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ABSTRACT 

 
Mining customer opinions from hotel reviews is useful. The results can then be used to help customers in choosing the 

most suitable hotel. In this research, a technique for mining opinions from big data of Indonesian hotel reviews, which 

is based on MapReduce, is developed.  To avoid iterative computations, we adopt look-up table approach. The 

experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 clients. The 

results show that the proposed technique discovers useful opinion summary and is scalable. 
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1.  INTRODUCTION 

Along with the popularity of e-commerce 

transaction broker websites selling hotel rooms 

[17], to broaden market and reach more customers, 

hotels sell their rooms in few or even many 

websites. Each website collects its own customer 

reviews and provides score for every hotel. It is 

found that the reviews as well as the score of a 

specific hotel sometimes differ from a website to 

another, which may raise the question of which one 

is more trusted. To provide the summarized reviews 

from those websites, reviews can be crawled, 

collected, stored as big data and then be mined. One 

of the mining objectives can be obtaining customer 

opinions. As the opinions are mined from big data 

of reviews originated from many websites, it is 

expected that the results are more trusted or 

accurate.  The customer opinions towards hotels 

can then be published by independent hotels 

information providers such that users are eased in 

choosing the most suitable hotel to stay [1].     

The objective of opinion mining and 

summarization is to find what reviewers like and 

dislike towards objects being reviewed [2]. Since 

the number of reviews towards an object can be 

large, an opinion summary should be produced in 

such a way to support easy decision making. One 

known approach for mining customer reviews is 

features based, where the tasks include extracting 

object features from each review.  Several 

techniques of extracting features from customer 

reviews are complex tasks that involve iterative 

computation (see Subsection 2.2 for more 

discussion). 

Hadoop is an emerging platform aimed for 

storing and analyzing big data in distributed systems 

[6]. Its storage and computational capabilities scale 

with the addition of hosts to a Hadoop cluster and it 

handles volume sizes in the petabytes on clusters 

with thousands of hosts. Hadoop comes with 

master-slave architecture and consists of the Hadoop 

Distributed File System (HDFS) for storage and 

MapReduce for computational capabilities. With 

HDFS, large dataset is divided into blocks, 

distributed and replicated in the slave nodes. A 

MapReduce program processes data by 

manipulating (key/value) pairs in the following 

general form:  

• map: (k1,v1) ➞ list(k2,v2) 

• reduce: (k2,list(v2)) ➞ list(k3,v3). 

Designed to process big data based on that 

key/value, MapReduce  has weakness (i.e. 

inefficient) in iterative computations. MapReduce 

functions need to store the computation results into 

HDFS files that then be read by the functions in the 

next consecutive iteration (as the function inputs). 

With this iterative write-read, the cost of I/O  is 

high. Given this fact, we conclude that MapReduce 

function is best adopted for “one-pass” computation 

in analyzing big data.  

By studying hotel reviews written in Indonesian 

language (see Section 3), we find that the 

techniques found in literature (such as [1, 3]) can 

not be adopted as is, specifically for mining big 

data of reviews. Unlike techniques for mining 

English documents that have been standardized and 

well known, so far we only find limited research 

results for analyzing Indonesian documents, which 

are:  
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(1) [9] develops rules for mining public opinions of 

Indonesian universities, which we find too general 

such that it is un-applicable for mining customer 

reviews;  

(2) [10] develops method for tagging Part-Of-

Speech (POS) from Indonesian documents;  

(3) [11] develops technique for extracting training 

corpus that can be used for sentiment analysis 

towards Indonesian tweets.  

Hence, an enhanced method for analyzing big 

data of hotel reviews written in Indonesian 

language needs to be developed. In this research, 

we intend to contribute an enhanced efficient 

technique for mining opinions from big data of 

Indonesian hotel reviews, which is based on 

MapReduce with one-pass computation. In 

designing the algorithm, we avoid iterative 

computation (that causes high cost of I/O) and 

instead adopt “look up table” technique.     
 
