
Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2666

DETECTION OF LOGICAL CLONE IN CODE USING

DATA DEPENDENCY AND EXPRESSION LIST

1
SYED MOHDFAZALULHAQUE,

2
 V SRIKANTH,

3
 E. SREENIVASA REDDY

1
Maulana Azad National Urdu University, fazal.manuu@gmail.com

2
K L University, srikanth_vemuru@yahoo.com

3
Acharya Nagarjuna University, esreddy67@gmail.com

ABSTRACT

Code plagiarism is a main issue in various institutes and software industries. We don’t have a perfect

approach in detecting the code copied. In various countries like INDIA, USA and UK majority of

industries and institutes have gained their own tool for detection of code plagiarism. The developed

tools will identify the code program similarities based on statements written in programming

language. Our proposed work is to develop an approach which detects the dependencies based on data.

We consider data program for tracking similarities on code. The list of expression and data

dependencies are detected based on code copied.

We prepared a dependency matrix which checks the dependencies of data in the program and compares

with the list using efficient method.

Keywords: Detection, Code Cloning, Method Of Matrix, List Related To Expression, Dependency Data.

1. INTRODUCTION

Code cloning is a sensitive problem in this area.

There are various issues related to plagiarism

based on the previous works done in IEEE, This

was stated in plagiarism editor [1].Cloning is a

basic un- expected increasing threat in the field

of software development and academic research

which leads to threat of integrality. These types

of threats are basically used in information

technology, when software engineers try to

develop the software rapidly. It is not a fraud, but

this issue can reduce the efficiency of code and

its working behavior.

It is involved as a stealing process or procedure

in coping the work of another. Based on the

academia, code cloning is treated as a dishonest

or fraud in terms of offence which is subjected to

censure expulsion and dishonest.Various types of

courses based on languages and their assignment

have been made and written based on type of

software to be developed.

Similar type of problems occurs or relate to

the classes, because students don’t pay much of

the attention in writing the program or doing

practicals. They basically do the process of paste

and copy in

the program unconditionally. This type of

tendency should change in the behavior of the

students.

If any type of tool is available or developed

which can identify the copied copy with the

support of lecturer may be punishable to the

students.In relate to the study, an academician

should have a Toro information of the language

and should teach the students clearly in such a

way that the student should not re-use the

available code.

This toro understanding between the student and

academician can reduce the code cloning

occurance in development of software or

code.Our proposed work is to develop a tool,

which helps the academia in identifying the

clones or similarities in the code. This is totally

a new concept of identifying dependencies of

data in the program and comparing with it.

2. RELATED WORK

We have studies various type of tools which are

used to detect code plagiarism based on language

keywords and instruction related to the

language.We studied various tools which are

used to detect the code clones, but they don’t

have the capability of detecting the line change

or position change in a statement. i.e they cannot

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2667

detect metric structure of the system in terms of

exact percentage.

University of Madrid has developed a tool

named PK2 , which is used to detect the

compound assignment in a code with small

fragments of given source code.This type of

tools failure, when reshuffling is done in a

statement or some additional information is

added to it unnecessarily.

Dependency data matrix method is developed

[9], this method is based on assignment of data

statements in the program. This type of method

is elaborated and checked for various cases.

Structure Of Expression Clone

Expression structure clones Expression structure

is an abstraction over expression in which we

ignore the specifics of measures, literals, and

dimensions and keep the embedded functions

and the order of operators. The example in

Figure 4.2 will be used to better illustrate the

details. The top rule shows how to calculate the

percentage part of web sales in total sales,

whereas the bottom one shows how to calculate

percentage of regular sales in total sales.

