
Journal of Theoretical and Applied Information Technology 
31st July 2017. Vol.95. No 14 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
3403 

 

A RULE-BASED PREDICTION METHOD FOR DEFECT 

DETECTION IN SOFTWARE SYSTEM 
 

 

1
B. DHANALAXMI,

 2
Dr.G.APPA RAO NAIDU, 

3
Dr.K. ANURADHA 

1
Associate Professor, Department of Information Technology, Institute of Aeronautical Engineering, 

Hyderabad, Telangana, India 
2
Department of CSE, JBIET, Moinabad, Hyderabad, Telangana, India 

3
Department of CSE, GRIET, Hyderabad, Telangana, India 

E-mail:  
1
bdhanalaxmi4@gmail.com, 

2
apparaonaidug@gmail.com, 

3
kodali.anuradha@yahoo.com 

 
ABSTRACT 

Software is a complex object that consists of different modules with changing degrees of defect occurrence. 

By efficiently and appropriate predicting the frequency of defects in software, software project managers 

can better utilize their workforce, cost and time to obtain better quality assurance. This paper proposes a 

rule-based prediction (RBP) method for defect detection and for planing the better maintenance strategy, 

which can support in the forecast a defective or non-defective software module before it can deploy for any 

software project. The RBP extends the Ripple-down rule (RDR) classifier method to construct an effective 

rule-basedmodel for accurately classifying the software defects. The method will enhance the software 

defect prediction so that software testers can spend more time in testing those components which are 

expected to contain errors. The experiment evaluation is performed over a software repository datasets and 

the obtained results showa satisfactory improvement. 
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1. INTRODUCTION 

 

The defect prevention method does not always 

prevent defects in the application below test 

because the application is so complex and 

impracticable to identify all the errors or faults. The 

defect detection technology complements the defect 

prevention effort and uses both methods together to 

enhance the likelihood that the test team will 

achieve the identified test objectives and goals. The 

presence of "defect prevention strategies" not 

simply reflects anelevated level of test field 

maturity, but also represents the most cost-effective 

expenditure associated with overall testing efforts. 

A variety of methods, tools, techniques and 

methods to prevent defects are proposed, but they 

all seem to be insufficient n accurate prediction. 

More work is still to be adopted to prevent defects 

in terms of technology and the schemes that are 

used. 

In the case of errors detected in the development 

lifecycle, requirements specifications it can be 

prevented errors from migrating from design and 

design to code. Defect prevention is critical to the 

quality of the organization. The main purpose of 

quality costs is not to decrease costs but to provide 

costs in appropriate investments. It should not be 

delighted as a waste of time while stipulating deep 

participation. Instead, it should consider saving 

time, money, and resources it needs. It can save as 

many reworks as it needs when defects appear in 

the final or post-delivery period. At every stage of 

the software lifecycle, defect prevention should be 

introduced to prevent failures early, take corrective 

action to eliminate them and avoid their recurrence. 

A software defect prediction framework is a system 

that can predict whether a given software module is 

defective. Typically, software failure prediction 

models are trained utilizing software measures and 

fault data composed from earlier developed 

software releases or related projects. Models can be 

applied to program modules with unknown defect 

data.  

The features or attributes of the software defect 

prediction data set affect the presentation and 

usefulness of the defect prediction model. Most 

experiments related to fault prediction are 

performed in a machine learning tool or 

environment called "WEKA", and some are 

performed in "MATLAB". The machine learning 

approach consists of constructing predictive and 

classified software modules and analyzing defects 
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according to defects, one of the important features 

of the software. A variety of data mining 

procedures such as "Decision Tree", "Bayesian 

Belief Network" (BBN), "Artificial Neural 

Network" (ANN), "SVM", and "clustering" are a 

few of the techniques commonly used to predict 

software defects. One of the important and effective 

research in the areas of software engineering is 

software defect prediction. Defects imperfection 

prediction artifacts provide a listing of source code 

defects so that QA team can successfully allocate 

insufficient resources in confirming the software by 

additional work on source code where defects occur 

frequently. As software projects grow in a large 

amount, the defect analytics technology 

participatesin an important character in keep up of 

the design and reduce time-to-market plays with 

reliable software products. Even the measurement 

of defect analysis and existing models cannot 

provide good predictive performance generally. 

