
Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3394

HVM: A METHOD FOR IMPROVING THE PERFORMANCE

OF EXECUTING SQL-QUERY OVER ENCRYPTED

DATABASE

JA’AFER AL-SARAIREH

King Hussein School of Computing Sciences, Princess Sumaya University for Technology, Jordan

E-mail: J.saraireh@psut.edu.jo

ABSTRACT

The database system is an important element of information systems for the storage and management of

information. Sensitive data in database systems must be protected using encryption techniques, whose

application must balance data security and the functional efficiency of query processing.

Adaptive approach is proposed in this research to improve the performance of the query over the encrypting

sensitive information in databases based on generating a unique hash value for each and every sensitive da

 ta and translating the SQL clauses into an appropriate form to execute over the hash values

attribute. In this scheme, there are no statistical characteristics between the encrypted value and hashed

value.

Keywords: Database; Cryptography; SQL; HVM, Query Processing

1. INTRODUCTION

All databases contain some degree of sensitive

and classified information subject to legal or

organizational regulations concerning accessibility

and protection, thus sensitive data is generally

secured by some form of encryption. Database

security comprises physical, network, operating

system and access control security, but none of

these methods provide a sufficiently secure way to

store and process data securely [1, 2, and 3].

Traditional security policies cannot sufficiently

protect sensitive data in the database and prevent

unauthorized use. Encryption provides an effective

way to store sensitive data in encrypted form [4, 5],

but the query performance over the encrypted

database dramatically degrades the performance [6,

7]. To get the query results from an encrypted

database, the DBMS decrypts all the encrypted data

and then conducts the query over them. However,

this is impractical because of the prohibitive cost of

decryption over all encrypted data [1, 8, and 9].

Therefore, this study proposes adaptive approach

to improve the SQL query over the encrypted

database systems by using hash function to generate

hash value for each sensitive fields in database.

In this research six scenarios are carried out by

using the proposed approach, Naïve Database

Encryption (NDE) method, Alhanjouri et al., 2012

method, and Sharama et al., 2013 method.

This paper is organized as follows: The related

works are presented in the following section. In

section 3, the framework for proposed approach is

presented. In section 4, the experiments model is

introduced. The results and discussions are

presented in section 5, and the study is concluded in

section 6.

2. RELATED WORK

A lot of approaches have been suggested in

recent literature to efficiently support queries over

encrypted databases, which vary in terms of how

the index of attribute values is created. The

approach proposed by [4] to execute SQL over

encrypted database has weaknesses such as output

false joining records occurrence, which leads to

increased cost of decryption records and reduced

query performance [6]. A new query method

suggested by [10] completes the query on both the

server and client sides, with support for the range

query of numerical data provide by a proposed

bucket index. Hankan Hacijumus [11] proposed a

method of executing SQL over the encrypted data

in the database-service-provider model, which is

only valid for numerical data.

A bucket index method that balances security and

trade performance by the partition of the bucket was

proposed by [12] based on index support by

Database Management System (DBMS), focused on

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3395

query performance at the cost of storage space. The

approach proposed by [13] is not fit for the

character data, and it also used bucket index to

improve query performance. Zheng-Fei Wang

proposed a function to support fuzzy query over the

encrypted character data [6, 14]. Their scheme

converts every adjacent two characters in the

sequence and converts the original string directly to

another character string by a hash function. This

method cannot deal with some characters, and could

perform badly for larger character strings.

Another approach proposed by [15] uses

characteristics matrix to express string; the matrix is

also compressed into a binary string as an index.

Every character string needs a matrix size of

259x256, which is large and requires extensive

computation; in addition, the length of the index is

over 100 bits, which is not suitable for normal

database storage. A B+ tree index was established

by [16] for data prior to encryption. When querying

the encrypted data, first of all, it locates the

protected records related to the querying predicate

based on the B+ tree index; secondly, it decrypts the

encrypted records to attain the results. The results

of experiments show that the query performance

over the encrypted data is reduced by about 20%

compared with the plaintext query performance. Jun

Li [17] proposed method by using an index method

for range queries on encrypted numeric data, but

this approach is not fit for the character data due to

its particular features that differ from numerical

data.

