
Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2673

SOFTWARE REQUIREMENT REUSE MODEL BASED ON

LEVENSHTEIN DISTANCES

1
WONG PO HUI, 2,*

WAN MOHD NAZMEE WAN ZAINON

School of Computer Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
1
wphui.ucom12@student.usm.my,

2
nazmee@usm.my

ABSTRACT

Software reuse has always been one of the popular topic in software engineering community. It refers to the

development of software by reusing components previous software development. Reusing components

during the development of software reduces time and cost which could also enhance reliability and quality

of the concept of reuse. In this paper, a software reuse model is established where it shows the overall

process of retrieving the relevant use cases. A database is built and a prototype is developed based on the

model. Levenshtein Distance algorithm is applied in computing the similarity score. A list of relevant use

cases is displayed as a result. Evaluation criteria such as recall and precision are used to evaluate the result.

Based on the results, the enhancement of the software reuse model has been proposed

Keyword- Software Reuse, Use Case Diagram, Software Requirements

1. INTRODUCTION

Software reuse concept was first introduced by

Mcllroy at NATO Software Engineering

Conference in 1968 [2]. Mcllroy had proposed of

building a complex system by reusing the building

blocks available in a library of reusable software

components. Recently, the concept of software

reuse had gained a lot of attention. This is due to

the high competition existed among software

developers where they need to figure out ways to

reduce the cost for the production of software in

order to achieve competitive advantage in software

market [4]. In addition, software development

process has become more complex [5]. This is

because software that needs to be developed is

complex and huge to satisfy users need by fulfilling

their requirements. Therefore, software reuse is

believed as one of the solutions to cope with the

situations mentioned above.

Software reuse promotes countless benefits.

However, it had also caused failure in the

development of software. There are some barriers

identified such as organizational barriers, economic

barriers, administrative impediments, political

impediments and psychological impediments [8].

Therefore, some developers feel reluctant to apply

the concept of reuse in the development of software

through the software reuse.

There are some guidelines proposed by some

researchers in reusing the software in order to

prevent the failures. One of these guidelines include

creating and maintaining a central library where all

new components developed from scratch and

previously developed projects are available in the

library. Code review should also be used as

reference to determine if the reusability is feasible

or not. Analysis on cost reduction should also be

carried out to confirm that the cost could be reduced

by reusing the software [8].

Failures in software reuse could also be reduced

by reusing the early-stage artefacts. Reusing early-

stage software artefacts can actually maximize the

benefits gained from software reuse where those

later-stage software artefacts that are related to early

stage artefacts could also be reused [10].

Basically, in software reuse, all the reusable

software components are stored in repository or

library. The size of software library would increase

as more and more software components are stored

[11]. This could increase complexity in the process

of searching for the most suitable reusable software

components which might lead to the decrease of the

benefits in reducing the complexity of software

development process.

Besides, retrieval of reusable software

components is also an essential process in software

reuse. The failure to retrieve the most suitable

software components might cause the development

of software to fail. This might happen when the

software components retrieved and the desired

software components are totally different or

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2674

unrelated. So, in other words, the application of

appropriate retrieval technique is important during

the process of retrieving reusable software artefacts.

The focus of this paper is the reuse of software

requirement specification in terms of use case

which act as early-stage software artefacts in the

development process. The use of early-stage

software artefacts would affect the development life

cycle where it acts as a support to the development

with software by reusing software components.

Requirement engineering process can also be

improved.

The main concern of this paper would be

retrieval of the use cases where the related use cases

would be retrieved based on the keywords and the

domain as requested by users. All the use cases

would be stored as table form.

A database would be developed where software

requirement specification from different domain

which are in the form of use cases would be stored

after they are collected. Retrieval techniques

proposed by other researchers would be analysed.

Evaluation would be performed where comparison

would be carried out between the retrieved software

requirements and the query from users.

2. RELATED WORKS

Software reuse approaches can be divided into

three categories such as component-based software

reuse, domain engineering & software product and

architecture based software reuse [11].

