
Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2658

PREDICTIVE ANALYSIS OF LOCALITY-AWARE STORAGE-

TIER DATA BLOCKS OVER HADOOP

1
NAWAB MUHAMMAD FASEEH QURESHI,

2*
DONG RYEOL SHIN,

 3
ISMA FARAH

SIDDIQUI,
4
ASAD ABBAS

1,2
 Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea

3,4
 Department of Computer Science and Engineering, Hanyang University ERICA, Ansan, South Korea

*
Corresponding Author

E-mail:
1
faseeh@skku.edu,

2*
drshin@skku.edu

ABSTRACT

The term ‘Big Data analytics’ refers to a large-scale solution for managing giant datasets in a parallel

environment. Hadoop is an ecosystem that processes large datasets in distributed computing scenario. The

ecosystem is further categorized into four sub-projects i.e. HDFS, MapReduce, YARN and Hadoop

Commons. The Hadoop Distributed File System (HDFS) is a backbone of ecosystem, which helps storing

and processing large datasets. Recently, HDFS is upgraded to heterogeneous storage-tier environment that

cope with data block processing over multiple storage devices i.e. DISK, SSD and RAM. The block

placement policy dispatches data blocks to the devices without calculating I/O transfer parameters and

locality perspectives. Moreover, HDFS selects random Datanodes that could be located into the next rack

having longer path than local rack. This increases the data block processing latency and results in a huge

delay for replica management in heterogeneous storage-tier. To resolve this issue, we propose a predictive

analysis that build a locality-aware storage-tier node summary and predict the most nearby available

storage-tier for block job processing. The experimental evaluation depicts that the proposed approach

reduces data block transfer time overhead, replica transfer time overhead and decreases node paths to an

optimal accessibility over the cluster.

Keywords: Hadoop, HDFS, Locality-aware, network distance, storage-tier.

1. INTRODUCTION

Big data processing has resolved many

complex issues of huge dataset processing [1].

There are many system softwares available, which

address the dataset processing over parallel

computing environment i.e. Cloudera [4], MapR [3]

and Apache Hadoop [2]. Hadoop ecosystem is an

open-source ecosystem, which processes large-

scale huge datasets in a distributed computing

phenomena. It is categorized into four main sub-

projects i.e. HDFS [7], YARN [5], MapReduce [6]

and Hadoop Commons. The Hadoop Distributed

File System (HDFS) is a core sub-project, which

stores and retrieves datasets over the cluster.

Hadoop Commons is a built-in library for providing

environment parameters to the cluster processing.

MapReduce is a programming module, which

processes large datasets in a parallel processing

environment and YARN is a brain of the Hadoop

that schedules and allocates resources to task

processing.

HDFS consists of three components i.e.

Namenode, Datanode and client. The Namenode

receives a task request from client and allocates

scheduling activity and resource parameters to

Datanode. The Datanode returns job output and

stores data blocks over the storage-tier [8] [9] as

seen from Figure-1.

Figure 1: HDFS Architecture

 By default, a Namenode processes data

blocks to random Datanodes [11] [12]. This

increases processing latency �������� 	
 ���
�������������	����� and produces replica latency

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2659

�������� 	 ��������� � �� ����! over the

cluster. Moreover, the latency increases with the

heterogeneous storage-tier factor, where a single

node consists of multiple storage devices i.e. SSD,

DISK and RAM. As a result, we observe a data

block placement latency �������" 	 ��������� �#��$�%����! [10] [13] [14] over Hadoop cluster as

observed from Figure-2.

Figure 2: Default Storage-tier Rack Cluster

 To solve this problem, we propose a

predictive analysis that collects nearby storage-tier

Datanodes summary and predicts nearest locality-

aware storage-tier media for block job processing.

The predicted storage-tier node reduces the

LatencyP, LatencyR and LatencyC time overheads

simultaneous and increases cluster block processing

to an optimal state.

The main contributions of the proposed scheme are:

• A novel storage-tier summary collector.

• A novel prediction model for searching

nearby storage-tier Datanodes.

• An effective latency reducer for storage-tier

cluster.

