
Journal of Theoretical and Applied Information Technology
15th July 2017. Vol.95. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3116

A TRIPARTITE PARTITE KEY ASSIGNMENT SCHEME FOR

SECURITY OF CLOUD DATACLASSES

Mr. P.DILEEP KUMAR REDDY
1,

Dr. R. PRAVEEN SAM
2
, Dr. C. SHOBA BINDU

3

1
Research Scholar in CSE, JNTUA, Ananthapuramu, A.P, India,

2
Professor, GPREC, CSE Department, Kurnool, A.P, India

3
Professor, JNTUACEA, CSE Department, Ananthapuramu, A.P, India

1
dileepreddy503@gmail.com,

2
praveen_sam75@yahoo.com,

3
Shobabindhu@gmail.com

ABSTRACT

Class based cloud data security is more prominent today. Data of all the classes may not be that frequently

accessed by the owner or the users. Data of high prioritized class is frequently accessed and the cloud

technology seeks much secured parameters to raise the security of the high prioritized data. More over

many of the old cloud technologies needed with user re-authentications when he is simultaneously

accessing high class and low class data. This paper presents a new key generation and Class authentication

scheme to run the security specifications of the prioritized data. This paper also presents a tri-partite

authentication scheme. This scheme has found efficient in reducing the number of user re-authentications.

KEYWORDS: Cloud Technology, Prioritized Data, Re-Authentications, Tri-Partite

1. INTRODUCTION

Cloud technology has given a new life to the

users of the network by providing a virtual

trustable computing environment. Appreciated as

a secured platform to store user’s data, the cloud

is still aiming at improvising the security

parameters so as to raise this trust factor.

Today’s most advanced computing technology

has made many organizations to outsource their

data storage and computations so as to be

relieved from the burden of many economical

storage problems. This outsourcing has resulted

in two types of cloud infrastructures the private

cloud and the public cloud. The data owners

maintain the private clouds where they restrict

the data to be accessed only by few authenticated

users. The public cloud on the other hand is

within the control of the cloud service provider

and here the owners data is completely out of his

control and potentially be used by many

unknown users. With public clouds, trust (which

is feebly called as security) is the most

concerned factor which can be alternatively

achieved by defining the best security

specifications. Extending business expansions

public clouds are preferred. So today much

concentration is on enhancing the security of

public clouds.

 Cutting the edge between the high

maintenance cost and data storage, what usually

followed by many data owners is partitioning

their data to fall into various classes. Literature

has revealed the usual data classes are like:

private, limited access, public; where private

data can only be accessed by the owner, limited

accessed data can be accessed by few authorized

users and the public data can be accessed by

anyone. Data of one class may be frequently

queried and other class data may be less queried

or sometimes may not be queried at all. With this

the cloud is facing the challenge of secure

communication of the most frequently queried

class. For a cost optimization under such data

partitions the cloud technology has varied its

security specifications across the classes defined;

varied encryption algorithms, varied

authentication schemes and varied keys. Out of

these varied specifications maintaining and

managing the keys needed for data security is the

key aspect of cloud technology.

The class based cloud partitioning

infrastructure has faced issues in maintaining the

keys needed for data encryptions at various

classes. For more number of classes more keys

are to be generated and managed. Managing

these huge lots of keys is a real problem faced by

many cloud providers. Literature has showed

works where with n number of class’s n distinct

keys are generated and maintained; which

obviously affects the cost factor.

Journal of Theoretical and Applied Information Technology
15th July 2017. Vol.95. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3117

 Moreover many of the class based

partitioning approaches proposed works where a

user authenticated to one class can access only

that class with the defined key, but cannot access

other class data. But under data sharing users are

more inclined to data of other partitions too. Key

sharing becomes quite difficult then and also this

type increases the number of user re-

authentications from class to class.

In this paper we propose a new tripartite

class key generation scheme with a novel class

authentication mechanism. The owners data is

partitioned under three classes: Most

Confidential (C1), Confidential (C2) and public

data (C3). A tripartite graph connecting the three

data partitions is used. The tripartite cycle of the

graph is used to authenticate the users and assign

keys to various classes. The tripartite approach is

designed to strengthen the security of prioritized

classes and to reduce user re-authentications. The

main contributions of the present work are:

1. Generation of strong random primes to

strengthen the encryption schemes

2. Lucas encryptions to strengthen the security of

the prioritized classes.

3. A tripartite authentication scheme to reduce

the user re-authentications.

The rest of the paper is arranged as

follows: Section 2 presents the Literature

Survey. Section 3 presents the background and

preliminaries. Section 4 presents tripartite class

authentication scheme. Section 5 presents the

performance analysis. Section 6 presents the

conclusion and future extension of the work.