2. LITERATURE REVIEW 

 
2.1 Indonesian Language 

 
As found in other languages, Indonesian words are 

classified into noun, verb, adverb, adjective, 

prepositions and so on. These words come as root 

words or derived words (root words added with 

prefixes, suffixes or circumfixes).  A word can be 

root word or consist of a root word with one or 

more affixes. In Indonesian, there are three types of 

affix  [12, 19]:   

(a) a prefix is attached before the base;  

(b) a suffix comes after the base and 

(c) a circumfix or confix contains two parts, one 

occurring before the base and one after. 

However, not all of the root words can be combined 

with affixes. 

 

Prefixes: 

Prefix is an affix attached to the front of a root 

word that creates a new word. There are several 

prefixes, which are ber-, di-, me-, pe-, se- and ter. 

While to form new words ber-, di-, se- and ter are 

just attached in front of a basic word, the use of me- 

and pe- cause some changes to the root words.  

 

Some example of the use of ber-, di-, se- and ter 

[20]: 

Ber- + bahaya (danger) = berbahaya (dangerous), 

ber- + asal (origin) = berasal (originated), di- + 

lempar (throw) = dilempar (thrown by), di- + nilai 

(score) = dinilai (scored by), se- + ribu = seribu 

(one thousand), se- + kelas = sekelas (one class),  

ter- + batas (limit) = terbatas (limited),  ter- + baik 

(good) =  terbaik (the best). As a superlative ter- is 

always attached to an adjective while to form a 

passive word, it is attached to noun.       

 

Me- is used to construct a verb from a noun or to 

indicate that the subject of a statement is the one 

doing the action of the verb.  Me- has six variations 

that are used depending on the first letter of the root 

word which they are attached as follows: 

a) Me-  is used when the following word is 

started with l, m, n, r, w, y; 

b) Meng- is used when the following word is 

started with g, h, k or vowels; 

c) Mem- is used when the following word is 

started with b f p; 

d) Men-   is used when the following word is 

started with c, d, z, and t; 

e) Meny- is used when the following word is 

started with s; 

f) Menge- is used when the following word is 

consisted from one syllable only. 

 

Pe- has variations of pe-, pem- and pen. They are 

used to form a noun that indicates a person or thing 

that do the verb or to form a noun that has the 

quality or attribute inherent in the adjective. 

Example: pe- + makan (eat) = pemakan (eater), 

pem- + panas (heat) = pemanas (heater), pen- + 

dingin (cool) = pendingin (cooler).   

 

Suffixes: 

Indonesian suffixes are -kan, -i, -an and –nya. They 

can form a noun,  soften a command or add 

politeness, direct the action and derives causatives 

or adjectives.  

Example [21]: milik (belong) + -nya = miliknya 

(belong to), bulan (month) + -an = bulanan 

(monthly). 

 

Circumfix: 

Indonesian circumfixes form nouns from 

adjectives, causatives from verbs, form nouns from 

verbs. They are ke-…-an, me-…-kan, pe-...-an and 

per-...-an. 

Example: ke-…-an + puas (satisfy) = kepuasan,  

me-…-kan + mandi (to bath) = memandikan, pe-...-

an + buka (open) = pembukaan. 

 

Particles: 

There are particles of lah, pun, kah, per. Particle ‘-

lah’ is always attached to the preceding word. It is 

to mark the predicate when the predicate is out of 

its normal position. It is never obligatory. Basically 

it adds polite emphasis.  

Example: tidak + -lah = tidaklah.  
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Particle ‘pun’ can act as a focusing adjunct. It 

identifies the most important thing involved in what 

being said.  

Example: walau + pun = walaupun. Partikel ‘kah’ 

is written as one word with the word that is 

followed. Example: mau + kah = maukah.  

 

 

 

Indonesian Negation: 

Indonesian negation turns an affirmative statement 

(for example, I am happy) into its opposite (I am 

not happy). The negation can be made by placing 

"no" before the main verb.  

Example: tidak, bukan.  

 

Stoplist:  

Stoplist can be defined as a list of words where for 

some special reason should be ignored or bypassed 

by a particular data processing operation. In terms 

of mining sentiments, there are a number of 

Indonesian words that can be classified as stoplist. 