In component-based reuse, a library or repository

would be built where components previously

developed would be stored in it. Searching for a

best match for the components to be reused in the

library is the first and most important step in

software reuse. Therefore, a searching mechanism

would also be developed in order to find a suitable

component to be reused.

Domain engineering involves identification of

common features of the system developed

previously where a new system would be

constructed with the reuse of those features. There

are two stages included in domain engineering

which are domain analysis and domain

implementation. In domain analysis, related systems

would be studied and the universalities of system

features would be the identified. Domain

implementation involves development of reusable

features based on the universalities of the domain

and the features developed would be further used to

construct a new system.

A software system’s architecture consists of

software components, relationships among the

components and external properties. In architecture-

based reuse, components such as external properties

and relationships are reused in the development of

new system.

2.1 Software Requirement Specification (SRS)

Software requirement specification (SRS) is an

official statement that contains all the functions of a

system [4]. In other words, it shows what a system

should do to fulfil the needs of users. It is often used

as a reference to design a system through the

revision of the requirements available in SRS. It

also serves as consensus between users and

developers or organization about the requirement of

users on the system and effort or ability of

developers in fulfilling these requirements.

Architectural decisions such as decision on system’s

structure could be made based on the information

available in SRS. These decisions could actually

cause a tremendous effect on the quality of the

system. In addition, other professionals such as

Software Quality Assurance (SQA) team or

usability experts are also need this document to

ensure that the system works as required. So, it can

be concluded that the success of a software rely on

the level or standard that it manages to reach in

fulfilling the requirement specification. SRS could

also be described as a detailed description about the

functional and non-functional requirements.

Functional requirement describes functions of a

system [14]. It plays a vital role as it defines and

describes how system works [26]. Functional

requirements should always be completed where all

the functions of system as requested by users should

be included and defined. Besides, it should also be

consistent where there is no contradiction occur in

the definition of the requirement.

Basically, the definition of non-functional

requirements are related to the terms such as

performance, constraints, quality, property or

characteristic and attribute [14]. Thus, non-

functional requirements involves all the demand on

the solution of software. Non-functional

requirements are often being not concerned as

compared to functional requirements as

development of system focus on functionality of

system only. However, awareness of the importance

of non-functional requirements had been increased

recently in developing a software that satisfied by

users. This is because the failure to meet a non-

functional requirement would cause the whole

system to be unusable. Non-functional requirement

might affect structures and behaviours of software

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2675

design as some of the non-functional requirements

are part of functional entities while others would be

the constraints of design.

2.2 Use Case

In Unified Modelling Language (UML)

specification, use case is defined as “the

specification of a sequence of actions, including

variants that a system (or a subsystem) can perform,

interacting with actors of the system” [14]. In other

words, it can be defined as interactions among

actors and system under consideration. Actors could

be either a person or groups of people.

There are few types of relationships available in

structuring use cases. Those include generalization,

include and extends. Include relationship refers to

the behaviour explained in the sub use case is

included in base use case. Extends relationship

mentions about the conditions that must be fulfilled

if there is any extensions occur. Generalization

relationship shows child use case had every

attributes and behaviours that are defined in parent

use case.

Basically, it is one of the most commonly used

components during the requirement analysis stage

in software development life cycle where it plays

vital role in collecting and gathering the

requirements of system. Reusing use case diagram

could actually help developers in modelling use

case diagram within a short period of time.

2.3 Software Retrieval

There are four activities involved in software

reuse such as requesting the software components

through the query, retrieving the most suitable and

similar component based on the query, making

changes on the retrieved components and

integration of the new system into the library [14].

Retrieving components of software is an essential

step in the process of software reuse. This is

because it shows how much return or gain is

obtained through reuse [12].

Fig. 1: Software Component Retrieval System

Reusable software components are stored in

repository and component library [12]. As more and

more software components are kept in the

repository, the repository size increases which

directly cause an increase in retrieval time. This

might increase the development time of software.