Because every organization tries to keep this data 

confidential, it cannot publish data sets that can be 

used in experiments. One of the most commonly 

available data sets includes the MDP and 

PROMISE repositories provided by NASA. In this 

paper, we propose a "rule-based prediction" (RBP) 

method for efficient defect prediction in software 

systems. The most important purpose of RBP is to 

build an effective rule-based model to accurately 

classify software defects. We also use NASA 

repository data sets to evaluate proposals. 

 

The following paper is categorized as Section-2 

discusses the related works, Section-3 discusses the 

proposed rule-based prediction method in detail, 

Section-4 presents the experiment evaluation 

utilizing the datasets and section-5 discusses the 

conclusion of the paper. 

 

2. RELATED WORKS 

 

Software defect prevention proposals are mainly 

based on tools, techniques, methods and standards 

[11], [17]. This is one of the most active areas of 

research in software engineering, [9], [21], [10], 

[17], [19], [15]. Because the defect prediction 

model provides a list of buggy software artifacts, 

QA teams can efficiently assign limited resources 

to test and investigate software products [10], [21], 

[15]. 

 

A. Needs of Defect Prediction 

 

Defect analysis at the early stage reduces time [6], 

cost, cost, and resources essential. Knowledge of 

entering faults and process can prevent defects. The 

study of this knowledge will improve quality and 

analyze the root cause of defects can prevent the 

occurrence of defects. Analysis of the main reasons 

may take two types: "logical analysis" and 

"statistical analysis". Logical analysis is a human-

orientedinvestigation that needs specialized 

knowledge in products, processes, improvement 

and the environment. Checks logical connection 

among errors (effects) and error (reason), and 

statistical analysis based on empirical learning of 

similar projects or projects generally written [18]. 

There are many ways to detect defects such as 

"inspection", "prototype", "testing" and "accuracy 

calibration" [7]. Formal testing is the most effective 

and expensive method of quality control to detect 

defects at an early stage of development [8], [9]. 

Prototyping understands the specific requirements 

to help eliminate some of the shortcomings in 

defect elimination. Testing is one of the most 

effectual techniques. It can escape through the early 

detection of defects [10] which can be detected 

during the test. Improve accuracy, especially in the 

coding phase, to determine the best way to go. 

Precision tuning is the most effective and 

economical way to create software. Defect 

prevention can be accomplished by automating the 

development process. Several tools are offered to 

analyze the necessity of the stage. The tools 

available are the requirements for being too costly. 

It can automate the compliance checks, but this 

cannot be an automatic integrity check. The tools 

used in this step include requirements management 

tools, recorder requirements tools, requirements and 

validation tools. Design tools include "database 

design tools", "application design tools", and 

"visual modelling tools" such as "Rational Rose". 

Even tools such as "code generation tools", "code 

testing tools", and "code coverage analysis tools" 

can be used to automate testing steps. Several tools 

such as "defect tracking tools", "configuration 

management tools", and "test procedure generation 

tools" are available at every stage of development. 

 

B. Existing Defect Prediction Models 

 

Many defect prediction models are based on 

"machine learning". Depending on what to predict 

the machine learning models fall into two forms: 

"classification" and "regression". As the innovative 

machine learning techniques are being developed, 

"active or semi-supervised learning methods" that 

were used to build a good defect prediction models 

[14], [15]. In addition to machine learning models 
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or statistical models, such as "BugCache" [19] have 

been projected. 

 

The Figure.1 illustrates the frequency of use of the 

"defect prediction model" in representative defect 

prediction in the literature [4]. Because "statistical 

models" based on machine learning have been 

considered for anextensive time, "classification and 

regression models" dominate. In the proposed 

BugCache [29], there have been several studies 

examining the BugCache model as well as case 

studies in [12],[13],[16]. 

.

 
Figure.1: Utilization frequency of defect prediction 

models 

 

Kim et al. [23] suggested a new "defect prediction 

model" termed as "change classification". Change 

classification can be directly beneficial to 

developers, as opposed to the common failure 

prediction model because the change classification 

model can provide immediate predictions every 

time a developer changes to source code files and 

commits to the "version control system" [21]. 

