Du, and Bing Ge.,

"Research on software defect prediction based

on data mining", IEEE 2nd International

Conference on Computer and Automation

Engineering(ICCAE),Volume 1, pages 563-

567, 2010.

[3] G. Czibula, Z. Marian, I. GergelyCzibula,

"Software defect prediction using relational

association rule mining ", Elsevier

International Journal of Information Sciences,

Volume 264, April, Pages 260-278, 2014.

[4] R. Moser, W. Pedrycz, and G. Succi, "A

comparative analysis of the efficiency of

change metrics and static code attributes for

defect prediction",ACM/IEEE 30th

International Conference on Software

Engineering,ICSE'08, pages 181-190, 2008.

[5] H. Zhang, X. Zhang, and Ming Gu, "Predicting

defective software components from code

complexity measures", IEEE In Dependable

Computing Pacific Rim International

Symposium on, pages 93-96, 2007.

[6] S. Lessmann, B. Baesens, C. Mues, and S.

Pietsch, "Benchmarking classification models

for software defect prediction: A proposed

framework and novel findings",IEEE

Transactions on Software Engineering,

34(4):485-496, 2008.

[7] R Geoff Dromey, "Software Control Quality -

Prevention Verses Cure?", ACM Journal of

Software Quality Journal archive, Volume-11

Issue 3, Pages 197-210, July 2003.

[8] Kaur S, Kumar D, "Software fault prediction in

object-oriented software systems using density

based clustering approach", International

Journal of Research in Engineering and

Technology (IJRET), 1(2):111-7, Mar-2012.

[9] Q. Song, Z. Jia, M. Shepperd, Shi Ying, and

Jin Liu, "A general software defect-proneness

prediction framework", Software Engineering,

IEEE Transactions on, 37(3):356-370, 2011.

[10] Haghighi, A. A. S., Dezfuli, M. A., and

Fakhrahmad, S. M., "Applying mining

schemes to software fault prediction: A

proposed approach aimed at test cost

reduction", In Proceedings of the World

Congress on Engineering, pp.415-419, 2012.

[11] Software Defect Dataset, PROMISE

REPOSITORY, http://promise.site.uottawa.ca/

SERepository/ datasetspage.html, December 4,

2013.

[12] H. Najadat and I. Alsmadi,"Enhance Rule-

Based Detection for Software Fault-Prone

Modules", International Journal of Software

Engineering and Its Applications,Vol. 6, No. 1,

January 2012

[13] T. Hall, S. Beecham, D. Bowes, D. Gray, and

S. Counsell, "A systematic literature review on

fault prediction performance in software

engineering", IEEE Trans. Softw. Eng.,

38(6):1276– 1304, Nov. 2012.

[14] Shepperd, M., Song, Q., Sun, Z., and Mair, C.,

"Data Quality: Some Comments on the NASA

Software Defect Data Sets", IEEE Transactions

on Software Engineering, pp.1208-1215, 2013.

[15] Okutan O. T. Yildiz, "Software defect

prediction using Bayesian

networks",Inproceeding to Empirical Software

Engineering, pp. 1-28, 2012.

[16] H. Can, X. Jianchun, Z. R. L. Juelong, Y.

Quiliang and X. Liqiang, "A new model for

software defect prediction using particle swarm

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3412

optimization and support vector machine",

IEEE 25th Chinese Control and Decision

Conference (CCDC), 2013.

[17] J. Wang, B. Shen and Y. Chen, "Compressed

C4.5 Models for Software Defect

Prediction",IEEE 12th International

Conference on Quality Software (QSIC), pp.

13-16, August2012.

[18] Z. Yan, X. Chen and P. Guo, "Software Defect

Prediction Using Fuzzy Support Vector

Regression", Springer-Verlag Berlin

Heidelberg, 2010.

[19] E. Arisholm, L. C. Briand, and E. B.

Johannessen. A systematic and comprehensive

investigation of methods to build and evaluate

fault prediction models. J. Syst. Softw.,

83(1):2–17, Jan. 2010.

[20] Gaines, B.R., Compton, P.: Induction of

Ripple-Down Rules Applied to Modeling

Large Databases. J. Intell. Inf. Syst. 5(3), 211-

228 ,1995.

[21] T. GalinacGrbac, P. Runeson, and D. Huljenic,

"A second replicated quantitative analysis of

fault distributions in complex software

systems", IEEE Trans. Softw. Eng., 39(4):462–

476, Apr. 2013.

[22] D. Rodriguez, I. Herraiz, and R. Harrison, "On

software engineering repositories and their

open problems", In Proceedings of RAISE

’12, pages 52–56, 2012.

[23] S. Kim, T. Zimmermann, E. J. Whitehead Jr.,

and A. Zeller, "Predicting faults from cached

history", In Proceedings of the 29th

international conference on Software

Engineering, ICSE '07, pages 489-498, 2007.

[24] B. Turhan, T. Menzies, A. B. Bener, and J. Di

Stefano, "On the relative value of cross-

company and within-company data for defect

prediction", Empirical Softw. Eng., 14:540-

578, October 2009.

[25] Y. Ma, G. Luo, X. Zeng, and A. Chen,

"Transfer learning for cross-company software

defect prediction", Information Software

Technology, 54(3):248–256, Mar. 2012.

[26] N. Ohlsson and H. Alberg, "Predicting fault-

prone software modules in telephone switches"

IEEE Trans. Softw., 22(12):886 –894, Dec.

1996.

[27] M. H. Halstead, "Elements of Software Science

(Operating and Programming Systems Series)",

Elsevier Science Inc., New York, NY, USA,

1977.