2. LITERATURE SURVEY

With the advent of clouds as storage areas many

of data owners are reliant on these clouds for

secure data storage. Encryption mechanism is

used by the cloud to provide confidentiality to

the owner’s data. The whole data is encrypted

and stored in the cloud. As the whole data is

encrypted, while decrypting the approach didn’t

raise the data owners trust as the owners feel

decryption may corrupt their sensitive data

which is a part of the whole data. As a

promissory step of increasing this trust, what

followed by the cloud is data classification:

allowing the owner to classify his data to fall

into classes like: sensitive and public. Sensitive

data can be accessed only by the owner and

public data can be accessed by other

authenticated users of the cloud. With such data

classifications the most concerning factors from

the cloud are:

1. How data confidentiality is provided and

how users are authenticated to various

classes.

2. How keys are generated to access various

class data.

3. How these large number of class keys are

managed.

Works discussed in [1] presented a set of

security protocols called PaaS in the cloud

architecture. Paas provided cloud data

confidentiality by classifying data into three

classes based on the significance of data

sensitivity. The class of No-Privacy data is not

sensitive and the works didn’t use any

encryptions on this class data. The other class of

data is the privacy with the trusted provider

where data is encrypted with the provider’s

secret key. The third class of data is the Privacy

with Non trusted provider where data is

encrypted with customers secret key. For each

data category the cloud provider allocated a

separate storage pool and separate security

protocols are used the work showed this kind of

data classification enhanced the security of

customer sensitive data.

 [2] presented a honey pot cloud framework,

where the owners data is classified into four

classes. The security parameters are then varied

according to the sensitivity of the class data.

Works discussed in [3] showed a three way

classification of the data: Public, Private and

limited access based on three cryptographic

parameters.

Under such data classification what

generally raises is how the keys are generated to

access various data classes and how users are

authenticated to various classes. A

cryptographic key generation scheme for

multilevel data security is discussed in [4]. The

data classes are defined to form a partially

ordered set based on hierarchies. Users with low

ordered class hierarchy are not authenticated to

access the data with high ordered class hierarchy.

Based on these partially ordered levels the class

keys are generated to access the data of each

Journal of Theoretical and Applied Information Technology
15th July 2017. Vol.95. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3118

class. Works presented in [5] showed a novel

attribute based encryption scheme to generate

various class keys. The scheme achieved data

sharing at finer levels between users

authenticated to various privileged classes.

Works discussed in [6] followed a

hierarchical access control policy using which

data is organized to fall into various security

classes. A hierarchical key assignment scheme is

used to assign cryptographic keys to various

classes. Works discussed in [7] showed a

dynamic access control mechanism to various

data classes of the cloud. Data re-encryptions

and key generations are highlighted in the work

using mathematical concepts of bilinear pairings.

Works discussed in [8] presented a key

assignment scheme for access control in defined

hierarchical classes. The approach used a time

bound on user access of each class where in a

user may be in a class for a period of time. Lucas

functions are used to set the time bound on each

class and modular arithmetic’s with a

combination of hash functions is used to

generate the keys needed to access each class.

3. BACKGROUND AND PRELIMINARIES

Cloud computing has marked as the most

emerging technology inspiring many young

researchers to work with it. Cloud is one of the

promising technologies to provide security to

data stored within it. Every time the cloud is

focusing on new data security and accessing

approaches in order to raise the owners trust.

One such accessing technique to increase the

efficiency is storing data in owners predefined

classes. Literature has provided with many

approaches on how various security mechanisms

like encryptions, key generations are addressed

on these classes. Though cloud computing is

excelling with its computing capabilities, it still

faces some new born threats concern to these

data classes. This section discusses some threats

as a part of background study and approaches to

counter them. The section also discusses the

preliminaries needed to move the proposed work.

3.1 Problems on data classes

On demand owners request has made the cloud

to protect his data under his own defined classes

like sensitive data, more sensitive data and non-

sensitive data. Segregating sensitive data from

the whole data has made the attackers to have an

easy eye on this part. This made the cloud to

hold an additional burden on countering attacks

on sensitive data. The cloud has raised the cost

of strong encryption schemes on sensitive data

class. Some of the cloud storages varied the

encryption schemes with varied classes. With

these variations the clouds are facing this

overhead of encryption specifications.

3.2 Problems on class key generation

With varied encryption algorithms across varied

classes the cloud is in need of huge set of

cryptographic keys. If the class data is secured

with a symmetric key cryptographic system then

n keys are be generated for each of n classes. If a

public key cryptosystem is used the n+n keys are

to be generated. As the number of data classes

increases the number of keys to be generated

also increases; which raises the cost factor.

3.3. Problems on class key management

The management of these huge lots of class keys

is the major problem faced by many cloud

infrastructures. If different users are

authenticated to access different class data then

the major issue faced is how these different user

keys are to be managed to authenticate them to

various class data. Users of higher class data may

be authenticated to access lower class data. With

these concerns many of the cloud infrastructures

are lack of efficient key management module.