A Reverse Encryption Algorithm (REA)

represents a significant improvement over the

encrypted databases is proposed by [18]. The results

of REA can reduce the cost time of the

encryption/decryption operations and improve the

performance, but the encryption of the database is

not optimally truthful and it needs some extra

security by encrypting the data with another

algorithm, to tighten security without degrading

performance. To introduce the security in the

database two tables for a single main table were

suggested by [19]. The first table contains the actual

data and the second one contains only that data on

which the search query runs. A new approach

proposed by [20] introduces a system with data

encryption where sensitive columns are encrypted

before they are stored to address data security. A

new method of query over encrypted data in a

database is proposed by [21]. It has added a layer

above any kind of DBMS, which has the

responsibility to manage the query over encrypted

data.

3. PROPOSED APPROACH FRAMEWORK

The proposed framework is shown in figure 1.

SQL query is transmitted into the dispatcher from

applications. The dispatcher then distinguishes the

data as sensitive or not sensitive. The queries from

the client are sent to the layer with a subsystem

called the Query Processor, to check in the Meta

data if there is any query on an encrypted column.

The Meta data contain an instance of a data

structure object called Hash function, which stores

the mapping between the plain and encrypted text.

Figure 1: Architecture of the proposed framework

In the encryption/decryption layer of figure 2, the

metadata module contains some mapping function

to translate the input query to appropriate internal

query in. While storing data, metadata is used to

translate the queries in order to store the

characteristic value of the encrypted data for

indexing, together with the encrypted data

themselves; while querying encrypted data,

metadata is used to translate the user queries to

appropriate queries executed on the encrypted data.

The encryption and decryption module contains

encryption functions and decryption functions,

which encrypt and decrypt the sensitive fields,

respectively. The following subsections describe the

proposed HVM for store hash value for sensitive

data and query over encrypted database.

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3396

Figure 2: Architecture of encrypted storage and query

over encrypted database

3.1 Query over Encrypted Data

Query Algorithm: Query over Encrypted Data by using

HVM

Input: SQL, which is used to query the encrypted data

Output: Set of records satisfying the query condition

Phase 1:

1. Check if user is authorized to access data

a. If (no) go to phase 2

b. Else if (authorized user) go to phase 2

c. Else exit

Phase 2:

1. Check the where clause contains encrypted data

a. If (no) go to phase 3

b. Else if (authorized user) go to phase 4

Phase 3:

1. Retrieve data from database

2. Exit

Phase 4:

1. Translate and modify the query conditions of

SQL using the rules of metadata

2. Computing has value for query condition

3. Execute the modified query SQL
4. Retrieve all records that satisfy the hash value of

query condition

5. Decrypt the records that retrieved from previous

step

6. Return results

7. Exit

The following conditions are used in the

architecture for our approach, as shown in figure 3:

Condition 1: Checks the user validity to the secure

schema (authorized users).

Condition 2: Checks the condition of whether the

query is on encrypted column

Condition 3: Is/are any record(s) found?

Figure 3: Model for query over encrypted database

3.2 Storing Encrypted Data

Storing Algorithm: Storing Encrypted Data and Hash

Value for sensitive data // hash value function

Input: SQL is used to store encrypted data/column

1. Compute the hash value for sensitive data as

follows:

a. Convert the sensitive data to ASCII code

b. Find the position for each digit in ASCII code

and divided the input data to set of digits as

follows:

Find the number of digits Algorithm: Number of

digits

Count is number of digit set count = o

Value = ASCII code for input

While (value >0)

{ value = value / 10

Digit [count] = value % 10 // dn, dn-1, dn-2,…, d2,

d1

Count++}

c. Function to find the value of V1

While (count > 0)

{ V1= Digit [count]* power (k,count)

// V1 = dn*(k)n + dn-1*(k)n-1 + dn-2*(k)n-2 +

……… + d2*(k)2+ d1*(k)1

 Count--;}

d. V2 = bitleftshift(V1, k)

e. V3 = V2 Xor k

f. Hash value = V3

2. Encrypt value for sensitive data using AES with key

size 256 bits

3. Store the encrypted data in the encrypted database

4. Store the hash value in a new column in the

encrypted database

Example:

Select CustKey, Name, AcctBal

From Customer

Where AcctBal= 5296

The proposed technique intercepts this query and

transform it as following:

Select CustKey, Name, decrypt (AcctBal)

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3397

From Customer

Where hash_value(AcctBal) = Hash (5296)

4. EXPERIMENTS MODEL

4.1 Experiments Setup

To show the validity and the efficiency of the

proposed approach a set of experiments were

carried out by using data in the database according

to TCP-H benchmark [22]. Dbgen tool was used

to generate data in a database automatically. AES-

256 encryption algorithm was used to encrypt the

account balance (ACCBAL) and Phone of

customers table. All experiments were carried out

on a personal computer with Intel Core i7 3.40

GHz, 8.00 GB RAM. The operating system was

used is Microsoft Windows 10. The experiments

were carried out on Oracle 11g. The Java

programming language was used to implement the

programming tasks. Each experiment was executed

10 times and the averages of results were

considered. Different methods were tested to

measure the response of SQL operations over the

customer table, which has a number of tuples

ranging from 100 to 10,000.