However, if we replace the measures with a, b,

and c (in the order of their appearance from left

to right) and the literal 0 with L, the two

expressions are the same: a = b / c where c ! = L

and thus their expression structure is the same. If

two expressions have the same expression

structure, we consider them to be expression

structure clones. A reasonable assumption is that

not all expressions in the application have the

same structure. In the analysis, we first

determine all different expression structures that

occur, which we call expression structure

patterns, and then we assign each expression to

the corresponding pattern. That is, an application

has multiple expression structure patterns

WEBSALES_TG_P = WEBSALES_TG_CAD /

TOTALSALES_TG_CAD where

TOTALSALES_TG_CAD != 0.

REGCOST_FC_P = REGCOST_FC_CAD /

TOTALCOST_FC_CAD where

TOTALCOST_FC_CAD != 0.

and each pattern has one or more expressions

associated with it. We call those expressions

instances of the particular expression structure

pattern. This clone type was of particular interest

since the number of expression structure patterns

is very small compared to the total number of

expressions. This was the case with all the

applications we analyzed and the concrete results

will be reported. The results of our analyses

show that some expression structure patterns are

quite common and some of them are very well

known in the domain. The measure language

does not have any means of accelerating the

creation of rules that have the same structure; we

will use this fact in later sections when proposing

the improvements to the language.

Corresponding metrics clones We define two

expressions to be corresponding metrics clones if

they share: the expression structure, and metrics

in corresponding measures. Dimensions are

ignored for this classification. Explanation of

two expressions that satisfy these conditions.

Both expressions have the same expression

structure, and green color highlights the

corresponding metrics, which are also the same:

TOTALSALES, WEBSALES, and REGSALES

(Regular Sales). Similarly, both expressions in

the original cloning example are corresponding

metric clones. Each expression in the application

belongs to a certain corresponding metrics clones

pattern, which is defined by the expression

structure and a set of corresponding metrics in

the expression. In case two expressions share the

same expression structure and corresponding

metrics, they are instances of the same

corresponding metrics clones pattern. This

classification groups expressions and rules

possibly created by copy/paste operations: we

group expressions together if we suspect that one

of them can be created by copy/pasting and then

modifying versions/roles/uoms in the other. By

interacting with the users of the measure

language we have learned that many times they

actually use this kind of copy/paste methodology

to create new rules and expressions, which is

considered to be a bad practice. However, there

are good reasons why the users go for it - many

rules and expressions are quite similar. The two

rules can be easily created from each other by

copy/pasting and changing the versions and

roles. The main cause of this is the way measure

language is created: it doesn’t take into account

that there will be many expressions that share

components. It can be noted that two expressions

can have more similarities than just the

corresponding metrics; they can have the same

corresponding versions and/or roles/uoms.

Expressions in Figure 4.3 also have the same

corresponding UOMs. We do analysis for each

of the combinations (of which there is 23 = 8, the

number of elements in the power set of {Version,

Role, UOM}), but we report only the same

metrics situation, since that is still a valid

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2668

corresponding metrics clone but it reports the

biggest amount of cloning (which is expected

since other variants are subsets of this one). 4.4

Importance Analysis Results We analyzed

usages of the measure language to understand the

importance and specifics of the two mentioned

clone types. The results and the analysis of the

results are given in the next two subsections. 28

TOTALSALES_TG_CAD =

WEBSALES_TG_CAD +

REGSALES_TG_CAD

TOTALSALES_FC_CAD =

WEBSALES_FC_CAD +

REGSALES_FC_CAD

Corresponding metrics clones: expressions have

the same expression structure and corresponding

metrics. Expression structure clones To

determine the importance of this clone type we

analyzed each application individually. We

considered the main component of the

importance to be the frequency of occurrence;

we have also analyzed the nature of instances of

this clone type to make sure they are not too

simple and deserve further investigation. The

frequency of occurrence of this clone type is

defined as the percentage of expressions for

which there exists at least one more expression

with the same expression structure, (We have

mentioned earlier that if two expressions have

the same expression structure, they are

considered to be expression structure clones.)