3.4 Re-authentication- its problems

Re authentication is where a user accessing a

secured class is asked for proving himself when

he want to access another class of his own data.

This is a critical issue in many clouds where the

user data is divided into number of classes and

the user want access his own other class data

being in other prioritized class. At this instance

the user is again asked to authenticate. The major

problem with re-authentication is handover key

management. Key hand over for re-

authentication should be very fast. How the keys

to authenticate from class to class are managed is

a major problem.

In this paper we propose a tri-partite Class

authentication scheme so as to reduce the user

re-authentications while he is moving from high

prioritized class to low prioritized class. To

strengthen the data security and for strong key

generations we used Lucas sequences. Our paper

Journal of Theoretical and Applied Information Technology
15th July 2017. Vol.95. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3119

didn’t address on the handover key management

issue of re-authentications. This we want to

propose as our further extension to tri-partite

scheme.

3.5 Preliminaries

This section discusses some preliminaries

required to escalate the proposed work.

Owner/user: The owner is the person who

created the data and willing to store the data in

the cloud. At times he can also be the user of the

data. Much of the research has taken the Owner

as a lame man without the knowledge of how

actually the privacy mechanisms run. He is at a

constant thrive for confidentiality and integrity

of his data in the cloud.

Class Data: Generally the whole data of the user

may not be so confidential. Many of the clouds

for better performance are allowing the owner to

classify his data into classes like Confidential,

Public etc.

Prioritized Class data: Though classified the

whole data of a class may not be of equal

importance to the owner. There may a portion of

the class (file) which he may frequently access.

This portion of data of his whole class data is

prioritized.

Graph: A graph is structure which can be used

to store data or sometimes used to implement the

logic of the procedure. A graph is a collection of

nodes.

Figure 1: Tripartite graph

Tripartite graph: A tripartite graph is whose

vertices can be divided into 3 independent sets

and having an edge between every pair of

vertices from independent sets. The tripartite

graph divides the whole vertex set under three

levels. Each level may include any number of

vertices. In our proposed method the three levels

are the three data prioritized levels(C, L, P) and

vertices are the data files/partitions. Tripartite

graphs with 3 vertices in each independent set

are denoted by K(3,3,3) and is as shown in

Figure 1:

3-Partitioning: If each level of the tripartite

graph includes 3 vertices we say the graph is 3-

partitioned.

3-cycle: We call a 3-cycle as a cycle with its 3

distinct nodes in each of the three classes.

Clearly from the tripartite graph there are 3-

cycles joining classes of C, L, P. Cycle C1-L1-

P1-C1 has its 3 distinct nodes from each Class

partitions.

In our proposed work (C1,L1,P1)

representing the distinct ends of this 3-cycle, is

taken as the unique id of this 3-cycle. We call

these 3-cycles as tripartite cycles. In our

approach we restrict a tri-cycle can only start

from high prioritized data of class C.

Clearly in Figure 1 for a K(3,3,3) there are

3*(3+3)= 18, 3-cycles. In general in K(n,n,n)

there are n*(n+n) cycles. An algorithm to

generate the possible distinct 3-cycles with

unique id is shown.

Algorithm 1: Generate 3-Cycles

Input: Tripartite

Output: Distinct 3-Cycles.

Step 1: read the tripartite.

Step 2: for each Pi (i=1,2,3): Start at an arbitrary

partition Fj(j=1,2) : identify the cycle with its

three distinct ends in each Pi. Give an identity

which is the end nodes of the cycle.

Step 3: repeat step 2 for all Pi, Fj.

Step 4: Store these 3-cycle ids.

Bi-partite edge: A bipartite edge joins Class L

to Class P. Here in our approach we restrict a bi-

partite edge can only join L to P data.

Lucas Numbers: The Lucas numbers are

defined by

Ln= 2; if n=0;

 =1; if n=1;

 =Ln-1+ Ln-2; if n>1; for all nE N

A Lucas prime is a Lucas number that is prime.

Journal of Theoretical and Applied Information Technology
15th July 2017. Vol.95. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3120

3-Lucas Partitions: To arrive at 3-Lucas

partitions over N we consider 3- partitions of N:

[0,N/3) U [N/3,2N/3) U [2N/3, N]. The 3-lucas

partitions are defined as:

L
1

n = Ln-1+ Ln-2; n E [0,N/3);

L
2

n = Ln-1+ Ln-2; n E [N/3,2N/3);

L
3

n = Ln-1+ Ln-2; n E [2N/3, N];

Lucas generating function: Let n be an RSA

integer where n=pq,a€N. L(a) be the Lucas

sequence generated by a, where Ln(a)=Ln-

1(a)+Ln-2(a); the generating function of the above

Lucas recurrence is f(X)= X
2
 + aX+1. We know

that the cryptographic strength of second order

equations are more when compared to linear.

