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ABSTRACT 

 

The term ‘Big Data analytics’ refers to a large-scale solution for managing giant datasets in a parallel 

environment. Hadoop is an ecosystem that processes large datasets in distributed computing scenario. The 

ecosystem is further categorized into four sub-projects i.e. HDFS, MapReduce, YARN and Hadoop 

Commons. The Hadoop Distributed File System (HDFS) is a backbone of ecosystem, which helps storing 

and processing large datasets. Recently, HDFS is upgraded to heterogeneous storage-tier environment that 

cope with data block processing over multiple storage devices i.e. DISK, SSD and RAM.  The block 

placement policy dispatches data blocks to the devices without calculating I/O transfer parameters and 

locality perspectives. Moreover, HDFS selects random Datanodes that could be located into the next rack 

having longer path than local rack. This increases the data block processing latency and results in a huge 

delay for replica management in heterogeneous storage-tier. To resolve this issue, we propose a predictive 

analysis that build a locality-aware storage-tier node summary and predict the most nearby available 

storage-tier for block job processing. The experimental evaluation depicts that the proposed approach 

reduces data block transfer time overhead, replica transfer time overhead and decreases node paths to an 

optimal accessibility over the cluster.            

Keywords: Hadoop, HDFS, Locality-aware, network distance, storage-tier. 

 

1. INTRODUCTION 

Big data processing has resolved many 

complex issues of huge dataset processing [1]. 

There are many system softwares available, which 

address the dataset processing over parallel 

computing environment i.e. Cloudera [4], MapR [3] 

and Apache Hadoop [2]. Hadoop ecosystem is an 

open-source ecosystem, which processes large-

scale huge datasets in a distributed computing 

phenomena. It is categorized into four main sub-

projects i.e. HDFS [7], YARN [5], MapReduce [6] 

and Hadoop Commons. The Hadoop Distributed 

File System (HDFS) is a core sub-project, which 

stores and retrieves datasets over the cluster. 

Hadoop Commons is a built-in library for providing 

environment parameters to the cluster processing. 

MapReduce is a programming module, which 

processes large datasets in a parallel processing 

environment and YARN is a brain of the Hadoop 

that schedules and allocates resources to task 

processing.     

HDFS consists of three components i.e. 

Namenode, Datanode and client. The Namenode 

receives a task request from client and allocates 

scheduling activity and resource parameters to 

Datanode. The Datanode returns job output and 

stores data blocks over the storage-tier [8] [9] as 

seen from Figure-1. 

 
Figure 1: HDFS Architecture 

 By default, a Namenode processes data 

blocks to random Datanodes [11] [12]. This 

increases processing latency �������� 	
 ���
�������������	����� and produces replica latency 
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�������� 	 ��������� � �� ����! over the 

cluster. Moreover, the latency increases with the 

heterogeneous storage-tier factor, where a single 

node consists of multiple storage devices i.e. SSD, 

DISK and RAM. As a result, we observe a data 

block placement latency �������" 	 ��������� �#��$�%����! [10] [13] [14] over Hadoop cluster as 

observed from Figure-2. 

 
Figure 2: Default Storage-tier Rack Cluster 

 

 To solve this problem, we propose a 

predictive analysis that collects nearby storage-tier 

Datanodes summary and predicts nearest locality-

aware storage-tier media for block job processing. 

The predicted storage-tier node reduces the 

LatencyP, LatencyR and LatencyC time overheads 

simultaneous and increases cluster block processing 

to an optimal state.            

 

The main contributions of the proposed scheme are: 

• A novel storage-tier summary collector. 

• A novel prediction model for searching 

nearby storage-tier Datanodes. 

• An effective latency reducer for storage-tier 

cluster. 

 

The remaining paper is organized as 

follows. Section II discusses related work. Section 

III briefly explains proposed prediction model. 

Section IV depicts experimental environment and 

evaluation result. Finally, section V shows 

conclusion and future research directions. 

 

2. RELATED WORK 

 

Many researchers have contributed and 

presented locality-aware cluster processing 

strategies. The locality-aware processing can be 

categorized into two types i.e. (i) Scheduler-based 

locality-aware processing and (ii) Resources-based 

locality-aware processing [15] [16] [17]. The 

scheduler-based locality-aware processing includes 

scheduling techniques, which generates 

MapReduce job output as per nearby Datanodes. 