Some example are: agak, agar, akan, akankah, 

akhir, jika, jikalau, juga, justru, kalau, sekaligus, 

sekalipun, and so on.  
 
2.2 Mining Customer Reviews 

The objective of opinion mining and 

summarization is to find what reviewers liked and 

disliked towards objects being reviewed [2]. Since 

the number of reviews on an object can be large, an 

opinion summary should be produced such that this 

can be visualized and compared by users for 

making decision (such as selecting the right hotels). 

One popular  approach for mining reviews is 

features based. The tasks include [2]:  

(1) Extract object features from each review;  

(2) Determine whether the opinions on the features 

are positive, negative or neutral;  

(3) Group feature synonyms and produce a 

summary. 

There are a number of methods for extracting 

features, such as: 

(1) Co-occurrence association-based  method, 

which aims to extract implicit features in customer 

reviews [3]. The computation for finding features 

need matrices of words (stored in memory) which 

can be large size;   

(2) Finding frequent item sets using association 

rules mining, where an item set is a set of words or 

a phrase that occurs together [4] and [5]. The 

algorithms (apriori, FP-growth, etc.) are iterative 

and need to access the dataset at least two times. 

For identifying opinion orientation on features, 

[2] proposes the following technique: 

For each feature, identify the sentiment or opinion 

orientation expressed by a reviewer. The work is 

performed on each sentence as a sentence may 

contain more than one feature.  

For instance: The battery life (feature) and picture 

quality (feature) are great (+ or 1), but the view 

founder (feature) is small (- or -1). In identifying 

the feature (f) opinion, there are two steps:  

(1) Split the sentence (into sf) if needed based on 

“but” words;  

(2) Find f opinion in sf . The opinion of f is an 

element of {1, -1, 0}. Then the orientation of sf  are 

sum up accordingly.     

  

2.3 Hadoop, HDFS and Map-Reduce 
As excerpted in [18], the distributed 

systems framework Hadoop is useful for storing and 
analyzing big data [2]. Hadoop comes with master-
slave architecture and consists of the Hadoop 
Distributed File System (HDFS) for storage and 
MapReduce for computational capabilities. Its 
storage and computational capabilities scale with the 
addition of hosts to a Hadoop cluster. The following 
is some brief overview of HDFS and MapReduce.  

HDFS: HDFS is a distributed file system 
designed for large-scale (up to petabytes) distributed 
data processing under frameworks such as 
MapReduce and is optimized for high throughput. 
HDFS automatically divides the data into blocks, 
replicates data blocks and stored on nodes (the 
default is 3 replications).   

MapReduce: MapReduce is a data processing 
model that has the advantage of easy scaling of data 
processing over multiple computing nodes. Map and 
Reduce functions run in every slave node. While 
Map takes input or read the local blocks, Reduce 
inputs are the outputs of Map functions run on nodes 
sent through the network in a Hadoop cluster.   A 
MapReduce program processes data by 
manipulating (key/value) pairs in the general form:  

map: (k1,v1) ➞ list(k2,v2) 

reduce: (k2,list(v2)) ➞ list(k3,v3). 
Map reads (key, value) pairs from dataset stored 

as HDFS blocks, then based on the functions 
designed by developers, it generates one or more 
output pairs list (k2, v2). Through a shuffle and sort 
phase, the output pairs are partitioned and then 
transferred to reducers via the network. Pairs with 
the same key are grouped together as (k2, list(v2)). 
One reducer run in a node processes one value of k2 
(with its list(v2)), then it generates the final output 
pairs list(k3, v3) for each group based on the 
designed reducer algorithm.  

The overall MapReduce processed is shown in 

Fig. 1 [2, 10]. A client submit a job to the master, 
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which then assign and manage Map and Reduce job 

parts to slave nodes. Map will read and process 

blocks of files stored locally in the slave node. The 

Map output of pair key-values are sent to Reduce 

function for further process. 
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Figure 1: MapReduce processes [18]. 