This shows that the Lucas parameters generated

from Lucas sequences are cryptically strong.

 4. PROPOSED SCHEME

We used Lucas sequences for strong encryptions

and for generation of strong keys. A tripartite

graph mechanism is used to authenticate users to

various data classes. Classify the owners data

into three classes: Confidential(C), limited

access (L), Public (P). The proposed method

allows the owner to prioritize his data into these

three levels. Level C holds data of high

confidentiality like owners sensitive and most

personal data and only the owner is authenticated

to this level data; level L holds somewhat owners

private data but only few are authenticated to use

this level; Level P holds public data of the owner

which can be accessed by any cloud user. We

assume that these three classes (C, L, P) follow a

partial ordering P<L<C. By partial ordering the

users of Class C data can access the data at levels

L,P also; whereas users of class L,P cannot

access data of class C. Users of Class L can

access data of class P also. Users of class P can

only access data of class P. These three class

data is governed by a tripartite graph whose

tripartite cycle connects these classes.

Even though the owner has kept his

whole confidential data under class C,

sometimes he may not be interested with full

data. If full data of class C is encrypted then for

the requested part of C whole data should be

decrypted again. To overcome this headache of

full data decryption of each class for a small

requested portion of the class, we propose a

partite mechanism of partitioning each class data

into three partitions C1, C2, C3 of C. The data of

C1 is most frequently accessed and will be

marked as most confident data and the frequency

of accessing data of C2 and C3 is considerably

less. Our approach aimed at strengthening the

security of C1 to a greater extent when compared

to security of data of C2 and C3. One such

strong security specification is authentication

scheme. Here in this paper we proposed a novel

authentication scheme governing user access to

each of these classes.

This authentication scheme includes

user authentication to access various class data

using strong keys. In this authentication scheme

we mainly concentrate on the class key

generations and authentication scheme for user

access. We are not concentrating on class key

management, which we want to publish as a

future work.

We consider a tripartite graph K(3,3,3);

shows each class data is 3-partitioned with labels

C(C1,C2,C3), L(L1,L2,L3) and P(P1,P2,P3) as

shown in Figure 1. Owner’s frequency of

accessing label 1 of all classes is more when

compared to other data with labels 2 and 3. Here

we state label 1 data of all classes is high

prioritized. In our proposed approach such a

prioritized leveled data is more secured with

strongest encryption mechanisms and security

specifications. A prioritized authentication

mechanism using tripartite cycles of graph is the

strength of the paper. In our proposed work we

take a central authority (CA) that manages the

tri-cycles of the graph.

Each tripartite cycle is generated with

three connecting points from each of three

classes. We restrict users can access only one

partition data either C1 or C2 or C3 or other

data at one authentication. Our scheme works

with the following specifications:

Initially the CA initiates the user to classify his

data into the classes specified by the tripartite

mechanism. After the classification the user

submits his classified data to the CA. Now the

CA runs the security specifications of each class

data as follows:

4.1 Generation of Random Primes

If the user want to access class C data then the

random primes are generated from the Lucas L
1

sequence: L
1

n = Ln-1+ Ln-2; n E [0,N/3);

Journal of Theoretical and Applied Information Technology
15th July 2017. Vol.95. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3121

If the user want to access class L data then the

primes are generated from the Lucas L
2
 sequence

L
2

n = Ln-1+ Ln-2; n E [N/3,2N/3);

If the user want to access class P data then the

primes are generated from the Lucas L
3
 sequence

L
3

n = Ln-1+ Ln-2; n E [2N/3, N].

4.2 Encryption Schemes

We use Elgamal encryption algorithm which is

defined by Lucas sequence as follows:

Key pair generation for Class C data: Let p
1
,q

1

belongs to L
1

n, n E [0,N/3) ,be Lucas primes, a

belongs N. Let Class C public data be (p
1
,q

1
,a).

Select a small integer e belongs to N such that

gcd ((p
1
)

2
-(q

1
)

2
, d)=1 and a secret x belongs E

[0,N/3); computes d using inverse modulo;

computes y=Lx(a);and generates the public

key(y,e) and private key(d,x).

Key pair generation for Class L data: Let p
1
,q

1

belongs to L
1

n , n E [N/3,2N/3] ,be Lucas primes,

a belongs N. Let Class L public data be (p
1
,q

1
,a).

Select a small integer e belongs to N such that

gcd ((p
1
)

2
- (q

1
)

2
, d) = 1 and a secret x belongs

E [N/3, 2N/3]; computes d using inverse modulo;

computes y=Lx(a); and generates the public

key(y, e) and private key(d,x).

Class C Encryption: Since Class C data has

three priorities: C1,C2, C3; each partition data

has to be encrypted and upload it to the cloud.