The resource-based locality-aware processing 

focuses over data placement technique, which can 

be executed after a MapReduce job is completed in 

a default manner [18] [19] [20]. Since, our 

proposed approach comes into the resource-aware 

strategy so we highlight contributions for this area 

as below:  

ADAPT [25] is a data placement 

technique, which dispatches data blocks over 

availability of storage space in a Datanode. This is 

a simple technique, which focuses over storage 

space availability over homogeneous storage-tier. 

RDP [31] is a robust data placement strategy, which 

perform block placement over heterogeneous 

storage-tier but do not consider locality-aware 

processing. Purlieus [30] uses virtual heterogeneous 

storage-tier of virtual machines to process data 

blocks without keeping locality-awareness over 

cluster. Data pre-loading and data placement 

technique [29] manages a cache to storage data 

blocks before dispatching towards the Datanodes. 

Keeping in view, the performance is better than 

default approach but lack locality-awareness in 

block job processing [21] [22] [23] [24]. Dynamic 

energy efficient data placement [27] strategy uses 

Datanodes to dispatch data blocks and detach them 

so to save energy perspective. This strategy focuses 

over homogeneous storage-tier only and do not 

consider locality-awareness in block job 

processing.  Investigation of Data Locality [26] 

technique processes multiple instances of data 

placement over homogeneous storage-tier cluster. 

Since, the discusses techniques lack the 

concept of locality-aware data placement over 

storage-tier cluster, we present a predictive analysis 

of locality-aware data placement technique, which 

collects heterogeneous storage-tier processing 

information and predicts most suitable storage node 

of a Datanode to receive block placement function. 

The proposed approach reduces three-tier latencies 

and increases the performance of block placement 

over Hadoop cluster. 

 

3. PREDICIVE ANALYSIS OF LOCALITY-

AWARE STORAGE-TIER DATA 

BLOCKS   

The predictive analysis consists of two 

phases i.e. (i) Storage-tier summary container and 

(ii) Predict the most nearby Datanode. 
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The storage-tier summary container 

collects all the Datanode and storage media 

information i.e. computing capacity and storage-tier 

devices with volume statistics. Moreover, the media 

predictor performs training sessions over the dataset 

and predicts the most nearby Datanode with 

available storage-tier media as seen from Figure-3. 

 

Figure 3: Storage-tier Predictive Analysis over 

HDFS Cluster   

 

3.1 Storage-tier summary container 

The summary container consists of 

Datanode information i.e. CPU, storage medias, 

accessibility time, 1 MB data block receiving time 

and volume sizes of each storage.  

 

Figure 3: Storage-tier summary Architecture 

 

The container messages are collected 

through Belief Propagation method [32], which 

stores information messages in concatenated form. 

Thus, it reduces complete message read time 

overhead. Moreover, we perform inference on 

belief propagation through Message Propagation 

Model [33] that a message m of a variable 

component i having value ϰi with a belief bi (ϰi) can 

be propagated from source component a to 

destination component i represents likeliness of 

random variable Xi where ϰi ϵ Xi by, 

&�''�%�	&�	→��ϰ�� (1) 

We store information messages of a Datanode 

having computing capacity CC and Storage-tier ST 

as, &�''�%�	&""*→+*�ϰ+*! (2) &�''�%�	&,�*→+*�ϰ+*! (3) 

We calculate belief of component Datanode D 

having CC and ST information messages as, -��ϰ+*! 	∝ 	 / &�""*,,�*�	→	+*�ϰ+*!�""*,,�*�	∈2�+*�
 

(4) 

 

Similarly, we store information messages of 

Storage-tier having Accessibility Path AP, 

Datablock receiver DR and Volume Space VS as, &�''�%�	&3�*→,�*�ϰ,�*! (5) &�''�%�	&+�*→,�*�ϰ,�*! (6) &�''�%�	&4,*→,�*�ϰ,�*! (7) 

We calculate belief of component Storage-tier ST 

having AP and ST information messages as, -��ϰ,�*! 	∝ 	 / &�3�*,+�*,4,*�	→	,�*�ϰ,�*!�3�*+�*,4,*�	∈2�,�*�
 

(8) 

 

We normalize eq (4) and eq (8) with a constant Z 

and get,  

-��ϰ+*! 	 16 7 / &�""*,,�*�	→	+*�ϰ+*!�""*,,�*�	∈2�+*�
8	 (9) 

and -��ϰ,�*!
	 	7 / &�3�*,+�*,4,*�	→	,�*�ϰ,�*!�3�*+�*,4,*�	∈2�,�*�

8 

(10) 

 

 

 
Figure 4(a): Belief of Di Figure 4(b): Belief of STi 

 

Therefore, belief of component D and ST can be 

expressed from Figure-3(a) and Figure-3(b). 