 

 

3.  INDONESIAN HOTEL REVIEWS  

By collecting, observing and studying hundreds of 

hotel reviews, we found:  

(1) Most of the reviews are expressed with “daily 

language”, which are informal, do not follow the 

correct grammar, have many abbreviations and 

slangs (non-formal words): Many “sentences” are 

actually phrases that contains nouns, verbs, 

adjective or adverbs only; Many reviews consist of 

brief “key words” (only) that represent customer 

opinions;  

(2) As lots of reviews are written using mobile 

devices, there are many word abbreviations;  

(3) The customers care and concern with limited 

“things” or objects only; Those “things” are the 

overall hotel, room, facilities, services, access to the 

hotel, location, staffs, room rate/price, AC and 

meal;  

(4) Other than stop words, reviews may also 

contain meaningless terms for analysis purposes.  

Example of slangs or abbreviations found with 

their (should be) standard words: nggak-tidak, ga-

tidak, price-harga, srpan-sarapan, bkn-bukan, kmr-

kamar, room-kamar, hrg-harga, cpt-cepat, view-

pemandangan and mantab-mantap. Some of those 

slangs or abbreviations are important for 

understanding customer opinions.  

Given the rules of Indonesian grammar and 

those fact findings, preprocessing the reviews is an 

important step with the aims of:  

(1) Transforming slangs and abbreviation words 

into the standard words;  

(2) Removing stop words and meaningless terms;  

(3) Stemming or obtaining “root words” as few 

different derived words may be originated from one 

root word.  

The other issue that actually needs to be 

resolved is “grammar fixing” such that every 

sentence follow the correct Indonesian grammars. 

However, we find that this is very challenging. If a 

“sentence” contains only predicate-object, it is hard 

to define the subject. Likewise, if the “sentence” or 

phrase contain adverb only, for example “sangat 

lama”, it is difficult to find its pair of words. For 

these reasons, we have not performed this task. 

4.  PROPOSED TECHNIQUE 

We propose two techniques for mining Indonesian 

hotel reviews, which are:  

(1) Finding customer sentiments (positive, neutral 

or negative) towards specific hotel features;  

(2) Counting words that express customer opinions 

towards hotels.  

The second is proposed by considering that lots of 

Indonesian reviews contains “key words” of 

customer opinions only. These techniques are 

enhancement of our previous works in [13] and 

[14]. 

To speed up computation, we adopt look up 

table method. Here we assume that the data needs 

to be looked up can be produced manually or using 

the techniques that have been developed (such as 

[10, 11]). 

 

 

4.1  System Architecture  

The system architecture is depicted in 

Figure 2 where each process is described as 

follows:  

(1) Crawl reviews: Collecting hotel reviews from e-

commerce websites selling hotel rooms;  

(2) PreProc MapRed: Preprocessing the raw 

reviews by cleaning, finding root words and 

labeling words with their types;  

(3.a) CountWordOp MapRed: Simple method of 

review analysis by counting opinion words;  

(3.b) AnalSent MapRed: Analyzing customers 

opinion towards hotel features (corresponding to 

hotel location, rooms, food, services, etc).  

Here, the one-pass computation is materialized 

by looking up few HDFS files that store root words, 

type of root words, the standard words of slangs, 

hotel features and the related words orientation.  
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Figure. 2. The proposed system architecture. 

 
 

 

4.2 Preprocessing MapReduce Component 

The MapReduce performing data 

preprocessing contains two main steps, which are 

cleaning and labeling/tagging terms. The cleaning 

process involves eliminating stop words, 

transforming slangs and stemming (finding root 

words). The clean terms are then labeled with its 

type, which are verb, adverb, adjective, etc. (Figure 

3). The references stored as HDFS (to be looked 

up) are:  

(a) stoplist.txt: containing list of stop terms used to 

eliminate the stop words [10];  

(b) slangs.txt: containing list of pair of slang-

standard words used to transform slangs into 

standard words;  

(c) root_words.txt: containing list of root words and 

their type (verb, adverb, adjective, etc.) used to find 

the root word of every non-stop word and label it 

with its type.   

The following are the Map and Reduce 

algorithms. 
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Figure 3. Preprocessing MapReduce. 

