
 Journal of Theoretical and Applied Information Technology

31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3251

MINING OPINIONS FROM BIG DATA OF INDONESIAN

HOTEL REVIEWS

1
VERONICA S. MOERTINI,

2
VINSENSIUS KEVIN,

3
JEANE SATYADI

Informatics Department, Parahyangan Catholic University, Bandung, Indonesia

1moertini@unpar.ac.id, 2vinsensiusvey@gmail.com, 3jsatyadi@gmail.com

ABSTRACT

Mining customer opinions from hotel reviews is useful. The results can then be used to help customers in choosing the

most suitable hotel. In this research, a technique for mining opinions from big data of Indonesian hotel reviews, which

is based on MapReduce, is developed. To avoid iterative computations, we adopt look-up table approach. The

experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 clients. The

results show that the proposed technique discovers useful opinion summary and is scalable.

Keywords: mining Indonesian hotel reviews, big data, MapReduce

1. INTRODUCTION

Along with the popularity of e-commerce

transaction broker websites selling hotel rooms

[17], to broaden market and reach more customers,

hotels sell their rooms in few or even many

websites. Each website collects its own customer

reviews and provides score for every hotel. It is

found that the reviews as well as the score of a

specific hotel sometimes differ from a website to

another, which may raise the question of which one

is more trusted. To provide the summarized reviews

from those websites, reviews can be crawled,

collected, stored as big data and then be mined. One

of the mining objectives can be obtaining customer

opinions. As the opinions are mined from big data

of reviews originated from many websites, it is

expected that the results are more trusted or

accurate. The customer opinions towards hotels

can then be published by independent hotels

information providers such that users are eased in

choosing the most suitable hotel to stay [1].

The objective of opinion mining and

summarization is to find what reviewers like and

dislike towards objects being reviewed [2]. Since

the number of reviews towards an object can be

large, an opinion summary should be produced in

such a way to support easy decision making. One

known approach for mining customer reviews is

features based, where the tasks include extracting

object features from each review. Several

techniques of extracting features from customer

reviews are complex tasks that involve iterative

computation (see Subsection 2.2 for more

discussion).

Hadoop is an emerging platform aimed for

storing and analyzing big data in distributed systems

[6]. Its storage and computational capabilities scale

with the addition of hosts to a Hadoop cluster and it

handles volume sizes in the petabytes on clusters

with thousands of hosts. Hadoop comes with

master-slave architecture and consists of the Hadoop

Distributed File System (HDFS) for storage and

MapReduce for computational capabilities. With

HDFS, large dataset is divided into blocks,

distributed and replicated in the slave nodes. A

MapReduce program processes data by

manipulating (key/value) pairs in the following

general form:

• map: (k1,v1) ➞ list(k2,v2)

• reduce: (k2,list(v2)) ➞ list(k3,v3).

Designed to process big data based on that

key/value, MapReduce has weakness (i.e.

inefficient) in iterative computations. MapReduce

functions need to store the computation results into

HDFS files that then be read by the functions in the

next consecutive iteration (as the function inputs).

With this iterative write-read, the cost of I/O is

high. Given this fact, we conclude that MapReduce

function is best adopted for “one-pass” computation

in analyzing big data.

By studying hotel reviews written in Indonesian

language (see Section 3), we find that the

techniques found in literature (such as [1, 3]) can

not be adopted as is, specifically for mining big

data of reviews. Unlike techniques for mining

English documents that have been standardized and

well known, so far we only find limited research

results for analyzing Indonesian documents, which

are:

 Journal of Theoretical and Applied Information Technology

31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3252

(1) [9] develops rules for mining public opinions of

Indonesian universities, which we find too general

such that it is un-applicable for mining customer

reviews;

(2) [10] develops method for tagging Part-Of-

Speech (POS) from Indonesian documents;

(3) [11] develops technique for extracting training

corpus that can be used for sentiment analysis

towards Indonesian tweets.

Hence, an enhanced method for analyzing big

data of hotel reviews written in Indonesian

language needs to be developed. In this research,

we intend to contribute an enhanced efficient

technique for mining opinions from big data of

Indonesian hotel reviews, which is based on

MapReduce with one-pass computation. In

designing the algorithm, we avoid iterative

computation (that causes high cost of I/O) and

instead adopt “look up table” technique.

2. LITERATURE REVIEW

2.1 Indonesian Language

As found in other languages, Indonesian words are

classified into noun, verb, adverb, adjective,

prepositions and so on. These words come as root

words or derived words (root words added with

prefixes, suffixes or circumfixes). A word can be

root word or consist of a root word with one or

more affixes. In Indonesian, there are three types of

affix [12, 19]:

(a) a prefix is attached before the base;

(b) a suffix comes after the base and

(c) a circumfix or confix contains two parts, one

occurring before the base and one after.