Though, the modified classification model is 

besideintense for actual use because the model 

consists of more than 10,000 features [16].  Turhan 

et al. [24] implemented a nearest neighbour filter 

applied (NN filter) is used to improve inter-

company fault prediction performance. The basic 

idea behind NN filters is to accumulate related 

source instances in the objective instance to learn 

the prediction model. In other terms, if it can build 

a prediction model utilize a selected source instance 

with data characteristics similar to the target 

instance, the model can be better performed when 

predicting the target instance over the model 

learned to utilize all source instances. The NN filter 

selects 10 source illustrations for each target 

instance as the nearest neighbours. To evaluate the 

performance of inter-company fault prediction 

utilizing NN filters were conducted utilizing 10 

proprietary data sets from NASA and SOFTLAB 

[24]. 

 

Most existing work on troubleshooting depends on 

declarative specification rules [5] [6] [7] [4]. These 

conditions usually determined manually identify the 

main features that characterize a defect, especially 

utilizing a combination of quantitative (metric), 

structural and/or lexical information. However, in a 

deep scenario, the number of possible defects that 

can be described manually with the rules can be 

very large. Dimensions software typically utilized 

to analyze method efficiency and product software 

quality for the projects. Failure assessment is 

carried metrics software and effectively used to 

predict faults. For each fault, the rule represented 

by the metric combination requires significant 

remediation to find the threshold appropriate for 

each metric. 

 

The software is a complex object that consists of 

different modules with varying degrees of defect 

frequency. Therefore, it is significant to predict a 

defective software module before it deploys a 

software project to plan anim proved up holding 

schemes. Premature knowledge of faulty software 

modules can facilitate it plan efficient process 

improvement at a reasonable time and cost. This 

can direct to enhanced software releases as well as 

higher customer fulfillment. Software modules are 

categorized into two categories, either defective or 

non-defective, and are mostly predicted utilizing a 

binary classification model. We take advantage of 

these two classes for suggestions on how to classify 

and evaluate data sets. 

 

3. PROPOSED RULE-BASED PREDICTION 

METHOD 
 

The Rule-Based Prediction (RBP) is a classification 

method that is designed for accurate defect 

measurement and prediction, which is an important 

issue in much software because of indirect 

measurement and is based on a number of metrics. 

The RBP method inherits the methodology of 

Ripple-down rules (RDR), which is a direct 

classification method. The RDR algorithm has 

improved efficiency by reducing the number and 

accuracy of rules by improving the results. In our 

study, we used fault identifiers utilizing the static 

code properties defined by "McCabe" [26] and 

"Halstead" [27]. These are "module-based metrics" 

and modules are the smallest functional unit in the 

entire system. 
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Figure.2: Proposed RBP Methodology 

 

Generally, before it creates a failure prediction 

model and uses it for predictive purposes, it must 

first determine the learning scheme or learning 

algorithm that it will use to build the model. 

Therefore, the predictive performance of learning 

plans should be established especially for prospect 

data. 

 

The framework consists of two modules: 

 

1. Learning Phase of RBR Method 

2. Defect prediction phase. 

 

A. Learning Phase 

 

In this framework, the proportion of splitting 

utilized to assess the effectiveness of everyone 

predictive model was first used. That is, every first 

data set is divided into two fractions and 

anidentifierlearns within 60%, and the left over is 

40%.The ripple-down rule consists of a data 

organization and a knowledge gaining scenario. 

The knowledge of human experts is accumulated in 

the data structure. Knowledge is implied into a set 

of rules. In the knowledge acquisition scenario, the 

process of transferring the knowledge of human 

experts to the RBR's knowledge-based system is 

described. 

 

 
 

Alogrithm-1 shows the pseudo-code view of RBR: 

The code consists of two nested loops. External 

Loop selects the class value, and the inner loop 

creates a rule that applies to the class. The function 

returns a combination "best_clause" only example 

in terms of covering the current class. RBR uses a 

simple heuristic algorithm choice of the term, 

which is based on the probability that a certain 

classification of certain attribute-value pairs. The 

following conditions are usually added conditions 

to choose the most positive and least negative 

pattern example. This is given by the ratio z / s, 

where s is the "number of examples chosen by the 

term", and z is a "positive number". The rule is 

added until the rule selects only the positive 

example (i.e., until z = s). RBR ensures that the rule 

set is complete. All examples are enforced by at 

least one rule and are consistent. All examples are 

expected to belong only to one class. 