The remaining paper is organized as

follows. Section II discusses related work. Section

III briefly explains proposed prediction model.

Section IV depicts experimental environment and

evaluation result. Finally, section V shows

conclusion and future research directions.

2. RELATED WORK

Many researchers have contributed and

presented locality-aware cluster processing

strategies. The locality-aware processing can be

categorized into two types i.e. (i) Scheduler-based

locality-aware processing and (ii) Resources-based

locality-aware processing [15] [16] [17]. The

scheduler-based locality-aware processing includes

scheduling techniques, which generates

MapReduce job output as per nearby Datanodes.

The resource-based locality-aware processing

focuses over data placement technique, which can

be executed after a MapReduce job is completed in

a default manner [18] [19] [20]. Since, our

proposed approach comes into the resource-aware

strategy so we highlight contributions for this area

as below:

ADAPT [25] is a data placement

technique, which dispatches data blocks over

availability of storage space in a Datanode. This is

a simple technique, which focuses over storage

space availability over homogeneous storage-tier.

RDP [31] is a robust data placement strategy, which

perform block placement over heterogeneous

storage-tier but do not consider locality-aware

processing. Purlieus [30] uses virtual heterogeneous

storage-tier of virtual machines to process data

blocks without keeping locality-awareness over

cluster. Data pre-loading and data placement

technique [29] manages a cache to storage data

blocks before dispatching towards the Datanodes.

Keeping in view, the performance is better than

default approach but lack locality-awareness in

block job processing [21] [22] [23] [24]. Dynamic

energy efficient data placement [27] strategy uses

Datanodes to dispatch data blocks and detach them

so to save energy perspective. This strategy focuses

over homogeneous storage-tier only and do not

consider locality-awareness in block job

processing. Investigation of Data Locality [26]

technique processes multiple instances of data

placement over homogeneous storage-tier cluster.

Since, the discusses techniques lack the

concept of locality-aware data placement over

storage-tier cluster, we present a predictive analysis

of locality-aware data placement technique, which

collects heterogeneous storage-tier processing

information and predicts most suitable storage node

of a Datanode to receive block placement function.

The proposed approach reduces three-tier latencies

and increases the performance of block placement

over Hadoop cluster.

3. PREDICIVE ANALYSIS OF LOCALITY-

AWARE STORAGE-TIER DATA

BLOCKS

The predictive analysis consists of two

phases i.e. (i) Storage-tier summary container and

(ii) Predict the most nearby Datanode.

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2660

The storage-tier summary container

collects all the Datanode and storage media

information i.e. computing capacity and storage-tier

devices with volume statistics. Moreover, the media

predictor performs training sessions over the dataset

and predicts the most nearby Datanode with

available storage-tier media as seen from Figure-3.

Figure 3: Storage-tier Predictive Analysis over

HDFS Cluster

3.1 Storage-tier summary container

The summary container consists of

Datanode information i.e. CPU, storage medias,

accessibility time, 1 MB data block receiving time

and volume sizes of each storage.

Figure 3: Storage-tier summary Architecture

The container messages are collected

through Belief Propagation method [32], which

stores information messages in concatenated form.

Thus, it reduces complete message read time

overhead. Moreover, we perform inference on

belief propagation through Message Propagation

Model [33] that a message m of a variable

component i having value ϰi with a belief bi (ϰi) can

be propagated from source component a to

destination component i represents likeliness of

random variable Xi where ϰi ϵ Xi by,

&�''�%�	&�	→��ϰ�� (1)

We store information messages of a Datanode

having computing capacity CC and Storage-tier ST

as, &�''�%�	&""*→+*�ϰ+*! (2) &�''�%�	&,�*→+*�ϰ+*! (3)

We calculate belief of component Datanode D

having CC and ST information messages as, -��ϰ+*! 	∝ 	 / &�""*,,�*�	→	+*�ϰ+*!�""*,,�*�	∈2�+*�

(4)