However, not all of the root words can be combined

with affixes.

Prefixes:

Prefix is an affix attached to the front of a root

word that creates a new word. There are several

prefixes, which are ber-, di-, me-, pe-, se- and ter.

While to form new words ber-, di-, se- and ter are

just attached in front of a basic word, the use of me-

and pe- cause some changes to the root words.

Some example of the use of ber-, di-, se- and ter

[20]:

Ber- + bahaya (danger) = berbahaya (dangerous),

ber- + asal (origin) = berasal (originated), di- +

lempar (throw) = dilempar (thrown by), di- + nilai

(score) = dinilai (scored by), se- + ribu = seribu

(one thousand), se- + kelas = sekelas (one class),

ter- + batas (limit) = terbatas (limited), ter- + baik

(good) = terbaik (the best). As a superlative ter- is

always attached to an adjective while to form a

passive word, it is attached to noun.

Me- is used to construct a verb from a noun or to

indicate that the subject of a statement is the one

doing the action of the verb. Me- has six variations

that are used depending on the first letter of the root

word which they are attached as follows:

a) Me- is used when the following word is

started with l, m, n, r, w, y;

b) Meng- is used when the following word is

started with g, h, k or vowels;

c) Mem- is used when the following word is

started with b f p;

d) Men- is used when the following word is

started with c, d, z, and t;

e) Meny- is used when the following word is

started with s;

f) Menge- is used when the following word is

consisted from one syllable only.

Pe- has variations of pe-, pem- and pen. They are

used to form a noun that indicates a person or thing

that do the verb or to form a noun that has the

quality or attribute inherent in the adjective.

Example: pe- + makan (eat) = pemakan (eater),

pem- + panas (heat) = pemanas (heater), pen- +

dingin (cool) = pendingin (cooler).

Suffixes:

Indonesian suffixes are -kan, -i, -an and –nya. They

can form a noun, soften a command or add

politeness, direct the action and derives causatives

or adjectives.

Example [21]: milik (belong) + -nya = miliknya

(belong to), bulan (month) + -an = bulanan

(monthly).

Circumfix:

Indonesian circumfixes form nouns from

adjectives, causatives from verbs, form nouns from

verbs. They are ke-…-an, me-…-kan, pe-...-an and

per-...-an.

Example: ke-…-an + puas (satisfy) = kepuasan,

me-…-kan + mandi (to bath) = memandikan, pe-...-

an + buka (open) = pembukaan.

Particles:

There are particles of lah, pun, kah, per. Particle ‘-

lah’ is always attached to the preceding word. It is

to mark the predicate when the predicate is out of

its normal position. It is never obligatory. Basically

it adds polite emphasis.

Example: tidak + -lah = tidaklah.

 Journal of Theoretical and Applied Information Technology

31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3253

Particle ‘pun’ can act as a focusing adjunct. It

identifies the most important thing involved in what

being said.

Example: walau + pun = walaupun. Partikel ‘kah’

is written as one word with the word that is

followed. Example: mau + kah = maukah.

Indonesian Negation:

Indonesian negation turns an affirmative statement

(for example, I am happy) into its opposite (I am

not happy). The negation can be made by placing

"no" before the main verb.

Example: tidak, bukan.

Stoplist:

Stoplist can be defined as a list of words where for

some special reason should be ignored or bypassed

by a particular data processing operation. In terms

of mining sentiments, there are a number of

Indonesian words that can be classified as stoplist.

Some example are: agak, agar, akan, akankah,

akhir, jika, jikalau, juga, justru, kalau, sekaligus,

sekalipun, and so on.

2.2 Mining Customer Reviews

The objective of opinion mining and

summarization is to find what reviewers liked and

disliked towards objects being reviewed [2]. Since

the number of reviews on an object can be large, an

opinion summary should be produced such that this

can be visualized and compared by users for

making decision (such as selecting the right hotels).

One popular approach for mining reviews is

features based. The tasks include [2]:

(1) Extract object features from each review;

(2) Determine whether the opinions on the features

are positive, negative or neutral;

(3) Group feature synonyms and produce a

summary.

There are a number of methods for extracting

features, such as:

(1) Co-occurrence association-based method,

which aims to extract implicit features in customer

reviews [3]. The computation for finding features

need matrices of words (stored in memory) which

can be large size;

(2) Finding frequent item sets using association

rules mining, where an item set is a set of words or

a phrase that occurs together [4] and [5]. The

algorithms (apriori, FP-growth, etc.) are iterative

and need to access the dataset at least two times.