The encryption has 3 cases:

Case 1: Encryption of C1 data: Since C1 data

is more frequently accessed it should be more

secured. For this our approach restricts to select a

secret k1 in the larger interval between 0<k1<

2n. Uploads the cipherCC1=(CC1
1
,CC1

2
); where

CC1
1
= Lk1(a); CC1

2
= K + Le(C1) and K=Lk1(y).

Decryption of C1 data: When the user wants

C1 data then the cloud forwards (CC1
1
,CC1

2
).

User computes K=Lx(CC1
1
), C1= Ld(CC1

2
-K)

where (d,x) is his private key.

The same encryption, decryption

principles follow for L1 partitions where secrets

taken within the longer range [0,2n].

Case 2: Encryption of C2 data: Since C2 data

is less frequently accessed than that of C1 data

the security of C2 can be lessened. For this our

approach restricts to select a secret k2 in a

smaller interval between 0<k2<n. Uploads the

cipher CC2= (CC2
1
,CC2

2
); where CC2

1
= Lk2(a);

CC2
2
= K + Le(C2) and K=Lk2(y).

Decryption of C2 data: When the user want to

C2 data then the cloud forwards (CC2
1
,CC2

2
).

User computes K=Lx(CC2
1
), C2= Ld(CC2

2
-K)

where (d,x) is his private key.

The same encryption, decryption

principles follow for L2 partitions where secrets

taken within the range [0,n].

Case 3: Encryption of C3 data: Since C3 data

is very less frequently accessed than that of C2

data the security of C3 can be still lessened. For

this our approach restricts to select a secret k3 in

a smaller interval between 0<k3<n/2. Uploads

the cipher CC3= (CC3
1
,CC3

2
); where CC3

1
=

Lk3(a); CC3
2
= K + Le(C3) and K=Lk3(y).

Decryption of C3 data: When the user want C3

data then the cloud forwards (CC3
1
,CC3

2
). User

computes K=Lx(CC3
1
), C3= Ld(CC3

2
-K) where

(d,x) is his private key.

The same encryption, decryption

principles follow for L3, partitions where secrets

taken within the range [0,n/2].

Case 4: Since data of P is public the data is

directly uploaded without being encrypted.

4.3 User authentication to classes

Users authenticated to Class C can also use Class

L,P data. Many of the current cloud class

authentication mechanisms follow a re-

authentications system where in a user if in class

C want to access his Class L data then the user

has to undertake re-authentication to use Class L

data though may be his own data or he is high

prioritized user to use other low prioritized data.

These re-authentications degrade performance as

discussed in section 3.4.In our approach we used

a tripartite graph to manage the user class

authentications without re-authenticating the user

while he is tracing his low class data. A tripartite

cycle is used to authenticate the users to various

classes according to their priorities.

4.3.1 Generation of signatures

We use Elgamal signatures defined on the Lucas

Sequences. For each class data we denote

signature as Sig(Class) and define signatures as

follows:

Case 1: for class C data the signature is derived

as follows: suppose (p,q,a) be the user pubic key.

Computes the secrets Kcp= (a
2
 -4)/p and Kcq=(a

2

Journal of Theoretical and Applied Information Technology
15th July 2017. Vol.95. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3122

-4)/q. Select an integer x, 1<=x<=(p-1)(q-1),

compute y=Lx(a) and make public (n,a,y).

Generates the Class C signature as follows:

Select a random k such that gcd(k,(p-Kcp)(q-

Kcp))=1 and compute r=Lk(a).Compute s=k
-1

(C-

xr)mod(p-Kcp)(q-Kcq), where C=C1 or C2 or

C3 , k
-1

 is the inverse of k mod (p-Kcp)(q-Kcq).

Now sig(C)=(r,S) is the class C signature where

S=Ls(r).

Authentication of Class C signature: The

signature is verified if L
2

C(a) + L
2

r(y) + S
2
- 4 = S

Lr(y)LC(a).

Case 2: For class L data the signature is derived

as follows: suppose (p,q,a) be the user pubic key.

Compute the secrets Klp= (a
2
 -4)/p and Klq=(a

2
 -

4)/q. Select an integer x, 1<=x<=(p-1)(q-1),

compute y=Lx(a) and make public (n,a,y).

Generates the Class L signature as follows: select

a random k such that gcd(k,(p-Klp)(q-Klq))=1

and compute r=Lk(a). Compute s=k
-1

(L-

xr)mod(p-Klp)(q-Klq), where L=L1 or L2 or L3

, k
-1

 is the inverse of k mod (p-Klp)(q-Klq).

Now Sig(L)=(r,S) is the class L signature where

S=Ls(r).

Authentication of Class L signature: The

signature is verified if L
2

L(a) + L
2

r(y) + S
2
- 4 = S

Lr(y)LL(a).