 

Map performs:  

(1) Eliminating stop words: words listed in the 

stoplist.txt are discarded;  

(2) Transforming slangs: every slang listed in 

slangs.txt are replaced with its standard word;  

(3) Stemming: if words are already listed in the 

root_word.txt, nothing is performed. Otherwise, the 

algorithm parses the words based on Indonesian 

rules for obtaining the root words, discard 

prefix(es) and/or suffix(es) to find the root word 

(see Table 1); 

(4) Tagging or labeling root words with their types 

(we adopt the method in [10]).  

 

The algorithm is as follows: 
Method: map 

Input: <key, value>, key: hotel Id, value: review texts; 

Output: <key’, value’>, key’: hotel Id, value: cleaned 

review texts;  

Steps:  

(1) line ← value;  

(2) hotelId ← get hotelId from line;  

(3) 2: line ← eliminate stop words from line;  

(4) line ← transform slangs from line;  

(5) 4:  reviewHotel ← call stemmingMethod then 

addTypeRootWord;  

(6) 5:  key’ ← hotel Id; value’ ← reviewHotel;  

(7) 6: emit <key!, value!> 
 

The stemming algorithm, which must address 

the issues discussed in Section 3, is as follows:   

Method:  stemmingMethod 

Input:  word, rootWord;  

Output: word: the root word of word  

Steps:  

(1) if word is not root word then:  

(a) word ← delete particles (“-kah”, “-lah”, “-pun”) 

from word, if exists;  

(b)  word ← delete possessive pronoun ("-ku", "-mu", 

"-nya"), if exists;  

(c)  word ← delete first prefixes (if exist) from word 

by applying rules in Table 1;  

(d) word ← delete second prefix ("-ber-", "-bel-", "-

be-", "-per-", "-pe-", "-pel-", "se-"), if exists;  

(e)  word ← delete suffix ("kan", "-i", "-an") from 

word, if exists;  

(2) return word 

Table 1: Rules applied in deleting prefixes. 

If word contains 

prefix 

Stemming action 

"meng-" followed by 

vocal letter of  "e" or "u" 

delete "meng-" and replace "e" 

/ "u" with "k" 

"meny-" replace "meny-" with "s" 

"men-" delete "men-" 

"mem-" followed by vocal 

letter of  "a", "i", "u", "e" 
or "o" 

delete "mem-" and replace "a", 

"i", "u", "e" or "o" with "p" 

"me-" delete "me-" 

"peng-" followed by vocal 

letter of  "e" or "a" 

delete "peng-" and replace "e" 

or "a" with "k". 

"peny-" replace "peny-" with "s" 

"pen-" followed by vocal 

letter of  "a", "i", "u", "e" 

or "o" 

delete "pen-" and replace "a", 

"i", "u", "e" or "o" with "t" 
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"pem-" followed by vocal 
letter of  "a", "i", "u", "e" 

or "o" 

delete "pem-" and replace "a", 
"i", "u", "e" or "o" with "p" 

"di-" delete "di-" 

"ter-" delete "ter-" 

"ke-" delete "ke-" 

 

After the preprocessed reviews emitted by Map are 

sorted based on hotelId (through shuffle process), 

Reduce simply write them to the output HDFS file 

as follows: 
Method: reduce 

Input: <key, values>, key: hotelId, values: list of cleaned 

review texts for hotelId;  

Output: <key’, values’>, key’: hotelId, values: cleaned 

review texts for hotelId;  

Steps: write every key and values into outMR1.txt file 

 

An example input and output for Preproc 

MapReduce:  

Input: tidak susah utk mencari makanan. kamar 

bersih rapi.   

Output:  tidak/adv susah/adj untuk/pre cari/v 

makan/v /./ kamar/n bersih/adj rapi/adj /./ 

 

4.3 Analysis Sentiment (AnalSent) MapReduce 

Component 

This MapReduce takes input of the HDFS 

file produced by Preprocessing MapReduce (Figure 

4). It identifies hotel features, find the 

opinion/sentiment (positive, neutral, or negative) of 

every feature, then count the frequency of every 

sentiment for every feature. The summarized 

sentiment for every hotel are also computed. For 

identifying the customer sentiment (positive, 

neutral, or negative) towards every feature, we 

adopt the techniques discussed in [2].   