For identifying opinion orientation on features,

[2] proposes the following technique:

For each feature, identify the sentiment or opinion

orientation expressed by a reviewer. The work is

performed on each sentence as a sentence may

contain more than one feature.

For instance: The battery life (feature) and picture

quality (feature) are great (+ or 1), but the view

founder (feature) is small (- or -1). In identifying

the feature (f) opinion, there are two steps:

(1) Split the sentence (into sf) if needed based on

“but” words;

(2) Find f opinion in sf . The opinion of f is an

element of {1, -1, 0}. Then the orientation of sf are

sum up accordingly.

2.3 Hadoop, HDFS and Map-Reduce
As excerpted in [18], the distributed

systems framework Hadoop is useful for storing and
analyzing big data [2]. Hadoop comes with master-
slave architecture and consists of the Hadoop
Distributed File System (HDFS) for storage and
MapReduce for computational capabilities. Its
storage and computational capabilities scale with the
addition of hosts to a Hadoop cluster. The following
is some brief overview of HDFS and MapReduce.

HDFS: HDFS is a distributed file system
designed for large-scale (up to petabytes) distributed
data processing under frameworks such as
MapReduce and is optimized for high throughput.
HDFS automatically divides the data into blocks,
replicates data blocks and stored on nodes (the
default is 3 replications).

MapReduce: MapReduce is a data processing
model that has the advantage of easy scaling of data
processing over multiple computing nodes. Map and
Reduce functions run in every slave node. While
Map takes input or read the local blocks, Reduce
inputs are the outputs of Map functions run on nodes
sent through the network in a Hadoop cluster. A
MapReduce program processes data by
manipulating (key/value) pairs in the general form:

map: (k1,v1) ➞ list(k2,v2)

reduce: (k2,list(v2)) ➞ list(k3,v3).
Map reads (key, value) pairs from dataset stored

as HDFS blocks, then based on the functions
designed by developers, it generates one or more
output pairs list (k2, v2). Through a shuffle and sort
phase, the output pairs are partitioned and then
transferred to reducers via the network. Pairs with
the same key are grouped together as (k2, list(v2)).
One reducer run in a node processes one value of k2
(with its list(v2)), then it generates the final output
pairs list(k3, v3) for each group based on the
designed reducer algorithm.

The overall MapReduce processed is shown in

Fig. 1 [2, 10]. A client submit a job to the master,

 Journal of Theoretical and Applied Information Technology

31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3254

which then assign and manage Map and Reduce job

parts to slave nodes. Map will read and process

blocks of files stored locally in the slave node. The

Map output of pair key-values are sent to Reduce

function for further process.

Blocks in

node-1

HDFS

Map

Map

Map

Map

Reduce

Reduce

Reduce

Output1

Output2

Output3

HDFS

Blocks in

node-2

Blocks in

node-3

Blocks in

node-n

shuffle

Client Hadoop

MapReduce

master

Job

Job parts
Job parts

Figure 1: MapReduce processes [18].

3. INDONESIAN HOTEL REVIEWS

By collecting, observing and studying hundreds of

hotel reviews, we found:

(1) Most of the reviews are expressed with “daily

language”, which are informal, do not follow the

correct grammar, have many abbreviations and

slangs (non-formal words): Many “sentences” are

actually phrases that contains nouns, verbs,

adjective or adverbs only; Many reviews consist of

brief “key words” (only) that represent customer

opinions;

(2) As lots of reviews are written using mobile

devices, there are many word abbreviations;

(3) The customers care and concern with limited

“things” or objects only; Those “things” are the

overall hotel, room, facilities, services, access to the

hotel, location, staffs, room rate/price, AC and

meal;

(4) Other than stop words, reviews may also

contain meaningless terms for analysis purposes.

Example of slangs or abbreviations found with

their (should be) standard words: nggak-tidak, ga-

tidak, price-harga, srpan-sarapan, bkn-bukan, kmr-

kamar, room-kamar, hrg-harga, cpt-cepat, view-

pemandangan and mantab-mantap. Some of those

slangs or abbreviations are important for

understanding customer opinions.

Given the rules of Indonesian grammar and

those fact findings, preprocessing the reviews is an

important step with the aims of:

(1) Transforming slangs and abbreviation words

into the standard words;

(2) Removing stop words and meaningless terms;

(3) Stemming or obtaining “root words” as few

different derived words may be originated from one

root word.

The other issue that actually needs to be

resolved is “grammar fixing” such that every

sentence follow the correct Indonesian grammars.