Similarly, we store information messages of

Storage-tier having Accessibility Path AP,

Datablock receiver DR and Volume Space VS as, &�''�%�	&3�*→,�*�ϰ,�*! (5) &�''�%�	&+�*→,�*�ϰ,�*! (6) &�''�%�	&4,*→,�*�ϰ,�*! (7)

We calculate belief of component Storage-tier ST

having AP and ST information messages as, -��ϰ,�*! 	∝ 	 / &�3�*,+�*,4,*�	→	,�*�ϰ,�*!�3�*+�*,4,*�	∈2�,�*�

(8)

We normalize eq (4) and eq (8) with a constant Z

and get,

-��ϰ+*! 	 16 7 / &�""*,,�*�	→	+*�ϰ+*!�""*,,�*�	∈2�+*�
8	 (9)

and -��ϰ,�*!
	 	7 / &�3�*,+�*,4,*�	→	,�*�ϰ,�*!�3�*+�*,4,*�	∈2�,�*�

8

(10)

Figure 4(a): Belief of Di Figure 4(b): Belief of STi

Therefore, belief of component D and ST can be

expressed from Figure-3(a) and Figure-3(b).

 To collect information messages together

at a single container i.e. Storage-tier summary

container, we calculate joint belief ‘L’ of

component Di and STi as, -9�ϰ9� 	 	 -3�:3� (11)

Where :3 	 	 ;ϰ+* , ϰ,�* ∶ 	=� , #>�	 	 ∈ ?�@�	A and ϰ9

is the domain space related to component L as seen

from Figure-5.

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2661

 The domain space ϰ9	B'	�CD�E	��	 ;�ϰ+* , ϰ,�*!	|	G3	�ϰ+* , ϰ,�*! 	 1,			ϰ+* 	 ∈ 	 H+* , I,�*	 ∈ H2*A
where factor fA represents a bipartite string between

Di and STi components. Therefore, a joint belief can

be observed as, -9�I9� 	 16	 / &�+*,,�*�→9�I9��+*,,�*�	∈2�9�

(12)

Figure 5: Belief of Factor A (L)

Finally, we simplify eq (12) to close-form solution

as, &�+*,,�*�→9�I9�	 JG3�:3� / &�+*,,�*�→9�I9��+*,,�*�∈2�9�

(13)

Where &�+*,,�*�→9�I9� depicts Storage-tier

summary container over Namenode.

3.2 Media predictor

To predict locality-aware storage media for

data block processing, we use Hidden Markov

Model (HMM) [34]. The model works in two steps

i.e. (i) Training phase and (ii) Prediction phase. By

default, the model uses hidden states : 	 	 KLM, LNO,
conditional transition probability @ 		��P 	;QRC�SM 	 LP|C� 	 LPTA, observation state U 		K�M, �N, �V , �WO and emission probability X 	 -�P.
Therefore, according to definition of model HMM

(λ) we get, Y 	 �Z, @, X� (14)

Where A is the transition matrix, B is the emission

matrix and π is initial state transition probability.

 To apply media predictor scenario, we

process observations [KXM, XN , XV, XW, X2O over

hidden states \ 	 K##=� , =]# �̂ , _@`�O and

generate an association for training phase as seen

from Figure-6.

 The model completes prediction cycle in

time length of ∆t and returns storage status and time

to predict storage media tST.

3.2.1 Model Training

The media predictor model gets training

through Storage-tier summary container elements.

At first, it transits from initial state x1 to end state x2

with seed probability π=0.33 and calculates hidden

state transition λ. Moreover, it fetches container

parameters and train the model through

Expectation-Maximization [35] algorithm. In this

way, blocks are processed several times until

sequence generates best fit resultset for model and

produces media names in the dataset.

Figure 6: HMM States

 The Expectation-Maximization (EM)

works in two steps i.e. (i) Expectation and (ii)

Maximization. The first step calculates media

likelihood from present estimations and

maximization step calculates maximizing expected

media likelihood. Algorithm-1 shows a procedural

workout, where seed blocks are processed over

hidden media storages. At first, we calculate state

path probability and update the transition and

emission probability simultaneous. Moreover, we

process path probability with obtained values

through EM algorithm and generates pair of

likelihood i.e. [(Block1, SSD), (Block2, RAM),

(Block3, DISK)].