This implies that in case an expression has a

unique structure in the application, it will not be

considered a clone. If we use the terminology,

the frequency of occurrence is the percentage of

expressions that are instances of those expression

structure clone patterns that have at least two

instances. We did an additional check to make

sure that these instances deserve further

investigation. For example, there can be 100

expressions in the application and 50 different

expression structure clone patterns which are

distributed such that each pattern has two

instances. This situation would imply that there

are many patterns but they are duplicated only

once, which would make the process of

improving such duplication harder. For our

purposes, the situation where the number of

patterns is small compared to the total number of

expressions would be ideal. The results

described in the next paragraph show that this is

the case. The results for the described criteria for

each of the three applications we analyzed can be

found. The first column in the table shows the

total number of expressions in the application;

the second column shows the frequency of

occurrence and, as we can see, the substantial

percentage of expressions have a non-unique

expression structure; the last column shows the

number of patterns with 2+ instances - the

number of patterns is very small compared to the

number of expressions, which means that many

expressions

3. EXPRESSION LIST CREATION

 Our proposed work is developed in VB.net and

SQL. List of expression are created based on

dependencies of data in the statement. For

creating list of programs, we first have to store

the variables along with data types. Next we scan

the statements of the program to check for

statements of data dependencies.

Fun 1()

{int Num1,

Num 2;

float

Num3,

Num4;

Num1 =

Num3, *

Num4;

Num2 = (Num2 + Num3)/Num4

;)

Figure 1: Assignment Statements.

Figure 2: Expression Lists

The lines which are identified are stored

separately in a linked list. Now then variable

names are replaced using the data types. The

operations performed on the variable will remain

same for all the operations.Let us assume the

statement related to assignment in figure 1. The

list for the expression is shown in figure 2 .The

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2669

list for expression function is created and shown

as.

Let us assume that function has 4 dependencies

on data statements which are listed in expression

lookup and created.The next step is to check the

listed link function by another function. The if

function posses the identical number in the list

and if it is matched with all , then it is stated as

copied 100%. Even the dependency of data

statement are shuffled it do not affect the

working of the method in the code cloned.

Data Dependency using expression List

Method

Input: Function list of two programs

Output: Percentage of matching function

expression

1. Repeat for each function (f1) in

program1

2. Repeat for each list (l1) in function f1

3. Repeat for each expression (e1) in l1

a. repeat for each function (f2) in

program2

b. repeat for each list (l2) in function

f2

c. repeat for each expression (e2) in

l2

if (size (e1) = size(e2))

if elements of

e1 same as

e2 count++

d. save the higher counter for each

list

4. Return list of matched counter

5. End.

Figure 3. Algorithm of Expression List

4. DATA DEPENDENCY MATRIX

CREATION

The matrix of data dependency algorithm

verifies the similarities and size of matrix which

is common. It is assigned that clone will change

the position of function as well as variable name,

but the used variable and function of them will

be similar.Using our algorithm such type of

clone code detection is done.

The algorithm compares the list expressions will

all the functions in the lists with some other

function. This process is advantages in our

method and it gives good results in identification

of logical clones too.

In cases like others, we can use another

variable which don’t affect the logic of the

program but disguise the code clone. Likewise

the dependent of data in the statement may also

be done. Those problems will affect the working

of the dependency data matrix algorithm.To

solve this problem a framework approach of

column and row shift is followed.

Another possible way of code coping is to

shuffle the position of the variables. A code of

the program may have many variables; each of

these variable is easily copied or cloned by

renaming the name of the variable at its location

of instruction. It is the best way of hiding the

code clone. Programs of such matrices will not

be similar.

We use column shift and row shift approach in

adjusting the dependences of the variables at left

upper side of the matrix. The example of this is

shown below in figure 5. The figure shows how

column and row shifts are done for the given

code figure 4.