However, we find that this is very challenging. If a

“sentence” contains only predicate-object, it is hard

to define the subject. Likewise, if the “sentence” or

phrase contain adverb only, for example “sangat

lama”, it is difficult to find its pair of words. For

these reasons, we have not performed this task.

4. PROPOSED TECHNIQUE

We propose two techniques for mining Indonesian

hotel reviews, which are:

(1) Finding customer sentiments (positive, neutral

or negative) towards specific hotel features;

(2) Counting words that express customer opinions

towards hotels.

The second is proposed by considering that lots of

Indonesian reviews contains “key words” of

customer opinions only. These techniques are

enhancement of our previous works in [13] and

[14].

To speed up computation, we adopt look up

table method. Here we assume that the data needs

to be looked up can be produced manually or using

the techniques that have been developed (such as

[10, 11]).

4.1 System Architecture

The system architecture is depicted in

Figure 2 where each process is described as

follows:

(1) Crawl reviews: Collecting hotel reviews from e-

commerce websites selling hotel rooms;

(2) PreProc MapRed: Preprocessing the raw

reviews by cleaning, finding root words and

labeling words with their types;

(3.a) CountWordOp MapRed: Simple method of

review analysis by counting opinion words;

(3.b) AnalSent MapRed: Analyzing customers

opinion towards hotel features (corresponding to

hotel location, rooms, food, services, etc).

Here, the one-pass computation is materialized

by looking up few HDFS files that store root words,

type of root words, the standard words of slangs,

hotel features and the related words orientation.

 Journal of Theoretical and Applied Information Technology

31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3255

HDFS

reviews

references

outMR1 references

outMR3b

2

PrepProc

MapRed

3.b

AnalSent

MapRed

1

Crawl

Reviews

websites

3.a

CountWordOp

MapRed

outMR3a

Figure. 2. The proposed system architecture.

4.2 Preprocessing MapReduce Component

The MapReduce performing data

preprocessing contains two main steps, which are

cleaning and labeling/tagging terms. The cleaning

process involves eliminating stop words,

transforming slangs and stemming (finding root

words). The clean terms are then labeled with its

type, which are verb, adverb, adjective, etc. (Figure

3). The references stored as HDFS (to be looked

up) are:

(a) stoplist.txt: containing list of stop terms used to

eliminate the stop words [10];

(b) slangs.txt: containing list of pair of slang-

standard words used to transform slangs into

standard words;

(c) root_words.txt: containing list of root words and

their type (verb, adverb, adjective, etc.) used to find

the root word of every non-stop word and label it

with its type.

The following are the Map and Reduce

algorithms.

reviews

outMR1

slangs

stoplist

root_words

HDFS 1.1

eliminate

stopwords
1.2

transform

slangs

1.2

stem

terms1.5

label

terms

Figure 3. Preprocessing MapReduce.

Map performs:

(1) Eliminating stop words: words listed in the

stoplist.txt are discarded;

(2) Transforming slangs: every slang listed in

slangs.txt are replaced with its standard word;

(3) Stemming: if words are already listed in the

root_word.txt, nothing is performed. Otherwise, the

algorithm parses the words based on Indonesian

rules for obtaining the root words, discard

prefix(es) and/or suffix(es) to find the root word

(see Table 1);

(4) Tagging or labeling root words with their types

(we adopt the method in [10]).

The algorithm is as follows:
Method: map

Input: <key, value>, key: hotel Id, value: review texts;

Output: <key’, value’>, key’: hotel Id, value: cleaned

review texts;

Steps:

(1) line ← value;

(2) hotelId ← get hotelId from line;

(3) 2: line ← eliminate stop words from line;

(4) line ← transform slangs from line;

(5) 4: reviewHotel ← call stemmingMethod then

addTypeRootWord;

(6) 5: key’ ← hotel Id; value’ ← reviewHotel;

(7) 6: emit <key!, value!>

The stemming algorithm, which must address

the issues discussed in Section 3, is as follows:

Method: stemmingMethod

Input: word, rootWord;

Output: word: the root word of word

Steps:

(1) if word is not root word then:

(a) word ← delete particles (“-kah”, “-lah”, “-pun”)

from word, if exists;

(b) word ← delete possessive pronoun ("-ku", "-mu",

"-nya"), if exists;

(c) word ← delete first prefixes (if exist) from word

by applying rules in Table 1;

(d) word ← delete second prefix ("-ber-", "-bel-", "-

be-", "-per-", "-pe-", "-pel-", "se-"), if exists;

(e) word ← delete suffix ("kan", "-i", "-an") from

word, if exists;

(2) return word

Table 1: Rules applied in deleting prefixes.