4.2 Scenario and Methods

The following scenarios were carried out in those

experiments:
Scenario 1 (S1): Select query has no selected an

encrypted field while Where statement has encrypted

field. (Select Name from Customer Where AccBal

between 5643 and 9583).

Scenario 2 (S2): Select query has selected an encrypted

field and where the statement has encrypted field. (Select

Name, AccBal from Customer Where AccBal between

5643 and 9583).

Scenario 3 (S3): Insert statement has an encrypted field.

(Insert into Customer values (CustKey, Name, AccBal))

Scenario 4 (S4): Update statement has no encrypted field

while where statement has encrypted field. (Update

Customer Set Name = New_name Where CustBal =

5643).

Scenario 5 (S5): Update statement and where statement

has encrypted field. (Update Customer Set CustBal =

CustBal + 50 Where CustBal = 5643).

Scenario 6 (S6): Delete operation, where statement has

encrypted field. (Delete from Customer Where CustBal =

5643).

The following methods were carried out in all

scenarios:
Method 1 (M1): Naïve Database Encryption (NDE), the

traditional method

Method 2 (M2 Proposed Method): Using the proposed

approach, which filters the reco rds the related to

query conditions and then decrypt the results.

Method 3 (M3): Alhanjouri and Derawi’s technique [21]

Method 4 (M4): Sharma et al.’s technique [19]

5. RESULTS DISCUSSION AND ANALYSIS

The comparison between all approaches is

presented in table 1 for records number ranging

from 100 to 10,000. As indicated in table 1, the

average response time for the proposed approach is

less than 14ms when carried out for all scenarios

over the encrypted customer table with 100 records,

as shown in figure 4(a). There is a significant

improvement in execution query over the encrypted

table, as shown in figure 4(b-d) for experiments No.

2-4.

Table 2 summarizes the percentage of

improvement for the proposed scheme compared

with other approaches. The percentages of

improvement for all experiments are shown in

figure 5. The average performance of the proposed

approach is increased to 80%, 26% and 44%

compared with methods 1, 3 and 4 (respectively) in

experiment No. 1. On the other hand, for

experiment No. 2 the average performance is

enhanced by 74%, 27% and 36% compared with

methods 1, 3 and 4, respectively. Also, there is

better performance for the proposed scheme in

experiment No. 3 and 4 compared with related

works.

This improvement in the query performance

and minimized CPU time cost is due to the

proposed approach being based on computing a

hash value for where clause conditions, then

selecting all records that satisfy the hash value for

where conditions. Methods 1, 3 and 4 decrypt all

records in the customer table then retrieve the

records that satisfy the where clause conditions. In

contrast, Sharam et al. [19] used two tables for a

single main table. The first table contains the actual

data (CustKey, Name, Encrypt (AccBal),….),

which has its sensitive data in encrypted form,

while the second table contains Encrypt (CustKey),

AccBal. This method consumes CPU time when

executing queries over the encrypted table.

In scenario 2 Select query and Where clause

has encrypted field. This scenario will require more

CPU time than scenario 1 because of two encrypted

fields, one in select statement and the other in

where condition statement. The proposed approach

reduces the CPU time cost and enhances the query

execution performance in this scenario compared

with other approaches when the records range from

100 to 10,000.

For insert scenario all methods have the same

execution time except method 4 (Sharma method),

which needs to insert a row in two tables (encrypted

and query search tables). In scenarios 4 and 5 the

update query is executed over the encrypted

customer table with 100 to 10,000 records. The

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3398

proposed approach has better performance and

reduced execution time compared to other methods,

due to its use of hash value to filter the records,

then decrypting a set of records to satisfy the where

statement conditions. The delete query in scenario 6

has better performance and less response time in

the proposed approach in all experiments.

On average for all scenarios, the proposed

HVM approach minimizes the response time to

16ms, 27ms, 204ms and 519ms for experiments

No. 1, 2, 3 and 4 respectively, as can be seen from

the comparison with other approaches shown in

table 3 and figure 6.