There are two HDFS files that are looked up by 

this component, which are:  

(a) features.txt: Containing hotel frequent features 

that are mostly “judged” by customers. We found 

19 features, which are: location, access, parking, 

staff, service, price, room, bath-room, shower, 

amenities, ac, tv, wifi, breakfast, food, restaurant, 

facilities, pool and (overall) hotel.  

(b) orientation.txt: Containing list of pair of two 

words, the first is the word frequently used by 

customers to express their opinion and the second is 

the sentiment (positive, neutral or negative).  

We find that the first could be adjective 

(mostly), noun or verb. There are total of 58 pairs 

that we identified from the case study of reviews. 

Some examples are (written in Indonesian): 

strategis-pos, mudah-pos, sulit-neg, mahal-neg, 

bersih-pos, mantap-pos, biasa-neut, jorok-neg, and 

bising-neg.   

  

2.1

breaks 

sentences
2.2

search 

feature & 

sentiment

2.3

count sentiment 

for each feature

outMR1

outMR3b

orientation

features

HDFS

 
 

Figure 4: Analysis Sentiment MapReduce. 

 

After examining the preprocessing results, we find 

that the structure of the feature and its sentiment 

can be:  

(a) noun – adjective, for examples: lantai/n 

kotor/adj, shower panas/adj, ac panas/adj, hotel/n 

nyaman/adj, hotel/n murah/adj, fasilitas/n baik/adj; 

(b) noun – verb, for examples: kamarmandi/n 

jorok/v;  

(c) verb – adjective, for examples: layan/v puas/adj. 

Those structures are used in this Map algorithm in 

finding customer sentiments toward features.  

The Map and Reduce algorithms are discussed 

below. 

By taking the input of pair of hotelId and 

labeled root words (such as tidak/adv susah/adj 

untuk/pre cari/v makan/v /./ kamar/n bersih/adj 

rapi/adj /./), this Map emits pair of key’-value’ 

where key’ = hotelId  and value’ = feature-found-1 

ctr_pos ctr_neut ctr_neg feature-found-2 ctr_pos 

ctr_neut ctr_neg feature-found-3 ctr_pos ctr_neut 

ctr_neg. .. . . . feature-found-n ctr_pos ctr_neut 

ctr_neg, where ctr_pos denotes count of positive 

sentiment, ctr_neut denotes count of neutral 

sentiment, ctr_neg denotes count of negative 

sentiment.  

An example of Map output is: Hbdg2290 |  

hotel 1 0 0 fasilitas 1 0 0 layan 1 0 0 /./  
 
Method: map() 

Input:  <key,value> with key: hotelId, value: cleaned and 

labeled review, hotelFeatures, rootWords, 

adjWordSentiments;  

Output: <key’,value’> with  key’: hotelId, value’: text of 

list of pair feature - ctr_pos ctr_neut ctr_neg;  

Steps: 

1: line ← value; hotelId ← get hotelId from line;  

listFeatureCounter ← null  

2: sentences[] ← break review into sentences by splitting 

line using “/./”  

3: foreach sentence in sentences[] do 

4:     ctr_pos = 0; ctr_neut = 0; ctr_neg = 0; //counter of 

positive, neutral and negative sentiment 

5:     features[] ← get features from sentence // Get hotel 

features (looking up hotelFeatures) 
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6:     if features is not empty then foreach feature in 

features[] do  

7:         wordAdj ← find the closest adj or verb root word 

at the right side of feature  in sentence  

8:         if wordAdj is not empty do  

9:           wordAdjSent ← find sentiment of wordAdj 

(pos, neut or neg) by looking up to adjWordSentiments 

10:           if wordAdjSent is not empty do wordAdjSent 

← oppose the sentiment if negation word found in front 

of wordAdj  

11:           increment counter ctr_pos or ctr_neut or 

ctr_neg accordingly  

12: if feature is not in listFeatureCounter do 

listFeatureCounter ← add feature + ctr_pos + ctr_neut + 

ctr_neg      

13:           else add ctr_pos + ctr_neut + ctr_neg to the 

same  feature in listFeatureCounter 

14: resultReviewHotel  ← text of listFeatureCounter 

15: emit < hotelId, resultReviewHotel > 

 
Reduce is designed to compute the over all 

sentiments for every hotel and generate output with 

the format: hotelId | feature-found-1 ctr_pos 

ctr_neut ctr_neg feature-found-2 ctr_pos ctr_neut 

ctr_neg. .. . . . feature-found-n ctr_pos ctr_neut 

ctr_neg TOTAL_COUNT  ctr_pos ctr_neut ctr_neg.  