• Ripple-Down Rules 

 

Knowledge-based systems with animmense 

structure of thoughts and regulations are currently 

routinely used in many applications. Gaining 

knowledge of these systems when new 

environments arise is a constant prerequisite as the 
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system grows and becomes more difficult due to the 

interplay of rules. The "ripple down rule 

mechanism" creates a bi-directional reliance among 

rules so that rule activation is simply examined in 

the perspective of last rule activation. If the 

assertion of the main regulation is true for a 

scrupulous personality, the conclusion about the 

individual is expressed if there is no dependent. 

However, if it is 'true', the rule and its dependents 

are tested in 'Where appropriate' and the original 

conclusion is only claimed if the premise of the 

institution is true to the legal object. Conversely, if 

a certain individual construction principal rule is 

false, then the conclusion is not only maintained, 

but if it have an "if-false" dependence, and its 

needy will also be tested. Thus, the "ripple-down 

rule" is a "binary decision tree" is different from the 

standard decision tree to determine the point that it 

uses a sophisticated branch, and it does not make 

exhaustive provision to settle all cases, decisions on 

the internal node. This disparity with the standard 

tree, where the entire decisions are the source node. 

However, the functionality of the "standard 

decision-tree" claims that only one decision node is 

active in each case. This is effortless to maintain, as 

it should be taken into account only the nodes of a 

past event if there are errors in reaching decisions. 

 

The expansion of the ripple-down rule involves a 

very simple statistical decision process to create a 

regulation that is recursively termed in the 

remaining data set to produce "if-true" and "if-

false". It is a very natural in pointing rule. Figure.-3 

shows the fault analysis, which offers a "statistical 

control algorithm" used to fit. The case in the area 

under consideration for the share is displayed as a 

rectangle off rectangle fault. The rectangle with the 

defect D0 is the rectangle that the Induct tries to 

determine the rule. If the premise of the currently 

proposed rule applies, it will be displayed as an 

outer ellipse. An internal ellipse indicates a 

collapsed set that applies when a supplementary 

article is added to the principle rules. 

 

 
Figure.3: Inducing ripple-down rules 

 

There are three stages to creating a principle rules. 

First, the generally frequent diagnosis in the 

fraction under deliberation is opted for as the object 

description. Second, the area is started without a 

clause. Third, the combination of the value of each 

property that has been tested is available on the best 

possible terms and selected according to statistical 

tests in detail below. Fourth, the time that the 

provision of such tests determined whether the rules 

have improved. If there is an improvement, the 

process can be repeated for the third step, 

otherwise, the product will finish ruling with the 

rule output. 

The data construction is related to a "decision tree". 

Everyone node has a rule and the arrangement of 

this rule is "IF cond1 AND cond2 AND ... AND 

condNTHEN conclusion". "Cond1"is a clause of 

the 0 or 1 evaluation. For instance, if "A=1", then 

"is Greater (A,5)" and 

"average(A,">",average(B))". 

Everyone node has precisely two supporting nodes, 

the supporting nodes are associated with the node 

by "ELSE" or "EXCEPT". An instance of "RDR 

tree" which described repeatedly is given below: 
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 B. Defect Prediction Phase 

The methodology of defect predictive phase is 

straightforward. It consists of an"identifiercreator" 

and "defect prediction". During the identifier 

construction phase, a learning plan is selected. 

Predictive variables are created with the selected 

learning plan and full historical data. The end result 

is the average of all surroundings. This shows that 

the assessment actually cover up all the data. 

Therefore, building identifiers utilizing all historical 

data is expected to improve the simplification 

capability of built identifiers. After the identifier is 

created, novel data is pre-processed in 

anequivalentmanner as historical data, and 

afterward the identifier built can be utilized to 

predict software faults with latest pre-processed 

data. The difficulty of "empirical prediction 

induction" is specified by a "universe of entities", 

E, "a target predicate", Q, and a "set of possible test 

predicates of the form", S on entities in E, to utilize 

them to create a set of rules from which the 

intention predicate could be conditional specified 

the assessments of the test predicates. For the 

intention of the "statistical analysis", the 

appearances of S and Q which do not substance. 