3.2.2 Prediction

Media predictor uses Viterbi algorithm [36], which

calculates hidden media storage. Initially, the

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2662

algorithm generates optimal state sequence and

declares hidden states with observations. In the last,

it calculates state sequence Sstates= {S1,S2,… Sn}as, abcd 	 	efgheijk�ajdedlj;n; o� (15)

Where Sopt is optimal state sequence. The algorithm

returns optimal path at step t over end state N.

Moreover, it returns an increase S over t+1 and

maxima likelihood at t+2. The optimal path gets

updated at each step and returns hidden media

storage in the resultset.

4. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed

approach over cluster configuration as seen from

Table-1.

Table 1: Hadoop Cluster.

4.1 Environment

The ecosystem consists of Intel Xeon

processor with 8 CPUs, 32GB memory and storage

devices i.e. 1TB Hard disk drive and 128GB

Samsung SSD. In addition to that, we use Intel core

i5 with 4 Core, 16GB memory and storage devices

i.e. 1TB Hard disk drive and 128 GB Samsung

SSD. We install 5 virtual machines having

virtualbox 5.0.16 as seen from Table- 2.

Table 2: Hadoop Cluster Virtual Machines

Configuration.

Node CPU Memory Disk Configuration

Master

Node
6 16 GB HDD & SSD Intel Xeon

Slave1 2 4GB HDD & SSD Intel Xeon

Slave2 2 4GB HDD & SSD Intel Core i5

Slave3 2 4GB HDD & SSD Intel Core i5

Slave4 2 4GB HDD & SSD Intel Core i5

4.2 Experimental Dataset

The experimental dataset consists of: (i)

250 random SSD wordcount data blocks of 64MB

(40GB size), (ii) 250 random DISK wordcount data

blocks (40GB size) and (iii) 250 random RAM

wordcount data blocks (40GB size).

4.3 Experimental Results

The evaluation and simulations performed

for evaluating proposed approach are: (i) Storage-

tier summary collector, (ii) Media prediction

analysis and (iii) Processing Latency optimization.

4.3.1 Storage-tier summary collector

The collector fetches event traces of

computing capacity, storage-tier I/O, Accessibility

Path timestamp, Datablock receiver timestamp and

Volume Space statistics over container. The

message length varies between 0.5 ≤ size ≥ 5 KB

and consumes a resource between 0.2 ≤ Bandwidth

≥ 500 KB/s. The summary container stores 2.7 GB

of log information over 120GB data blocks as

observed from Figure-7.

Figure 7: Storage-tier Summary Container

Message Collector

4.3.2 Media prediction analysis

After generating container messages, we

perform prediction simulations over three ‘250’

random data blocks. In the first hour of simulation,

we observe that predictor detects pattern of ‘109’

SSD data blocks, ‘78’ DISK data blocks and ‘63’

RAM data blocks. In the second hour of simulation,

we use ‘500’ random data blocks and analyze that

predictor observes pattern of ‘211’ SSD data

blocks, ‘192’ DISK data blocks and ‘97’ RAM data

blocks. In the third hour of simulation, we evaluate

‘750’ random data blocks and evaluate that

predictor observes pattern of ‘322’ SSD data block,

‘219’ DISK data blocks and ‘109’ RAM data

blocks as observed from Figure-8.

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2663

Figure 8: Storage-tier media block job prediction

4.3.3 Processing Latency Optimization

The media predictor depicts locality-aware

nearby Datanode statistics with available functional

media. The predictor lists processing timestamp,

accessibility timestamp and completion timestamp

of data blocks over respective storage media. As a

result, we calculate locality-aware path and

observes that proposed processing, node and

storage-tier approaches are 39.1%, 54.7% and

22.9% efficient than default data block processing.

This reduces storage-tier latency, node latency and

overall processing latency as observed from Figure-

9

Figure 9: Latency optimization over HDFS Cluster

5. CONCLUSION

This paper proposes a predictive analysis,

which collects storage-tier summary data into a

container and predicts storage-tier, node and cluster

processing timestamp than default approach. The

proposed approach effectively stores storage-tier

information messages with low message overhead.