If word contains

prefix

Stemming action

"meng-" followed by

vocal letter of "e" or "u"

delete "meng-" and replace "e"

/ "u" with "k"

"meny-" replace "meny-" with "s"

"men-" delete "men-"

"mem-" followed by vocal

letter of "a", "i", "u", "e"
or "o"

delete "mem-" and replace "a",

"i", "u", "e" or "o" with "p"

"me-" delete "me-"

"peng-" followed by vocal

letter of "e" or "a"

delete "peng-" and replace "e"

or "a" with "k".

"peny-" replace "peny-" with "s"

"pen-" followed by vocal

letter of "a", "i", "u", "e"

or "o"

delete "pen-" and replace "a",

"i", "u", "e" or "o" with "t"

 Journal of Theoretical and Applied Information Technology

31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3256

"pem-" followed by vocal
letter of "a", "i", "u", "e"

or "o"

delete "pem-" and replace "a",
"i", "u", "e" or "o" with "p"

"di-" delete "di-"

"ter-" delete "ter-"

"ke-" delete "ke-"

After the preprocessed reviews emitted by Map are

sorted based on hotelId (through shuffle process),

Reduce simply write them to the output HDFS file

as follows:
Method: reduce

Input: <key, values>, key: hotelId, values: list of cleaned

review texts for hotelId;

Output: <key’, values’>, key’: hotelId, values: cleaned

review texts for hotelId;

Steps: write every key and values into outMR1.txt file

An example input and output for Preproc

MapReduce:

Input: tidak susah utk mencari makanan. kamar

bersih rapi.

Output: tidak/adv susah/adj untuk/pre cari/v

makan/v /./ kamar/n bersih/adj rapi/adj /./

4.3 Analysis Sentiment (AnalSent) MapReduce

Component

This MapReduce takes input of the HDFS

file produced by Preprocessing MapReduce (Figure

4). It identifies hotel features, find the

opinion/sentiment (positive, neutral, or negative) of

every feature, then count the frequency of every

sentiment for every feature. The summarized

sentiment for every hotel are also computed. For

identifying the customer sentiment (positive,

neutral, or negative) towards every feature, we

adopt the techniques discussed in [2].

There are two HDFS files that are looked up by

this component, which are:

(a) features.txt: Containing hotel frequent features

that are mostly “judged” by customers. We found

19 features, which are: location, access, parking,

staff, service, price, room, bath-room, shower,

amenities, ac, tv, wifi, breakfast, food, restaurant,

facilities, pool and (overall) hotel.

(b) orientation.txt: Containing list of pair of two

words, the first is the word frequently used by

customers to express their opinion and the second is

the sentiment (positive, neutral or negative).

We find that the first could be adjective

(mostly), noun or verb. There are total of 58 pairs

that we identified from the case study of reviews.

Some examples are (written in Indonesian):

strategis-pos, mudah-pos, sulit-neg, mahal-neg,

bersih-pos, mantap-pos, biasa-neut, jorok-neg, and

bising-neg.

2.1

breaks

sentences
2.2

search

feature &

sentiment

2.3

count sentiment

for each feature

outMR1

outMR3b

orientation

features

HDFS

Figure 4: Analysis Sentiment MapReduce.

After examining the preprocessing results, we find

that the structure of the feature and its sentiment

can be:

(a) noun – adjective, for examples: lantai/n

kotor/adj, shower panas/adj, ac panas/adj, hotel/n

nyaman/adj, hotel/n murah/adj, fasilitas/n baik/adj;

(b) noun – verb, for examples: kamarmandi/n

jorok/v;

(c) verb – adjective, for examples: layan/v puas/adj.

Those structures are used in this Map algorithm in

finding customer sentiments toward features.

The Map and Reduce algorithms are discussed

below.

By taking the input of pair of hotelId and

labeled root words (such as tidak/adv susah/adj

untuk/pre cari/v makan/v /./ kamar/n bersih/adj

rapi/adj /./), this Map emits pair of key’-value’

where key’ = hotelId and value’ = feature-found-1

ctr_pos ctr_neut ctr_neg feature-found-2 ctr_pos

ctr_neut ctr_neg feature-found-3 ctr_pos ctr_neut

ctr_neg. feature-found-n ctr_pos ctr_neut

ctr_neg, where ctr_pos denotes count of positive

sentiment, ctr_neut denotes count of neutral

sentiment, ctr_neg denotes count of negative

sentiment.