One should consider S as anidentifier to select those 

"e" out of several separations of E for which to 

claim "Q(e)", and measure up to the assortment 

method of the regulation with that of indiscriminate 

identified, the enquiries to find  “what is the 

probability that random identification of the same 

degree of generality would achieve the same 

accuracy or greater"  is been shown with help of the 

Figure.4. 

 

 
Figure.4: Defect investigation for statistical organize of 

empirical orientation 

 

Lets considered "Q"  be the "associated entities" in 

E for which "Q(e)"contains, S be the "selected 

entities" in E for which "S(e)"contains, "C" be the 

"correct entities" in E for which both "S(e)" and 

"Q(e)" contain. It can represent as, 

 

                   (1) 

 

                    (2)                                              

 

               (3) 

 

Let's the "E, Q, S"  and "C" be  "e, q, s"  and "c" are 

cardinalities of correspondingly, and the 

probability, p for getting from E which will contain 

Q at a random will be computed as, 

                             (4) 

 

The process of complete outlining the mechanism 

of enhancing RDR approach is presented in 

Alogrithm-2. It discusses a function "make_rdr" 

which takes default class attributes and training set 

as input to provide the new RDR rules. 

 

 
 

In view of Figure. 4, the universe E of the entity is 

part of the database below consideration, the 

objective of the predicted Q is "D0", and the 

extracted entity S is in the outer ellipse. Choosing 
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the best term for each step is based on decreasing 

the probability that the result accomplish by the 

assertion is accomplish by "random identification". 

For "ripple-down rules", a significance decision is 

whether to maintain the further common rules for 

external ellipses or to add additional clauses that 

correspond to internal ellipses. An external ellipse 

covers additional target cases that utilize"D0" as a 

diagnostic, except it contains more "D7", "D8", 

"D9", etc., so it should be delighted as an exception 

in the "ripple-down rule" structure. The decision is 

fascinating because it does not essentially influence 

the accuracy of the ultimate knowledge to stand 

given the ability to handle exceptions. Relatively, it 

influences the structure in expressions of 

preferences for generic rules with various 

exclusions relatively than definite rules with only 

some exceptions. It affects the quantitative 

measures of the knowledge base, such as the 

number of rules and conditions concerned, but 

influences the structure in a way that human experts 

can present knowledge in a way that pertains to 

cognitive approaches. 

 

4. EXPERIMENT EVALUATION 

 

The experiments were performed utilizing 

algorithms implemented in the "WEKA 

environment" [19] utilizing NASA - Metric Data 

Program (MDP) Repository. Below we discuss 

datasets, evaluation measures, and results analysis. 

 

A. Datasets 

 

The datasets are obtained from the "NASA-MDP 

Repository" [9] which consists of 12 datasets. Data 

storages contain metrics software quality attributes 

in data sets, as well as an indication of whether a 

particular set of data is "defective" or "non-

defective". Each data set consists of several 

software units, each corresponding to many of 

defects and different software code static 

characteristics. The preprocessingunits contain 

additional defects seen as defective. A more 

comprehensive description of "code attributes" or 

"the origins of the MDP data sets” are available in 

[5]. The number of data sets utilized is"CM1, JM1, 

KC1, KC2, and PC1", which include" static code 

measures" discussed by "Halstead" and "McCabe", 

along with defect rates. Table-1 presents project 

narrative for every one of these data sets. 
 

 

 

 

 

Table 1.Each Project Data Set Description 

Project 

 

Source 

Code 

Description 

CM1 C NASA spacecraft instrument 

KC1 C++ Storage management for 

receiving/processing ground data 

KC2 C++ Science data processing. No software 
overlap with KC1 

JM1 C Real time predictive ground system 

PC1 C Flight software for earth orbiting 

satellite 

 

Everyone data set includes 21 software metrics 

depending on the "size", "complexity" and 

"vocabulary of the product". Attribute class for 

each set of data relating to "TRUE", meaning 

component has one or more defects and wrongly 

associated with zero defects. 

 

B. Performance Measures 

 

Performance is calculated accordingly to the 

confusion matrix shown in Table-2, which is 

utilized by several researchers e.g. [14], [5]. This 

illustrates the confusion matrix for the problem of 

two classes with "positive" and "negative" values 

class. Classifiers accuracy is measured by, "true 

positive rate", "false positive rate", "precision", 

"recall" and "F-measures" using a machine learning 

tool known as WEKA. This tool is a provides the 

groups of "machine learning algorithms" for 

various data mining tasks.  