Figure below shows the software retrieval system

proposed.

During the retrieval of software components, the

similarity between the components available in the

repository and the query that described the required

components based to be determine. A similarity

metric, in other words comparison functions need to

be developed so that users are able to retrieve the

desired components.

The software component retrieval is evaluated in

order to measure efficiency and effectiveness of the

process of retrieval [4]. There are few metrics

involved in measuring the process of evaluation

such as recall, precision and harmonic mean. Recall

refers to the portions of retrieved and related

documents to all the relevant documents available

in the repository. Precision is defined as the portion

of the retrieved and related documents to all the

documents that had been retrieved. Harmonic mean

is the combination of recall and precision.

Akadej, Nakornthip & Pizzanu [4] had done a

research in retrieving software requirements by

using use case terms. There are three main

processes during the retrieval of use case which

include storage, retrieval and evaluation. Storage

process involved the collection use case from

example and then transformed into indices and

weighted value. In retrieval process, user would

generate weighted value and queries which then

transformed into indices. Use case would be then

retrieved from the repository based on the similarity

as compared with query generated by user.

Evaluation of retrieved use case would be carried

out so as to determine the relevance of retrieved use

case to user’s query.

Theories of information storage and retrieval are

applied which include team weighting system,

automatic indexing and similarity computation.

Term weighting system involves assigning weight

to each team which reflects the importance for

identification of content. Automatic indexing

includes the task of assigning index to components

stored in repository. Similarity computation is a

process of determining effective approach in

retrieving the use case was carried out by

comparing the approach of retrieving use case by

use case keywords and retrieving use case by use

case structure. The experiment result shows the

approach of retrieving use case by use case structure

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2676

is more effective than the approach of retrieving use

case by keywords.

3. SOFTWARE REUSE MODEL

Fig.2 shows the software reuse model that has

been proposed. From this model, it shows clearly

that all the details that had been filled in by users in

the form prepared would be store into a table.

Keyword get from users would be compared with

all keywords available in the database. If similar

keyword is found then those use cases with similar

keywords would be retrieved. However, similar

keyword is unavailable, use cases with same

domain would be retrieved.

Fig 2: Software Reuse Model Proposed

A. Evaluation Criteria

There are few evaluation criteria that would be

applied in measuring the performance of the

retrieval where ratio between the retrieved use case

and the desired use case would be identified. The

evaluation criteria applied include recall and

precision

Recall refers to the percentage of the relevant

software components that had been retrieved. The

formula of recall is shown as below:

Precision refers to the percentage of software

components that had been retrieved is relevant. The

formula of precision is shown as below:

B. Data Collection

Experimental data is required to be collected so

as to evaluate the effectiveness of the technique

selected. Data collected would be the use case

diagram. Those use case diagrams stored in

database would be in table form. All those use case

diagrams would be collected from some academic

projects done previously and examples available

from text books. Those use case stored in the

repository would be used as cases for retrieval.

C. Similarity Computation

Users would be requested to enter the keyword.

Those keywords would be compared with the

keyword stored in the repository. So, similarity

score would be computed in the process of making

the comparison between the keywords. An

algorithm named Levenshtein distance would be

applied in the process of similarity computation.

The shorter the distance, the lower the difference

between the keywords. In other words, the level of

similarity between both keywords is higher.

This algorithm measures the similarity between

two strings which include the source string (s) and

the target string (t) and shows the number of

character that needs to be edited so that both words

would be end up as the same words [16].

Levenshtein distance is usually applied in DNA

analysis and detection of plagiarism. So, in this

research, keyword entered by user would be the

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2677

target string whereas the keywords stored in the

repository would be the source string. The shorter

the distance, the lower the level of difference

between the keywords. In other words, both

keywords are actually quite similar with each other

4. EVALUATION & RESULTS

Testing is performed after the process of

implementation. During testing process, a test

document would be prepared where test cases

would be listed out. An analysis of determining

whether the retrieved use cases fulfilled the

requirement from users would then be performed.