6. CONCLUSION

This research presented an enhancement to

previous database encryption approach as by

achieve better response time for the execution of

SQL query. The experimental results indicate that

the HVM approach improves the performance of

query response time for all scenarios, providing

excellent query response time for a variety of

number of records. HVM improves the response

time in comparison to NDE, alhanjouri, sharma

method by 16ms, 204ms, 203ms and 519ms for

experiments 1, 2, 3 and 4 respectively.

Future work will explore the application of the

proposed approach to other kind of databases such

as distributed DBMSs, where more focus should be

given to the performance issue in the presence of

more complex queries in real, large databases.

REFRENCES:

[1] Rathod, R.H. and Dhote, C.A., “A Literature

Survey on performance evaluation of query

processing on encrypted

database”, International Journal of

Engineering and Computer Science, Vol. 3,

No. 12, 2014, pp. 9637-9642.

[2] Nassar, M., Malluhi, Q., Atallah, M. and Shikfa,

A., 2017. “Securing Aggregate Queries for

DNA Databases”, IEEE Transactions on Cloud

Computing, 2017,

doi:10.1109/tcc.2017.2682860.

[3] Ali, A. and Afzal, M.M., 2017. “Database

Security: Threats and Solutions”, International

Journal of Engineering Inventions, vol. 6, No.

2, 2017, pp.25-27.

[4] Agrawal, R. and Kiernan, J., “Watermarking

relational databases”, In Proceedings of the

28th international conference on Very Large

Databases, 2002, pp. 155-166.

[5] Wu, J. and Chen, J., “Research on the Method of

Cloud Computing Storage Security based on

the Homomorphic Encryption Method”,

Advanced Science and Technology Letters,

Vol.139, 2016, pp.443-449.

[6] Wang, Z.F., Wang, W. and Shi, B.L., “ Storage

and query over encrypted character and

numerical data in database”. In Computer and

Information Technology, 2005. CIT 2005. The

Fifth International Conference on (pp. 77-81).

IEEE.

[7] Guo, C., Zhuang, R., Jie, Y., Ren, Y., Wu, T. and

Choo, K.K.R., “Fine-grained Database Field

Search Using Attribute-Based Encryption for

E-Healthcare Clouds”, Journal of medical

systems, Vol. 40, No. 11, 2016, pp. 1-8.

[8] Mc Brearty, S., Farrelly, W. and Curran, K.,

“The performance cost of preserving

data/query privacy using searchable symmetric

encryption”, Security and Communication

Networks, Vol. 9, 2016, pp. 5311-5332

 [9] Jang, Y.D. and Kim, J.H., “A Comparison of the

Query Execution Algorithms in Secure

Database System”, International Journal of

Electrical and Computer Engineering, Vol. 6,

No. 1, 2016, pp.337=343.

[10] Hacigümüş, H., Iyer, B., Li, C. and Mehrotra,

S., “Executing SQL over encrypted data in the

database-service-provider model”.

In Proceedings of the 2002 ACM SIGMOD

international conference on Management of

data, 2002, pp. 216-227.

[11] Hacıgümüş, H., Iyer, B. and Mehrotra, S.,

“Efficient execution of aggregation queries

over encrypted relational databases”,

In International Conference on Database

Systems for Advanced Applications, 2004, pp.

125-136.

[12] Hore, B., Mehrotra, S. and Tsudik, G., “A

privacy-preserving index for range queries”,

In Proceedings of the Thirtieth international

conference on Very Large Databases (VLDB

Endowment), 2004, pp. 720-731.

[13] Yu, H., Zhao, L., Xu, W.J., Niu, X.M. and

Shen, C.X., “Research on a new method for

database encryption and cipher index”, Dianzi

Xuebao(Acta Electronica Sinica), 33(12),

2005, pp.2539-2542.

[14] Wang, Z.F., Dai, J., Wang, W. and Shi, B.L.,

“Fast query over encrypted character data in

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3399

database”, Communication and Information

Science, Vol. 4, No. 4, 2004, pp.289-300.

 [15] Zhu, H., Cheng, J., Jin, R. and Lu, K.,

“Executing query over encrypted character

strings in databases”. In Frontier of Computer

Science and Technology, 2007. FCST 2007.

Japan-China Joint Workshop on (pp. 90-97).

IEEE.

[16] Wang, Z.F., Tang, A.G. and Wang, W., “Fast

query over encrypted data based on B+ tree”,

In International Conference on Apperceiving

Computing and Intelligence Analysis, 2009, pp.