Case 3: For class P data the signature is derived

as follows: suppose (p,q,a) be the user pubic key.

Compute the secretKPp= (a
2
-4)/p and KPq=(a

2
-

4)/q. Select an integer x, 1<=x<=(p-1)(q-1),

compute y=Lx(a) and make public (n,a,y).

Generate the Class P signature as follows:

Sselect a random k suchthat gcd(k,(p-KPp)(q-

KPq))=1 and compute r=Lk(a). Compute s=k
-1

(P

-xr)mod(p-KPp)(q-KPq), where P=P1 or P2 or

P3 , k
-1

 is the inverse of k mod (p-KPp)(q-KPq).

Now sig(P)= (r,S) is the class P signature where

S=Ls(r).

Authentication of Class P signature: The

signature is verified if L
2

P(a) + L
2

r(y) + S
2
- 4 = S

Lr(y)LL(a).

4.3.2The tripartite class authentications

In our approach the tripartite cycles of the

tripartite graph are used to authenticate the users

to various classes. Our approach uses a CA to

manage and maintain these tripartite cycles. As

discussed in section 3.1all the possible tripartite

cycles are generated and the Ids are saved in the

tripartite ring. The CA also saves the Class ids.

The approach

Initially the user identifies his classes of data and

partitions them into various partitions. The CA

then encrypts the data of classes using various

encryption schemes as discussed above. The CA

then constructs the signature rings by generating

the signatures on each class data. These signature

rings are used to authenticate the user from class

to class without re-authenticating.

Signature Rings: the CA of the user module

generates all the possible Tri cycles connecting

the data partitions, generates the cycle ids. The

CA then constructs the signature ring which

includes the tri-cycles whose vertices are Class||

signature (class). As the data priority varies the

structure of signature rings vary. Viewing from

class C data the signature rings are tri-cycles.

Viewing from Class L data the signature rings

are just bipartite edges.

Signature ring of Class C: Since class C data is

confidential and a user accessing class C data

can also access class L and P data, the signature

ring of Class C holds all the tri-cycles connecting

the low leveled classes of the partitions.

Signature ring of C1: all the tri-cycles with start

vertex at C1, mid vertex at any partition of L and

end vertex at any partition of P. Figure 2 shows

Signature ring of C1 of C. Similar rings can be

constructed for other partitions of C.

Figure 2: Signature Ring Of C: Collection Of Tri-

Cycles

There are a possible of 3+3+3=9 tri-cycles with

each of Class C partitions. Hence a possible of

nine signature rings from whole C data.

Journal of Theoretical and Applied Information Technology
15th July 2017. Vol.95. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3123

Signature ring of Class L: Since Class L data is

with next level of confidentiality, a user in Class

L data can only access class P data but not Class

C data. So here the signature ring of Class L data

includes the bi-partite edges between Class L and

Class P data.

Signature ring of L1: all the bipartite edges

with start vertex at Class L and end vertex at

Class P partitions. Figure 3 shows signature ring

of L1,L2,L3 of L.

Figure 3: Signature Ring Of L: Collection Of Bi-

Partite Edges.

There are a possible of 3+3+3=9 bi-partite edges

from each of Class L partitions to class P

partitions. Hence a possible of nine signature

rings from whole L data.

Signature rings need not be constructed for Class

P data as Class P data is public. Here in our

approach we have less concentrated on Class C

data.

All the possible signature rings are constructed

and these signature rings are stored with the CA

of the client module. After this the CA uploads

the user encrypted data. The CA also forwards

the Cloud the tri-partite rings of each class but

without the signature as shown in Figure 4.

Figure: 4: Signature Rings Forwarded To Cloud

Class authentication procedure:

Now his Class data is C,L,P. Suppose the

user want to accessC1 data of Class C. Then in

our approach from C1 class the user even can

access his less confidential data classes of L

without re-authentication. But the user cannot

access any other classes of C from C1, though

these are his class data to strengthen security of

more confidential data C our approach requires

re-authentications here.

Here the user puts a request for accessing C1

data. Then the user client module traces the

signature ring of C1 from the stored rings at CA,

as shown in figure and forwards the cloud user

id||Class id(C1)|| signature Ring(C1). The cloud

on receiving the request from the user verifies

his user id. It then uses the class id to identify

which class the user want to access and from

Class id(C1) the cloud identifies the user want to

access a high prioritized data from which he can

use various low prioritized classes. The cloud

now traces tri-partite rings of C1 for verification

of user signatures. It compares the tri-Cycles of

Figure 2 by generating the Lucas signatures at

each tripartite end as discussed in section 4.3.1.