An example of Map output is: Hbdg2290 |

hotel 1 0 0 fasilitas 1 0 0 layan 1 0 0 /./

Method: map()

Input: <key,value> with key: hotelId, value: cleaned and

labeled review, hotelFeatures, rootWords,

adjWordSentiments;

Output: <key’,value’> with key’: hotelId, value’: text of

list of pair feature - ctr_pos ctr_neut ctr_neg;

Steps:

1: line ← value; hotelId ← get hotelId from line;

listFeatureCounter ← null

2: sentences[] ← break review into sentences by splitting

line using “/./”

3: foreach sentence in sentences[] do

4: ctr_pos = 0; ctr_neut = 0; ctr_neg = 0; //counter of

positive, neutral and negative sentiment

5: features[] ← get features from sentence // Get hotel

features (looking up hotelFeatures)

 Journal of Theoretical and Applied Information Technology

31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3257

6: if features is not empty then foreach feature in

features[] do

7: wordAdj ← find the closest adj or verb root word

at the right side of feature in sentence

8: if wordAdj is not empty do

9: wordAdjSent ← find sentiment of wordAdj

(pos, neut or neg) by looking up to adjWordSentiments

10: if wordAdjSent is not empty do wordAdjSent

← oppose the sentiment if negation word found in front

of wordAdj

11: increment counter ctr_pos or ctr_neut or

ctr_neg accordingly

12: if feature is not in listFeatureCounter do

listFeatureCounter ← add feature + ctr_pos + ctr_neut +

ctr_neg

13: else add ctr_pos + ctr_neut + ctr_neg to the

same feature in listFeatureCounter

14: resultReviewHotel ← text of listFeatureCounter

15: emit < hotelId, resultReviewHotel >

Reduce is designed to compute the over all

sentiments for every hotel and generate output with

the format: hotelId | feature-found-1 ctr_pos

ctr_neut ctr_neg feature-found-2 ctr_pos ctr_neut

ctr_neg. feature-found-n ctr_pos ctr_neut

ctr_neg TOTAL_COUNT ctr_pos ctr_neut ctr_neg.

An example Reduce output is:

h2290 | harga 2 0 0 kamarmandi 0 1 0 kamar 0 2 0

TOTAL_COUNT 2 3 0

Method: reduce()

Input: key, values as list of value with key: hotelId,

value: list of <feature - ctr_pos ctr_neut ctr_neg>,

feature_weights

Output: <key’,value’> with key’: hotelId, value’: list of

<feature - ctr_pos ctr_neut ctr_neg>

Steps:

1: featuresCounter ← HashMap<String,

ArrayList<Integer>>// for storing hotel features and

ctr_pos ctr_neut ctr_neg

2: for each value in values do

3: for each feature in value do

4: if feature not found in featuresCounter do get

ctr_pos, ctr_neut and ctr_neg from value then add to

feature and ctr_pos, ctr_neut and ctr_neg at the bottom

of featuresCounter

5: else do get ctr_pos, ctr_neut and ctr_neg from

value then sum up ctr_pos, ctr_neut and ctr_neg to the

existing value of ctr_pos, ctr_neut and ctr_neg in

featuresCounter

6: hotel_score ← using ctr_pos, ctr_neut and ctr_neg

compute the total count of positive, neutral and negative

sentiments

7: results ← text of list of feature - ctr_pos ctr_neut

ctr_neg from featuresCounter + string of hotel_score

8: write (key’, results)

4.4 Count Opinion Words MapReduce

Component

This MapReduce reads the output of

review preprocessing results and orientation words

listed in orientation.txt files. For every hotelId, this

simply computes the count of every orientation

word found in the preprocessed review, sums up the

count and write pair of hotelId – {orientation-word

count} into a HDFS file.

The following is the detailed algorithm of Map

and Reduce function.

Method: map()

Input: <key,value> with key: hotelId, value: cleaned and

labeled review, orientations[]

Output: <key’,value’> with key’: hotelId, value’: text of

list of pair opinion_word - 1

Steps:

1: line ← value

2: hotelId ← hotelId from line;

3: sentences[] ← break review into sentences by splitting

line using “/./”

4: outText ← “” //empty text

5: foreach sentence in sentences[] do

6: opWords[] ← get opinion words from sentence by

looking up to orientations[], including the negation word

if exists

7: if opWords is not empty then

8: foreach word in opWords [] do

9: outText ← word + “1 ”

10: emit < hotelId, outText >

Method: reduce()

Input: <key,values> with key: hotelId, value: list of pairs

of word - 1

Output: <key’,value’> with key’: hotelId, value’: text of

list of pair opinion_word - count

Steps:

1: opWordCounts ← [] // initialize array of pair of word-

count

2: for each value in values do

3: if word is found in opWordCounts, increase its

count by 1

4: else add element of word – 1 at the end of

opWordCounts

5: outText ← text of all pairs of word-count found in

opWordCounts

6: write (key, outText)

5. EXPERIMENTS

We have implemented the component of review

preprocessing and sentiment analysis. To speed up

the look up processes (from file references, such as

basic words, features, etc.), we adopt HashMap

function. Here, we conduct 2 sets of experiments,

aiming to evaluate the accuracy and scalability or

speed. The experiments were performed in a

Hadoop cluster having 1 master and 14 slave

 Journal of Theoretical and Applied Information Technology

31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3258

machines. The machines specification: the

processor is Quad-Core running at 3.2 GHz, the

memory of 6 machines is 4 Gbyte and of 8

machines is 6 Gbyte. The HDFS block size is

configured as 128 Mb and replicated 3 times.

Accuracy: As there is no labeled (with its

opinions) benchmark review dataset that we can be

compared, in this experiment we present the results

of qualitative observations of the mining results.

We gathered some small sample dataset

containing 40127 reviews given to 28 hotels from

2 well known Indonesian e-commerce websites

selling hotel rooms. Examples of the analysis

results are provided in Table 2. Among the 28

hotels, we find that most have positive reviews.

Only one hotel (h2017) that has high percentage of

negative/positive (54%), where the over all room

condition and facilities are unsatisfying, while the

food and service are quite acceptable.

Table 2: Example of Analysis Results.

HotelId #Pos #Neutral #Neg (Neg/Pos)%

h1001 390 34 56 14

h1002 374 24 66 18

h1003 417 16 67 16

h2017 37 3 20 54

h2026 750 38 141 19

An example of the sentiment summary of a hotel is

as follows:
| h1001| akses 1 0 1 lokasi 51 0 6 posisi 3 0 0 tempat 3 1

1 hotel 95 8 8 harga 24 2 5 kamar 57 7 14 lantai 2 0 0

shower 1 0 0 amenities 1 0 0 tv 2 0 0 ruang 1 0 0 fasilitas

18 1 0 air 1 0 5 wc 0 2 0 toilet 1 1 1 kamarmandi 7 0 2 ac

1 0 0 wifi 4 1 1 suara 0 0 1 restoran 5 0 0 sarapan 14 2 3

makan 20 1 3 menu 4 4 0 suasana 2 1 1 kolamrenang 9 1

0 staff 7 0 0 resepsionis 1 0 0 layan 53 1 2 lobby 2 1 1

check-out 0 0 1 TOTAL_COUNT 390 34 56.

The interpretation: The hotel location is good, the

price is right, the room, food and services are also

satisfying. The negative opinions (14%) are

directed towards hotel location, overall hotel

condition, price, room, food and services.
We compare the sentiment summary of many

hotels with the quantitative reviews provided in the

2 e-commerce websites and find that among 28

hotel summaries, 22 of these are highly inline and 6

are somewhat inline with those presented in the

websites. Hence, we conclude that the proposed

methods succeed in mining customer opinions with

high accuracy.

Speed and Scalability: We use review dataset

with the size from 1.3 to 20.23 gigabytes. The

execution time is shown in Figure 4 and Figure 5.

The plots are linear, which indicates that the

scalability of the proposed technique is acceptable.

The total time for preprocessing 20.23 gigabytes of

review is 2161 seconds (36.02 min), while

analyzing the sentiment of 18.47 gigabytes (the

output of preprocessing) is 619 seconds (10.32

min). Hence, the algorithms are fast. The time

needed for analyzing is approximately one quarter

of preprocessing. Our analysis: The elimination of

stop words and finding root words consume more

I/O and look up process (as it reads 2 files with

larger size) compared to the analysis component.

Figure 4: The Execution Time of Review Preprocessing.

Figure 5: The Execution Time of Sentiment Analysis.

6. CONCLUSION AND FURTHER WORKS

The proposed technique have succeeded in mining

opinions from big data of Indonesian hotel reviews.

By performing qualitative evaluation, we find that

the accuracy is high. With adopting look up tables,

the algorithms execution times in the Hadoop

cluster proves to be fast and guarantees scalability.

There are issues that have not been addressed,

such as fixing grammar in sentences, developing

techniques for handling slangs and finding hotel

features automatically. Integrating the proposed

technique with other data analysis technique (such

as [15, 16]) in the e-commerce CRM system [17] is

 Journal of Theoretical and Applied Information Technology

31st July 2017. Vol.95. No 14

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3259

also necessary such that the analysis results can be

used to support customer decision makings.