 
Table 2: Confusion Matrix 

 

Actual Class 

Predicted Class 

 
      Defective            Not defective 

Defective TN FP 

Not Defective FN TP 

 

Defect efficiency of software predicted based on 

the measure of "accuracy", "sensitivity" and 

"specificity" is defined as, 

 

• Accuracy =(TP+TN) / (TP+FP+TN+FN), 

"The percentage of prediction that is 

correct". 

• Sensitivity = (TP) / (TP+FN), "The 

percentage of positivelylabeled instances 

that predicted as positive". 

• Specificity = (TN) / (FP+TN), "The 

percentage of positivelylabeled instances 

that predicted as negative". 
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C. Result Evaluation 

 

According to the best values of accuracy, we prefer 

4 existing classification algorithms for comparison 

evaluation. All estimated values are accumulated 

and compared with dissimilar parameter 

measurement performance. The accuracy of Table-

3 shows others algorithm gives a different accuracy 

in a different dataset. But the average performance 

is almost the same. The proposed RBR giving 

better Accuracy value in compare to existing 

classifier. The sensitivity and specificity measure 

the compute the positive and negative instances 

which are predicted from positive label instances as 

shown in Table-4 and 5. In comparison with the 

existing classifiers, the proposed RBP shows an 

average of 20% improvisation in sensitivity and 

10% in case of specificity. The graphical 

comparison of results is presented in Figure.5, 6 

and 7 in respectively. 

 

• Accuracy Results 

 
Table 3: Accuracy Results 

Method

s 

Naive 

bayes 

Oner

R 

J48 RIDO

R 

Prop.RB

P 

CM1 83.9

4 

89.13 86.2

3 

75.73 85.32 

KC1 83.0

5 

83.29 85.5

6 

70.15 86.87 

KC2 77.5 71.25 80 76.25 81.25 

JM1 81.2

8 

79.67 79.8 81.42 82.02 

PC1 88.8

2 

91.45 87.8

3 

89.14 92.43 

 

 

 
Figure.5: Accuracy Comparison 

 

 

 

 

 

 

 

 

• Sensitivity Results 

 
Table 4: Sensitivity 

Methods Naive 

bayes 

OnerR J48 RIDOR Prop.RBP 

CM1 0.4 0.133 0.2 0.267 0.333 

KC1 0.328 0.32 0.197 0.254 0.434 

KC2 0.412 0.118 0.353 0.373 0.422 

JM1 0.157 0.131 0.123 0.109 0.198 

PC1 0.28 0.24 0.16 0.24 0.36 

 

 

 
Figure-6.Sensitivity Comparison 

 

• Specificity Results 

 
Table 5: Specificity Result 

Method

s 

Naive 

bayes 

Oner

R 

J48 RIDO

R 

Prop.RB

P 

CM1 0.89

3 

0.789 0.94

3 

0.951 0.984 

KC1 0.93

2 

0.898 0.95

9 

0.947 0.976 

KC2 0.95

2 

0.921 0.87

3 

0.937 0.937 

JM1 0.95

7 

0.954 0.99

4 

0.968 0.988 

PC1 0.94

3 

0.935 0.98

9 

0.993 0.982 

 

 
Figure-7.Specificity Comparison 

 

5. CONCLUSION 

 

Detection and correction of defects make it easier 

for developers to understand the program. To 
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increase the effectiveness and quality of software 

development, it can take the advantage of data 

mining to analyze and provide a lot of data 

collected from defects in software development. 

This paper presents a rule-based prediction (RBP) 

method for rules that are easy to understand and 

have two types of exceptions that can automatically 

find the discovery rules, preventing the designer 

from doing this manually. A rule is defined as a 

combination of metrics/thresholds that better fits an 

instance of a known design defect. This proposed 

algorithm performs the same operation on everyone 

node of the "Ripple Down rule tree", which adds 

supplementary rules for better performance. 

Nevertheless, while the algorithm can fully analyze 

the statistics of all relevant cases, it does this in 

response to one bad case. This task can fully 

describe the effect quickly enough to change the 

ripple-down rule structure arbitrarily and maintain 

interaction development. In the experimental 

analysis, it shows better performance in fault 

prediction compared with the existing classification 

approach. 
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