At C1 it uses user public key, y; to verify

L
2

C(a) + L
2

r(y) + S
2
- 4 = S Lr (y)LC(a) if the

signature is matched the cloud authenticates the

user to access C1 data. While the user is

accessing C1 data the cloud verifies all other low

class data signatures by tracing the tri-cycles of

the ring of C1. Once the signatures are verified

the user is authenticated to use all other low class

data if needed without any re-authentications

required.

5. PERFORMANCE COMPARISONS

We study the performance comparisons under

the following concepts:

• The strength of Lucas encryptions used in our

approach.

• The strength of tripartite class authentication

scheme in reducing the number of re-

authentications.

5.1 The strength of Lucas encryptions

Data security is measured with strong encryption

schemes. In other way we can estimate the

performance of cloud based architectures

analyzing the way they provide data security.

Journal of Theoretical and Applied Information Technology
15th July 2017. Vol.95. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3124

Strong encryption schemes can directly measure

the cloud performance. Here in our approach we

discuss the strength of Lucas encryptions to

support our approach has high performance in

terms of data security.

5.1.1 Strength of random numbers

Generally many of the cloud data encryption

mechanisms like RSA, ELGAMAL uses pseudo

random generators to select the primes that are

used for encryptions. The main drawback with

Pseudo random generators are they generate

primes that are periodic over a small interval.

This periodicity is due to the reason that the

generators use modular arithmetic. Both bounds

of periodicity of modular arithmetic’s can be

easily estimated. Because of this periodicity the

random primes can be easily analyzed.

 Our approach used Lucas sequences for

generation of random primes. The main

characteristic of Lucas sequence is their

periodicity is exponential to the initial prime’s

chosen. Only the lower bound can be estimated.

Because of the exponential nature of the

sequence it is quite difficult to estimate the upper

bound of the periodicity within an interval. Here

in our approach we still increases the strength of

random primes by varying the interval for each

class.

5.1.2 Strength of secret keys generated in the

intervals:

Generally many of the cloud security

approaches generate public, private key pair as

well as secret keys on a common interval like

[0,N].Choosing a common interval for all

random’s and keys makes analyzing them easy.

In our approach we have partitioned the interval

according to the number of classes. Varying the

intervals from which keys are generated may be

somewhat tricky. Since there are three classes we

have partitioned the whole interval [0,N] into

three classes: [0,N/3],[N/3,2N/3],[2N/3,N] from

which key pairs of respective classes are

generated. Also we have varied the encryption

secret keys used by each class within three

different intervals. Since C1 of class C data and

L1 of Class L are frequently accessed we want to

increase the strength of the secrets used for

theses classes and so we have varied the secret

key (k1) to be taken from the larger interval

[0,2n]. The reason behind taking a larger interval

is analyzing a larger interval is more secured

than analyzing a smaller interval. Since C2 of

Class C and L2 of Class L is less frequently

accessed, data is not that confidential we varied

the secret key (k2) to be taken from a smaller

interval [0,n] so as to reduce the computational

time. We still reduced the computational time of

choosing the secret (k3) for C3 and L3 classes

within still smaller interval [0,n/2]. The reason

behind taking partitioned intervals for public key

pairs and varied intervals for class secret keys is

to increase the complexity of analyzing.

Figure 5: Complexity Of Analyzing Class Keys

With theses varied randoms and varied keys

within varied intervals the Lucas encryptions

exhibit strong crypto. Figure 5 shows the

complexity of class keys within varied intervals.

5.2 Strength of Lucas signatures

Generally many of the cloud architectures use

digital signatures generated by some hash

functions. The weakness of hash is they are

vulnerable to collision attacks. This is because

hash functions use linear functions of the type

h(x) where a collision happens to be finding x by

comparing two similar hashes generated on two

different data. Since hashes are linearly

convergent theses comparisons are successful in

breaking the hash function.

On the contrary in our approach we have used

Lucas functions to generate the signature. The

Lucas signature is generated using a combination

of two functions of the type L(x)+L(y) and hence

the complexity of collision attack is very low.

0

5

10

15

[0 2n] [0 n] [0 n/2]

ti
m

e
 t

o
 a

n
a

ly
ze

 t
h

e
 c

la
ss

 k
e

y
s

Class Intervals

Class P Class L Class C

Journal of Theoretical and Applied Information Technology
15th July 2017. Vol.95. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3125

5.3 Performance comparison of tripartite

class authentications

In many of the class based cloud authentications

data users are authenticated to access only one

class per authentication. If the user want to

access some other class being in one class then

he has to undergo one more re-authentication.

Thus the old class based authentications

increases the headache of huge re-

authentications. In our approach we used a

tripartite graph to reduce these re-

authentications. The approach forwarded the

tripartite rings of the user where in all the user

class signatures are verified when the user is

accessing one class data. In the older class based

authentications as the number of classes

increases the number of re-authentications

accordingly increased. Our tri-partite method

drastically reduced number of re-authentications

irrespective of the number of classes. Figure 6

shows the number of re-authentications in tri-

partite class based authentication approach.