The Fig. 3a shows the actual result of test case

TC_1. Based on the figure, it shows that the

keyword “withdrawal” is available in the repository.

So, 1 use case with the same keyword is listed.

Keyword “withdrawal” is displayed as well since

the level of difference is less than half of the length

of “withdrawal”.

(a)

 (b)

Fig. 3: Prototype showing result of test case

TC_1 & TC_2

The Fig. 3b above shows the actual result of test

case TC_2. The figure shows that all the use cases

of the related domain is listed. This is because there

is no keyword “generate” available in the database.

So, all the use cases with related domain displayed

act as reference for users in constructing use case

diagram.

The actual result and their respective recall and

precision are tabulated as Table 2.Based on the

result shown in the table, most of the test cases

showing 0 for both recall and precision. This might

show that the method proposed in retrieving the

relevant use cases are improper. However, this is

actually depend on number of the use cases

available in the repository. The result would be

different when number of use cases stored in the

repository increases as there are more use cases

could be selected and retrieved based on the

requirements from user.

Besides, test cases showing 0 is also caused by

the keyword entered by user and the keyword stored

in the repository. When keyword entered by user is

mostly matched with the keyword in the repository

or there are countless of keywords are available in

the database, then most of the relevant use cases

could be retrieved. Thus, the result would be

different as compared from the current result

obtained.

Users are free to enter any keyword they want.

So, there might be cases where the keyword entered

by user is actually having the same meaning as

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2678

some keywords stored in the repository. Those use

cases with different keyword but having the similar

meaning with the keyword entered by would not be

retrieved as result. In other words, those use cases

might be left out. This situation might also affect

the result obtained.

In addition, the result is also depend on the

definition of the relevant record and irrelevant

record. In this research, those use cases with same

keyword that belong to the same domain or use

cases with different keyword but belong to the same

domain are defined as relevant records. Other than

these, all the other use cases are defined as

irrelevant records. Therefore, even though the use

cases having the similar keyword as requested by

users but belong to different domain, they are still

be considered as irrelevant use cases instead of

being treated as relevant use cases.

5. CONCLUSION

Software reuse has been widely practiced in

software engineering community. Therefore, the

concept of software reuse would also be applied in

developing the requirement specification model

which is in the form of database system. Use cases

would be collected and stored into database system

which act as repository. A retrieval technique would

be applied so that the required software components

could be retrieved successfully from the database.

The similarity between the retrieved

requirements and the desired requirements would be

determined to ensure that the correct and proper

requirements are retrieved.

So, in this research, a database is built to store

use cases which belong to different types of domain

which had been collected. Each use case is

indicated a keyword so as to ease the search of the

relevant use cases as required by users. Levenshtein

Distance algorithm has been applied in computing

the similarity between the keywords stored in the

database and the keyword obtained from user. Test

cases has been set and evaluation criteria had been

used to measure the system’s ability in retrieving

the relevant use cases. However, the result obtained

is not as accepted as there are actually few factors

affect the result which include the keywords

available in the database, number of use cases

available in the database and definition of relevant

and irrelevant records.

Thus, as future work, database could be further

enhanced where more use cases should be stored in

the database. The use cases stored should have

indicated by more than one keywords instead of

only one keyword. The keywords having the same

meaning could also be included for each use case so

that relevant use cases would not be missed out

whenever different keyword having the same

meaning is obtained. Number of types of domain

could also be increased as well so that user

requirements would be able to be fulfilled.

In short, use case acts as description of the

system where it provides direction for developers to

understand users and satisfy them. So, through the

reuse of use cases, the failure of the software would

be less likely to occur. Instead, the quality of the

software system might be improved. The duration

of developing a system could also be shortened.

ACKNOWLEDGMENT

This work was supported in part by Universiti

Sains Malaysia and Ministry of Higher Education,

Malaysia. FRGS Grant (FRGS:

203/PKOMP/6711533).