132-135

 [17] Li, J. and Omiecinski, E.R., “Efficiency and

security trade-off in supporting range queries

on encrypted databases”, In IFIP Annual

Conference on Data and Applications Security

and Privacy, 2005, pp. 69-83.

[18] Mousa, A., Nigm, E., El-Rabaie, E.S.,

Faragallah, O.S. and Faragallah, O.S., “Query

Processing Performance on Encrypted

Databases by Using the REA

Algorithm”. International Journal of Network

Security, Vol. 14, No. 5, 2012, pp.280-288.

[19] Sharma, M., Chaudhary, A. and Kumar, S.,”

Query processing performance and searching

over encrypted data by using an efficient

algorithm. International Journal of Computer

Applications, Vol. 41, No. 4, 2013,

pp.1308.4687.

[20] Arasu, A., Eguro, K., Kaushik, R. and

Ramamurthy, R., “Querying encrypted data”.

In Proceedings of the 2014 ACM SIGMOD

international conference on Management of

data, 2014, pp. 1259-1261.

[21] Alhanjouri, M. and Al Derawi, A.M., “A New

Method of Query over Encrypted Data in

Database using Hash Map”, International

Journal of Computer Applications, Vol. 41,

No.4, 2012, pp. 46-51

[22] TPC-H, Benchmark Specification., 2017,

http://www.tpc.org.

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3400

Table 1 CPU time Cost for Executing Query

 Method Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Experiment No. 1

(using 100 records)

NDE 48 67 31 72 76 73

Proposed HVM 12 15 31 13 14 12

Alhanjouri 14 16 31 22 24 19

Sharma 17 23 65 26 28 27

Experiment No. 2

(using 500 records)

NDE 76 81 46 95 97 94

Proposed HVM 18 21 46 25 27 25

Alhanjouri 28 33 46 40 45 42

Sharma 27 32 183 41 43 41

Experiment No. 3

(using 1000

records)

NDE 257 272 247 287 291 288

Proposed HVM 176 187 247 204 207 203

Alhanjouri 218 238 252 245 258 256

Sharma 203 215 335 239 245 231

Experiment No. 4

(using 10000

records)

NDE 986 1052 675 1074 1081 1085

Proposed HVM 472 509 675 483 483 493

Alhanjouri 627 693 675 684 671 671

Sharma 619 684 1084 635 631 635

(a) Experiment No. 1 (b) Experiment No. 2

(c) Experiment No. 3 (d) Experiment No. 4

Figure 4 CPU time Cost

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3401

Table 2 Percentage of improvement for proposed approach compared with other methods

 Method Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Experiment No.

1 (using 100

records)

NDE 75.00% 77.61% 0.00% 81.94% 81.58% 83.56%

Alhanjouri 14.29% 6.25% 0.00% 40.91% 41.67% 36.84%

Sharma 29.41% 34.78% 52.31% 50.00% 50.00% 55.56%

Experiment No.

2 (using 500

records)

NDE 76.32% 74.07% 0.00% 73.68% 72.16% 73.40%

Alhanjouri 35.71% 36.36% 0.00% 37.50% 40.00% 40.48%

Sharma 33.33% 34.38% 74.86% 39.02% 37.21% 39.02%

Experiment No.

3 (using 1000

records)

NDE 31.52% 31.25% 0.00% 28.92% 28.87% 29.51%

Alhanjouri 19.27% 21.43% 1.98% 16.73% 19.77% 20.70%

Sharma 13.30% 13.02% 26.27% 14.64% 15.51% 12.12%

Experiment No.

4 (using 10000

records)

NDE 52.13% 51.62% 0.00% 55.03% 55.32% 54.56%

Alhanjouri 24.72% 26.55% 0.00% 29.39% 28.02% 26.53%

Sharma 23.75% 25.58% 37.73% 23.94% 23.45% 22.36%

(a) Experiment No. 1 (b) Experiment No. 2

(c) Experiment No. 3 (d) Experiment No. 4

Figure 5 Percentage of improvement for proposed approach compared with other methods

Journal of Theoretical and Applied Information Technology
31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3402

Figure 6 Time cost on average for all Scenarios for the proposed approach compared with other methods

Table 3 Time cost on average for all Scenarios for the proposed approach compared with other methods

 Method Experiment No. 1 Experiment No. 2 Experiment No. 3 Experiment No. 4

NDE 61 82 274 992

Proposed HVM 16 27 204 519

Alhanjouri 21 39 245 670

Sharma 31 61 245 715