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2670

Figure 4: Same Statements But Changed Variables

Name And Sequence

Figure 5: Column And Row Procedure Shifting

The example shows names of variable along with

change of position without affecting the code

performance. We show a matrix of data

dependency of (First1 and First2) is read as

variables in the program.The matrix of data

dependency is given in figure 5A (1) and figure

5B(1) for first1 and first2. The first operation is

related to shift row for fine tuning the larger

variable dependencies on side upper of a matrix

which is shown in figure 5a(2) and also in figure

5b(2).

The operation second is done based on shift

column for altering the higher dependencies on

hand left size which is shown in figure 5a(2) and

figure 5b(3).Cloning will add more than one

variable which may be unwanted. Dependency

data matrix is a copy function which is a

different from actual matrix function. The figure

6.

Figure 6: Code Of Modified Vs Code Of Original

By Adding New Variable And Dependency Data

Matrices Of Related Code .This Will Illustrate

Matrices Of Similar Code With Different From

Original Are Shown Below.

In some cases using a added variable will

increase the size of the second matrix. As seen so

the second code is a copy of the first code, but

will not in a case to find the similarity detection

in the matrix. Their need a modification in the

algorithm, the modification that has to be done is

a small size matrix is checked frame by frame

with bigger matrix. If the matrix small is

identified in matrix bigger it is considered and

said as code cloned.

Likewise the clone may have combination of

all various functions in major and smaller

reduced functions to cove the program

dependencies of matrix, the matrix gives

different results. The result shows that it is

falsely detection when compared to the identical

size of matrix. This may be the drawback of the

system.

Hence using an extra variable in the function of

an expression list when matched, our algorithms

give a result of more than 50 % matched with the

first function.the result of comparison for each

list matrix added for un necessary variable or

shuffled variable in the statement will not affect

the method which is proposed.

5. RESULTS

Novel framework approach is developed to

identify the matrix data method and list

expression method which is proposed and

implemented.

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2671

The proposed method is checked for C++ and C

program code to identify the percentage of

dependency related to clone. The results are

shown in Figure 7 and figure 8. These figures

show the comparison of two programs related to

function.The result of first two programs show

how to create double linked list and its input

related. The program second is cloned which has

a function shuffled positions. In program 3,

functions with dependency statements of data

clearly show that 100% code is cloned and

detected based on all 3 functions.

Figure 7: Method Uses Linked List Results By

Matrix

We also used programs based on queues and

compared with the operations, results in figure 9

and 10 shows the dependency for the 2

functions.

Figure 8: Shows Results Of Expression Method

On Double Linked List Program

Using matrix and list expression method

first1 of prg1 is nearly 50% similarity and

dependence on 2 function of program 2. Hence

we state that expression method is much

effective than matrix methodWe also can detect

clones using clone identification program which

contains a shuffle code in the program or

function or by introducing a un necessary

variable. The figure 10 shows the comparison

results of two programs related to queue and

changed position of queue variable in function.

Figure 9: Circular Queue Program With Matrix

Method

The result observed show that an academician or

a manager can easily identify the code cloned

using these cases of program or assignments

done using programming language.

Figure 10: Circular Queue Program With Expression

List Method

6. CONCLUSION

Our proposed work is used to develop an

algorithm is based on list expression method and

dependencies of data which solves the related

problems of matrix method. This algorithm

develops checks for clones in the program

function by function. An experimental study is

done and demonstrated for checking the

effectiveness of the developed tool which is

applicable for practice.

The proposed work is developed to check the

code clone in the programs if the program has

much dependencies on data.

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2672

REFERENCES

[1] OkyayKaynak, Robin Braun, Ian Kennedy,

“Guest Editorial Plagiarism”, IEEE

Transactions on Education, 51, No.2, May

2008, pp.149-150.

[2] Georgina Cosma and Mike Joy, “Towards

a Definition of Source-Code Plagiarism”,

IEEE Transactions on Education, 51, No.2,

May 2008, pp. 195-200.