An example Reduce output is:  

h2290 |  harga 2 0 0 kamarmandi 0 1 0 kamar 0 2 0 

TOTAL_COUNT 2 3 0  

 
Method: reduce() 

Input:  key, values as list of value with key: hotelId, 

value: list of <feature - ctr_pos  ctr_neut ctr_neg>, 

feature_weights 

Output: <key’,value’> with  key’: hotelId, value’: list of 

<feature - ctr_pos  ctr_neut ctr_neg> 

Steps: 

1: featuresCounter ← HashMap<String, 

ArrayList<Integer>>// for storing hotel features and 

ctr_pos  ctr_neut ctr_neg  

2: for each value in values do 

3:    for each feature in value do 

4:       if feature not found in featuresCounter do get 

ctr_pos,  ctr_neut and ctr_neg from value then add to 

feature and ctr_pos,  ctr_neut and ctr_neg at the bottom 

of featuresCounter 

5:       else do get ctr_pos,  ctr_neut and ctr_neg from 

value then sum up ctr_pos,  ctr_neut and ctr_neg to the 

existing value of ctr_pos,  ctr_neut and ctr_neg in 

featuresCounter   

6: hotel_score ← using ctr_pos,  ctr_neut and ctr_neg 

compute the total count of positive, neutral and negative 

sentiments 

7: results ← text of list of feature - ctr_pos ctr_neut 

ctr_neg  from featuresCounter + string of  hotel_score 

8: write (key’, results) 

 

 

 

4.4 Count Opinion Words MapReduce 

Component 

This MapReduce reads the output of 

review preprocessing results and orientation words 

listed in orientation.txt files. For every hotelId, this 

simply computes the count of every orientation 

word found in the preprocessed review, sums up the 

count and write pair of hotelId – {orientation-word 

count} into a HDFS file.  

The following is the detailed algorithm of Map 

and Reduce function. 

 
Method: map() 

Input:  <key,value> with key: hotelId, value: cleaned and 

labeled review, orientations[] 

Output: <key’,value’> with  key’: hotelId, value’: text of 

list of pair opinion_word - 1  

Steps: 

1: line ← value 

2: hotelId ← hotelId from line;   

3: sentences[] ← break review into sentences by splitting 

line using “/./”  

4: outText ← “” //empty text   

5: foreach sentence in sentences[] do 

6:     opWords[] ← get opinion words from sentence by 

looking up to orientations[], including the negation word 

if exists 

7:     if opWords is not empty then  

8:         foreach word in opWords [] do  

9:                outText ←  word + “1 ”     

10: emit < hotelId, outText > 

 
Method: reduce() 

Input:  <key,values> with key: hotelId, value: list of pairs 

of word - 1 

Output: <key’,value’> with  key’: hotelId, value’: text of 

list of pair opinion_word - count  

Steps: 

1: opWordCounts ← [] // initialize array of pair of word-

count 

2: for each value in values do  

3:     if word is found in opWordCounts, increase its 

count by 1 

4:     else add element of word – 1 at the end of 

opWordCounts  

5: outText ← text of all pairs of  word-count found in 

opWordCounts   

6: write (key, outText) 

 

5.  EXPERIMENTS 

 

We have implemented the component of review 

preprocessing and sentiment analysis. To speed up 

the look up processes (from file references, such as 

basic words, features, etc.), we adopt HashMap 

function. Here, we conduct 2 sets of experiments, 

aiming to evaluate the accuracy and scalability or 

speed. The experiments were performed in a 

Hadoop cluster having 1 master and 14 slave 
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machines. The machines specification: the 

processor is Quad-Core running at 3.2 GHz, the 

memory of 6 machines is 4 Gbyte and of 8 

machines is 6 Gbyte. The HDFS block size is 

configured as 128 Mb and replicated 3 times.    