 To collect information messages together 

at a single container i.e. Storage-tier summary 

container, we calculate joint belief ‘L’ of 

component Di and STi as, -9�ϰ9� 	 	 -3�:3� (11) 

Where :3 	 	 ;ϰ+* , ϰ,�* ∶ 	=� , #>�	 	 ∈ ?�@�	A and ϰ9 

is the domain space related to component L as seen 

from Figure-5. 



Journal of Theoretical and Applied Information Technology 
30th June 2017. Vol.95. No 12 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
2661 

 

 The domain space ϰ9	B'	�CD�E	��	 ;�ϰ+* , ϰ,�*!	|	G3	�ϰ+* , ϰ,�*! 	 1,			ϰ+* 	 ∈ 	 H+* , I,�*	 ∈ H2*A 
where factor fA represents a bipartite string between 

Di and STi components. Therefore, a joint belief can 

be observed as, -9�I9� 	 16	 / &�+*,,�*�→9�I9��+*,,�*�	∈2�9�
 

(12) 

 

 
Figure 5: Belief of Factor A (L) 

Finally, we simplify eq (12) to close-form solution 

as, &�+*,,�*�→9�I9�	 JG3�:3� / &�+*,,�*�→9�I9��+*,,�*�∈2�9�
 

   

(13) 

Where &�+*,,�*�→9�I9� depicts Storage-tier 

summary container over Namenode. 

 

3.2 Media predictor 

To predict locality-aware storage media for 

data block processing, we use Hidden Markov 

Model (HMM) [34]. The model works in two steps 

i.e. (i) Training phase and (ii) Prediction phase. By 

default, the model uses hidden states : 	 	 KLM, LNO, 
conditional transition probability @ 		��P 	;QRC�SM 	 LP|C� 	 LPTA, observation state U 		K�M, �N, �V , �WO and emission probability X 	 -�P. 
Therefore, according to definition of model HMM 

(λ) we get, Y 	 �Z, @, X� (14) 

Where A is the transition matrix, B is the emission 

matrix and π is initial state transition probability. 

 To apply media predictor scenario, we 

process observations [ 	 KXM, XN , XV, XW, X2O over 

hidden states \ 	 K##=� , =]# �̂ , _@`�O and 

generate an association for training phase as seen 

from Figure-6. 

 The model completes prediction cycle in 

time length of ∆t and returns storage status and time 

to predict storage media tST. 

3.2.1 Model Training 

The media predictor model gets training 

through Storage-tier summary container elements. 

At first, it transits from initial state x1 to end state x2 

with seed probability π=0.33 and calculates hidden 

state transition λ. Moreover, it fetches container 

parameters and train the model through 

Expectation-Maximization [35] algorithm. In this 

way, blocks are processed several times until 

sequence generates best fit resultset for model and 

produces media names in the dataset. 

 
Figure 6: HMM States 

 The Expectation-Maximization (EM) 

works in two steps i.e. (i) Expectation and (ii) 

Maximization. The first step calculates media 

likelihood from present estimations and 

maximization step calculates maximizing expected 

media likelihood. Algorithm-1 shows a procedural 

workout, where seed blocks are processed over 

hidden media storages. At first, we calculate state 

path probability and update the transition and 

emission probability simultaneous. Moreover, we 

process path probability with obtained values 

through EM algorithm and generates pair of 

likelihood i.e. [(Block1, SSD), (Block2, RAM), 

(Block3, DISK)]. 

 
 

3.2.2 Prediction 

Media predictor uses Viterbi algorithm [36], which 

calculates hidden media storage. Initially, the 
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algorithm generates optimal state sequence and 

declares hidden states with observations. In the last, 

it calculates state sequence Sstates= {S1,S2,… Sn}as, abcd 	 	efgheijk�ajdedlj;n; o� (15) 

Where Sopt is optimal state sequence. The algorithm 

returns optimal path at step t over end state N. 