7. ACKNOWLEDGMENT

We like to thank to the Directorate General of

Higher Education of Ministry of Research,

Technology and Higher Education of the Republic

of Indonesia who is funding this research in

2016-2017 through Hibah Bersaing scheme with

contract number of III/LPPM/2017-04/130-P.

REFERENCES

[1]. E. Bjørkelund, T. H. Burnett, K. Nørvåg, “A

study of opinion mining and visualization of

hotel reviews”, Proc. iiWAS2012, 3-5 Dec.,

2012, Bali, Indonesia.

[2]. B. Liu, Opinion Mining & Summarization -

Sentiment Analysis, Tutorial, April 21, 2008 in

Beijing. http://www.cs.uic.edu/~liub

[3]. Y. Zhang and W. Zhu, “Extracting implicit

features in online customer reviews for opinion

mining”, Proc. WWW2013 Rio de Janeiro,

Brazil, 2013.

[4]. J. Wang and H. Ren, Feature-based Customer

Review Mining, Dept. of Computer Science,

Stanford University, 2006.

[5]. S. H. Ghorashi, R. Ibrahim, S. Noekhah and N.

S. Dastjerdi, “A frequent pattern mining

algorithm for feature extraction of customer

reviews”, International Journal of Computer

Science Issues, Vol. 9, Issue 4, No 1, July

2012.

[6]. A. Holmes, Hadoop in Practice, USA:

Manning Publ., 2012.

[7]. C. Lam, Hadoop in Action, USA: Manning

Publ., 2010.

[8]. E. Sammer, Hadoop Operations, USA:

O’Reilly Media, Inc., 2012.

[9]. I. F. Rozi, S. H. Pramono, and E. A. Dahlan,

“Implementasi opinion mining (analisis

sentimen) untuk ekstraksi data opini publik

pada perguruan tinggi,” Jurnal EECCIS, vol. 6,

no. 1, pp. 37-43, 2012.

[10]. A. Wicaksono and A. Purwarianti, “HMM

based pos tagger for bahasa indonesia,” in

Proc. of 4th Intl. MALINDO (Malay-

Indonesian Language) Workshop, Jakarta,

Indonesia, 2nd August, 2010.

[11]. A. F. Wicaksono, C. Vania, B. Distiawan T.,

M. Adriani, “Automatically building a corpus

for sentiment analysis on Indonesian tweets”,

Proc. 28th Pacific Asia Conf. on Language,

Information and Computation, Phuket,

Thailand, 2014, pp. 185–194.

[12]. D. N. Djenar, A Student’s Guide to

Indonesian Grammar, Oxford University Press,

Australia, 2005.

[13]. J. Satyadi, Pengembangan Aplikasi untuk

Menambang dan Meringkas Data Revuew

Pelanggan pada Website E-Commerce

Penyedia Kamar Hotel, Informatics Dept.,

Parahyangan Catholic Univ., Indonesia, 2015.

[14]. V. Kevin, Peringkasan dan Penambangan

Data Review Pelanggan pada Sistem

Terdistribusi Hadoop, Informatics Dept.,

Parahyangan Catholic Univ., Indonesia, 2016.

[15]. V. S. Moertini and L. Venica, “Enhancing

parallel k-means using map reduce for

discovering knowledge from big data”, Proc.

2016 Intl. Conf. on Cloud Computing and Big

Data Analysis (ICCCBDA 2016), pp. 81- 87,

Chengdu China, 5-7 July.

[16]. V. S. Moertini, N. Ibrahim and Lionov,

“Efficient techniques for predicting suppliers

churn tendency in e-commerce based on

website access data”, Journal of Theoretical

and Applied Information Technology, vol. 74,

no. 3. pp. 300-309, 2015.

[17]. N. Ibrahim, V. S. Moertini and

Verliyantina, “Supplier relationship

management model for SME’s e-commerce

transaction broker case study: hotel rooms

provider”, Journal of Theoretical and Applied

Information Technology, vol. 71, no. 1, pp. 61-

70, 2015.

[18]. V. S. Moertini, L. Venica, “Parallel K-

Means for Big Data: On Enhancing Its Cluster

Metrics and Patterns”, Journal of Theoretical

and Applied Information Technology, vol. 95,

no. 8. pp. 1844-1857, 2017.

[19]. http://www.bahasakita.com/about/grammar/

suffix/ (accessed: 12 December 2016)

[20]. http://mylanguages.org/indonesian_prefixes.

php (accessed: 12 December 2016)

[21]. http://langhub.com/en-id/indonesian-

grammar/147-suffixes (accessed: 12 December

2016)