Table 2: Result obtained based on recall and precision

Test

Case No.

 Actual

Result

 Recall

Precision

relevant

records

retrieved

irrelevant

records

retrieved

relevant

records in the

database

TC_1 2 1 4 0.5 0.67

TC_2 0 0 5 0 0

TC_3 0 1 4 0 0

TC_4 0 2 7 0 0

TC_5 0 1 7 0 0

TC_6 1 0 3 0.3 1.00

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2679

REFERENCES

[1] Prieto-Diaz, R.: Status Report: Software

Reusability. IEEE. 10: 61-66 (1993).

[2] Smolarova, M., Navrat, P.: Software Reuse:

Principles, Patterns, and Prospects. Journal of

Computing and Information Technology, 5, 1,

pp. 33-48 (1997).

[3] Hislop, G.W.: Evaluating a Software Reuse

Tool. Assessment of Quality Software

Development Tools, Proceedings Third

Symposium on. IEEE. pp. 184-190 (1994).

[4] Akadej Udomchaiporn, Nakornthip Prompoon,

Pizzanu Kanongchaiyos. (2006). Software

Requirements Retrieval using Use Case Terms

and Structure Similarity Computation. Software

Engineering Conference, 2006. APSEC 2006.

13
th

 Asia Pacific. IEEE. 113-120

[5] Udomchaiporn, A., Prompoon, N.,

Kanongchaiyos, P.,: Software Requirements

Retrieval using Use Case Terms and Structure

Similarity Computation., APSEC 2006. 13
th

Asia Pacific Software Engineering Conference.

IEEE. pp. 113-120 (2006).

[6] Barros, F.: Increasing Software Quality through

Design Reuse. 2010 Seventh International

Conference on the Quality of Information and

Communications Technology. IEEE Computer

Society Press. 236-241 (2010).

[7] Keswani, R., Joshi, S., Jatain, A.: Software

Reuse in Practice. 2014 Fourth International

Conference on Advanced Computing &

Communication Technologies. pp. 159-162

(1994).

[8] Poulin, J.S.: Measuring Software Reusability.

Software Reuse: Advances in Software

Reusability, Proceedings Third International

Conference on. IEEE. pp. 126-138 (2014).

[9] Leach, R.J.: Software Reuse: Methods, Models

and Costs. Ronald J Leach. McGraw-Hill New

York (1997).

[10] Salami, H.O., Ahmed, M.: A Framework for

Reuse of Multi-view UML Artifacts. The

International Journal of Soft Computing and

Software Engineering [JSCSE], Vol. 3, No. 3.

156-162 (2013).

[11] Krueger, C.W.: Software Reuse. ACM

Computing Surveys (CSUR), 24: pp 131-183

(1992).

[12] Salami, H.O., Ahmed, M.: UML Artifacts

Reuse: State of the Art. International Journal of

Soft Computing and Software Engineering

[JSCSE], Vol. 3, No. 3. 115-122 (2014).

[13] Adamu, A., Zainon, W.M.N.W., Salami, H.O.:

Pre-filtering Repository Models, The 9th

Malaysian Software Engineering Conference

(MySec2015)., pp. 200-205 (2015)

[14] Robinson, W.N., Woo, H.G.: Finding Reusable

UML Sequence Diagrams Automatically.

Software, IEEE. IEEE. 21(5): 60-67 (2004).

[15] Somerville, I.: (2006). Software Engineering

8th edition. China Machine Press.

[16] Srisura, B., Daengdeg, J.: Retrieving use case

diagram with case-based reasoning approach.

Journal of Theoretical and Applied Information

Technology. 19(2): p. 68-78 (2010).

[17] Haldar, R., Mukhopadhyay, D.: Levenshtein

Distance Technique in Dictionary Lookup

Methods: An Improved Approach. Computer

Research Repository abs:1106-4098, 2011.