[3] Francisco Rosales, Antonio García,

Santiago Rodríguez, José L. Pedraza,

Rafael Méndez, and Manuel M. Nieto,

“Detection of Plagiarism in Programming

Assignments”,IEEE Transactions on

Education, 51, No. 2, May 2008, pp.174-

183.

[4] X. Chen, B. Francia, M. Li, B. McKinnon,

and A. Seker,“Shared Information and

Program Plagiarism Detection”,IEEE

Trans. Inf. Theory, 50, No. 7, pp. 1545-

1551, Jul. 2004.

[5] A. Parker and J. O. Hamblen, “Computer

Algorithm for Plagiarism Detection”, IEEE

Trans. Educ., 32, No. 2, pp. 94-99, May

1989.

[6] S. Schleimer, D. Wilkerson, and A. Aiken,

“Winnowing: Local Algorithms for

Document Fingerprinting”, in Proc. 22nd

Association for Computing Machinery

Special Interest Group Management of

Data Int. Conf., San Diego, CA, Jun. 2003,

pp. 76-85.

[7] Chao Liu, Chen Chen, Jiawei Han, Philip

S. Yu, “GPLAG: Detection of Software

Plagiarism by Program Dependence Graph

Analysis”, KDD’06, Philadelphia,

Pennsylvania, USA. August 20-23, 2006.

[8] Michael Wolfe, “High Performance

Compilers for Parallel Computing”,

Addition-Wesley, Redwood City, 1996.

[9] P. Hudak. Modular domain specific

languages and tools. In Proceedings of the

5th International Conference on Software

Reuse, ICSR ’2014, pages 134–,

Washington, DC, USA, 1998. IEEE

Computer Society.

[10] J. Howard Johnson. Identifying redundancy

in source code using fingerprints. In

Proceedings of the 1993 conference of the

Centre for Advanced Studies on

Collaborative research: software

engineering - Volume 1, CASCON ’93,

pages 171–183. IBM Press, 2015.

 [11] Cory Kapser and Michael W. Godfrey.

”cloning considered harmful” considered

harmful. In Proceedings of the 13th

Working Conference on Reverse

Engineering, WCRE ’06, pages 19–28,

Washington, DC, USA, 2016. IEEE

Computer Society.

[12] Paul Laird and Stephen Barrett. Towards

dynamic evolution of domain specific

languages. In Proceedings of the Second

international conference on Software

Language Engineering, SLE’09, pages

144–153, Berlin, Heidelberg, 2015.

Springer-Verlag.

[13] Yu-Seung Ma and Duk-Kuyn Woo.

Applying a code clone detection method to

domain analysis of device drivers. In

Proceedings of the 14th Asia-Pacific

Software Engineering Conference, APSEC

’07, pages 254–261, Washington, DC,

USA, 2015. IEEE Computer Society.

[14] Mika V. M¨antyl¨a and Casper Lassenius.

Subjective evaluation of software

evolvability using code smells: An

empirical study. Empirical Softw. Engg.,

11(3):395–431, September 2016.

[15] Mark Marcel van Amstel, Marcel van den

Brand and Luc Engelen. An exercise in

iterative domain-specific language design.

In Proceedings of the Joint ERCIM

Workshop on Software Evolution (EVOL)

and International Workshop on Principles

of Software Evolution (IWPSE), IWPSE-

EVOL ’10, pages 48–57, New York, NY,

USA, 2014. ACM.

[16] Marjan Mernik, Jan Heering, and Anthony

M. Sloane. When and how to develop

domain-specific languages. ACM Comput.

Surv., 37(4):316–344, December 2015.

[17] Akito Monden, Daikai Nakae, Toshihiro

Kamiya, Shin-ichi Sato, and Ken-ichi

Matsumoto. Software quality analysis by

code clones in industrial legacy software.

In Proceedings of the 8th International

Symposium on Software Metrics,

METRICS ’02, pages 87–, Washington,

DC, USA, 2013. IEEE Computer Society.