Figure 6: Number Of Re-Authentications

5.4 Strength of our approach

General cloud data encryptions uses

secretes, which are randomly picked. Our

approach used Lucas sequences which are by

nature strong random number generators. Our

approach varied the intervals of randoms bases

on class priorities and hence can state the Lucas

encryptions are more secure. In many of the class

based authentications there is no particular

approach on how the users are tracing from class

to class and hence many of the approaches re-

authenticate the users. Our approach used a

tripartite graph authentication. The tripartite

graph connected these classes and authenticated

the users.

6. CONCLUSION

Class based cloud data security is more

prominent today. Data of all the classes may not

be that frequently accessed by the owner or the

users. Data of one class may be frequently

queried and other class data may be less

frequently queried or sometimes may not be

queried at all. This raises the challenge of secure

communication of the most frequently queried

class. For a cost optimization under such data

partitions the cloud technology has varied its

security specifications across the classes of

priorities defined; varied encryption algorithms,

varied authentication schemes and varied keys.

Out of these varied specifications maintaining

and managing the keys needed for data security

is the key aspect of cloud technology. More over

many of the old cloud technologies needed with

user re-authentications when he is

simultaneously accessing high class and low

class data. The proposed work uses the strength

of Lucas encryptions in generating the class keys

and class signatures for user authentications by

varying the specifications in various intervals.

With theses varied class randoms and varied

keys within varied intervals the Lucas

encryptions exhibit strong crypto.

A tripartite graph mechanism is used to

reduce the number of re-authentications. Our tri-

partite method drastically reduced number of re-

authentications irrespective of the number of

classes.

The present work addressed only on key

generation and authentication schemes. Our

approach didn’t address on managing these keys

while authenticating users to various classes. We

want to address the key management to various

classes as our future extension to the proposed

work.

REFERENCES:

[1] WassimItani; AymanKayssi; Ali Chehab

“Privacy as a Service: Privacy-

Aware Data Storage and Processing in Clou

dComputing Architectures”, 2009 Eighth

IEEE International Conference on

Dependable, Autonomic and

Secure Computing, Pages: 711

&716, DOI: 10.1109/DASC.2009.139

0

5

10

15

0 2 4 6 8 10

N
o

.o
f

re
-a

u
th

e
n

ti
ca

ti
o

n
s

No.of Classes

Existing class based

Tri-partite class based

Journal of Theoretical and Applied Information Technology
15th July 2017. Vol.95. No 13

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3126

[2] Md. Rafiqul Islam; Mansura Habiba, “Agent

based frame work for providing security to

data storage in cloud” 2012 15th

International Conference on Computer and

Information Technology (ICCIT),

Pages: 446 451, DOI: 10.1109/ICCITechn.2

012.6509712

[3] Sandeep K. Sood
,
“A combined approach to

ensure data security in cloud computing’,

ELSIVER, Journal of Network and

Computer Applications, Volume 35, Issue 6,

November 2012, Pages 1831–1838

[4] LeinHarn ∗, Hung-Yu Lin “A cryptographic

key generation scheme for multilevel data

security”, ELSIVER, Computers & Security,

Volume 9, Issue 6, October 1990, Pages

539-546.

[5] DongyangXu; FengyingLuo; Lin Gao; Zhi

Tangfine

grained document sharing using attribute-

based encryption in cloudservers” Third

International Conference on Innovative

Computing Technology (INTECH 2013),

pages: 65 -

 70, DOI: 10.1109/INTECH.2013.6653703

[6] Yi-Ruei Chen, CHU Cheng-Kang, Wen-

GueyTzeng, Zhou Jianying ” CloudHKA: A

Cryptographic Approach for Hierarchical

Access Control in Cloud Computing”,

International Conference on Applied

Cryptography and Network Security

(ACNS), 26 Jun 2013

[7] Ran Yang; Chuang Lin; Yixin

JiangEnforcing scalable and dynamic hierarc

hical access control in cloud computing,

2012 IEEE International Conference on

Communications (ICC), Pages: 923 -

 927, DOI: 10.1109/ICC.2012.6364473

[8] Jin Li; Xiaofeng Chen; Mingqiang

Li; Jingwei Li; Patrick P. C. Lee; Wenjing

Lou,

secure Deduplicationwith Efficient and Reli

able Convergent KeyManagement IEEE

Transactions on Parallel and Distributed

Systems,Year: 2014, Volume: 25, Issue: 6,

Pages: 1615 1625, DOI: 10.1109/TPDS.201

3.284

[9] WenGueyTzeny “A time bound

cryptographic key assignment service for

access control in a hierarchical”, IEEE

transaction on knowledge Data engineers,

Vol 14 No1 , Jan/ Feb 2012.