Moreover, it returns an increase S over t+1 and 

maxima likelihood at t+2. The optimal path gets 

updated at each step and returns hidden media 

storage in the resultset.  

 

4. EXPERIMENTAL EVALUATION 

In this section, we evaluate our proposed 

approach over cluster configuration as seen from 

Table-1. 

Table 1: Hadoop Cluster. 

 

4.1 Environment 

The ecosystem consists of Intel Xeon 

processor with 8 CPUs, 32GB memory and storage 

devices i.e. 1TB Hard disk drive and 128GB 

Samsung SSD. In addition to that, we use Intel core 

i5 with 4 Core, 16GB memory and storage devices 

i.e. 1TB Hard disk drive and 128 GB Samsung 

SSD. We install 5 virtual machines having 

virtualbox 5.0.16 as seen from Table- 2. 

Table 2: Hadoop Cluster Virtual Machines 

Configuration. 

Node CPU Memory Disk Configuration 

Master 

Node 
6 16 GB HDD & SSD Intel Xeon 

Slave1 2 4GB HDD & SSD Intel Xeon 

Slave2 2 4GB HDD & SSD Intel Core i5 

Slave3 2 4GB HDD & SSD Intel Core i5 

Slave4 2 4GB HDD & SSD Intel Core i5 

 

4.2 Experimental Dataset 

The experimental dataset consists of: (i) 

250 random SSD wordcount data blocks of 64MB 

(40GB size), (ii) 250 random DISK wordcount data 

blocks (40GB size) and (iii) 250 random RAM 

wordcount data blocks (40GB size). 

4.3 Experimental Results 

The evaluation and simulations performed 

for evaluating proposed approach are: (i) Storage-

tier summary collector, (ii) Media prediction 

analysis and (iii) Processing Latency optimization. 

4.3.1 Storage-tier summary collector  

The collector fetches event traces of 

computing capacity, storage-tier I/O, Accessibility 

Path timestamp, Datablock receiver timestamp and 

Volume Space statistics over container. The 

message length varies between 0.5 ≤ size ≥ 5 KB 

and consumes a resource between 0.2 ≤ Bandwidth 

≥ 500 KB/s. The summary container stores 2.7 GB 

of log information over 120GB data blocks as 

observed from Figure-7.  

 

Figure 7: Storage-tier Summary Container 

Message Collector 

4.3.2 Media prediction analysis 

After generating container messages, we 

perform prediction simulations over three ‘250’ 

random data blocks. In the first hour of simulation, 

we observe that predictor detects pattern of ‘109’ 

SSD data blocks, ‘78’ DISK data blocks and ‘63’ 

RAM data blocks. In the second hour of simulation, 

we use ‘500’ random data blocks and analyze that 

predictor observes pattern of ‘211’ SSD data 

blocks, ‘192’ DISK data blocks and ‘97’ RAM data 

blocks. In the third hour of simulation, we evaluate 

‘750’ random data blocks and evaluate that 

predictor observes pattern of ‘322’ SSD data block, 

‘219’ DISK data blocks and ‘109’ RAM data 

blocks as observed from Figure-8. 
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Figure 8: Storage-tier media block job prediction 

4.3.3 Processing Latency Optimization 

The media predictor depicts locality-aware 

nearby Datanode statistics with available functional 

media. The predictor lists processing timestamp, 

accessibility timestamp and completion timestamp 

of data blocks over respective storage media. As a 

result, we calculate locality-aware path and 

observes that proposed processing, node and 

storage-tier approaches are 39.1%, 54.7% and 

22.9% efficient than default data block processing. 

This reduces storage-tier latency, node latency and 

overall processing latency as observed from Figure-

9   

 
Figure 9: Latency optimization over HDFS Cluster 

5. CONCLUSION 

This paper proposes a predictive analysis, 

which collects storage-tier summary data into a 

container and predicts storage-tier, node and cluster 

processing timestamp than default approach. The 

proposed approach effectively stores storage-tier 

information messages with low message overhead. 

The predictive analysis depicts a clear significant 

difference of data block processing improvement 

than default approach.  

In future, we would focus to work over 

inter-media contention issue over Hadoop cluster.  
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