Accuracy:  As there is no labeled (with its 

opinions) benchmark review dataset that we can be 

compared, in this experiment we present the results 

of qualitative observations of the mining results.  

We gathered some small sample dataset 

containing 40127 reviews given to  28 hotels from 

2 well known Indonesian e-commerce websites 

selling hotel rooms.  Examples of the analysis 

results are provided in Table 2. Among the 28 

hotels, we find that most have positive reviews. 

Only one hotel (h2017) that has high  percentage of 

negative/positive (54%), where the over all room 

condition and facilities are unsatisfying, while the 

food and service are quite acceptable. 

Table 2: Example of Analysis Results. 

HotelId #Pos #Neutral #Neg (Neg/Pos)% 

h1001 390 34 56 14 

h1002 374 24 66 18 

h1003 417 16 67 16 

h2017 37 3 20 54 

h2026 750 38 141 19 

 

An example of the sentiment summary of a hotel is 

as follows:  
| h1001| akses 1 0 1 lokasi 51 0 6 posisi 3 0 0 tempat 3 1 

1 hotel 95 8 8  harga 24 2 5 kamar 57 7 14 lantai 2 0 0 

shower 1 0 0 amenities 1 0 0 tv 2 0 0 ruang 1 0 0 fasilitas 

18 1 0 air 1 0 5 wc 0 2 0 toilet 1 1 1 kamarmandi 7 0 2 ac 

1 0 0 wifi 4 1 1 suara 0 0 1 restoran 5 0 0 sarapan 14 2 3 

makan 20 1 3 menu 4 4 0 suasana 2 1 1 kolamrenang 9 1 

0 staff 7 0 0 resepsionis 1 0 0 layan 53 1 2 lobby 2 1 1 

check-out 0 0 1 TOTAL_COUNT 390 34 56.  

The interpretation: The hotel location is good, the 

price is right, the room, food and services are also 

satisfying. The negative opinions (14%) are 

directed towards hotel location, overall hotel 

condition, price, room, food and services.    
We compare the sentiment summary of many 

hotels with the quantitative reviews provided in the 

2 e-commerce websites and find that among 28 

hotel summaries, 22 of these are highly inline and 6 

are somewhat inline with those presented in the 

websites.  Hence, we conclude that the proposed 

methods succeed in mining customer opinions with 

high accuracy.   

Speed and Scalability: We use review dataset 

with the size from 1.3 to 20.23 gigabytes. The 

execution time is shown in Figure 4 and Figure 5. 

The plots are linear, which indicates that the 

scalability of the proposed technique is acceptable. 

The total time for preprocessing 20.23 gigabytes of 

review is 2161 seconds (36.02 min), while 

analyzing the sentiment of 18.47 gigabytes (the 

output of preprocessing)  is 619 seconds (10.32 

min). Hence, the algorithms are fast. The time 

needed for analyzing is approximately one quarter 

of preprocessing. Our analysis: The elimination of 

stop words and finding root words consume more 

I/O and look up process (as it reads 2 files with 

larger size) compared to the analysis component.       

 

 
 

Figure 4: The Execution Time of Review Preprocessing. 

 

 

 
 

Figure 5: The Execution Time of Sentiment Analysis. 

 

 
6.  CONCLUSION AND FURTHER WORKS 

The proposed technique have succeeded in mining 

opinions from big data of Indonesian hotel reviews. 

By performing qualitative evaluation, we find that 

the accuracy is high. With adopting look up tables, 

the algorithms execution times in the Hadoop 

cluster proves to be fast and guarantees scalability.  

There are issues that have not been addressed, 

such as fixing grammar in sentences, developing 

techniques for handling slangs and finding hotel 

features automatically. Integrating the proposed 

technique with other data analysis technique (such 

as [15, 16]) in the e-commerce CRM system [17] is 
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also necessary such that the analysis results can be 

used to support customer decision makings.  
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