The predictive analysis depicts a clear significant

difference of data block processing improvement

than default approach.

In future, we would focus to work over

inter-media contention issue over Hadoop cluster.

ACKNOWLEDGEMENT

This work was supported by Institute for

Information & communications Technology

Promotion(IITP) grant funded by the Korea

government(MSIP) (No. R0113-15-0002,

Automotive ICT based e-Call standardization and

after-market device development)

REFRENCES:

[1] LaValle, Steve, et al. "Big data, analytics and

the path from insights to value." MIT sloan

management review 52.2, 2011, pp. 21.

[2] "Welcome to Apache™ Hadoop®!" 2014.

[Online]. Available: http://hadoop.apache.org/.

Accessed: Mar. 13, 2017.

[3] M. Technologies, "Featured customers", 2016.

[Online]. Available: https://www.mapr.com/.

Accessed: Mar. 13, 2017.

[4] Cloudera, "The modern platform for data

management and analytics," Cloudera, 2016.

[Online]. Available: http://www.cloudera.com/.

Accessed: Mar. 13, 2017.

[5] "Apache Hadoop 2.7.2 – Apache Hadoop

YARN," 2016. [Online]. Available:

https://hadoop.apache.org/docs/r2.7.2/hadoop-

yarn/hadoop-yarn-site/YARN.html. Accessed:

Mar. 13, 2017.

[6] "Apache Hadoop 2.7.2 – MapReduce Tutorial,"

2016. [Online]. Available:

https://hadoop.apache.org/docs/stable/hadoop-

mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html. Accessed: Mar.

13, 2017.

[7] "Apache Hadoop 2.7.2 – HDFS users guide,"

2016. [Online]. Available:

https://hadoop.apache.org/docs/stable/hadoop-

project-dist/hadoop-hdfs/HdfsUserGuide.html.

Accessed: Mar. 13, 2017.

[8] A. Kala Karun and K. Chitharanjan, "A review

on Hadoop — HDFS infrastructure extensions,"

2013 IEEE CONFERENCE ON

INFORMATION AND COMMUNICATION

TECHNOLOGIES, Apr. 2013.

[9] Abbas, A., Wu, Z., Siddiqui, I. F., & Lee, S. U.

J. (2016). An approach for optimized feature

selection in software product lines using union-

find and Genetic Algorithms. Indian Journal of

Science and Technology, 9(17)

[10] "Apache Hadoop 2.7.2 – HDFS storage-tier,"

2016. [Online]. Available:

https://hadoop.apache.org/docs/r2.7.3/hadoop-

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2664

project-dist/hadoop-hdfs/ArchivalStorage.html

Accessed: Mar. 13, 2017.

[11] Abbas, A., Siddiqui, I. F., & Lee, S. U. J.

(2016). Multi-Objective Optimization of

Feature Model in Software Product Line:

Perspectives and Challenges. Indian Journal of

Science and Technology, 9(45).

[12] Y. Tsuruoka, "Cloud computing - current status

and future directions," Journal of Information

Processing, vol. 24, no. 2, 2016, pp. 183–194.

[13] ABBAS, A., SIDDIQUI, I. F., & LEE, S. U. J.

(2017). CONTEXTUAL VARIABILITY

MANAGEMENT OF IOT APPLICATION

WITH XML-BASED FEATURE

MODELLING. Journal of Theoretical &

Applied Information Technology, 95(6).

[14] C. Rodríguez-Quintana, A. F. Díaz, J. Ortega,

R. H. Palacios, and A. Ortiz, "A new Scalable

approach for distributed Metadata in HPC," in

Algorithms and Architectures for Parallel

Processing. Springer Nature, 2016, pp. 106-117.

[15] T. White, Hadoop: The definitive guide,

"O'Reilly Media, Inc.", 2012.

[16] Abbas, A., Siddiqui, I. F., & Lee, S. U. J.

(2016). GOAL-BASED MODELING FOR

REQUIREMENT TRACEABILITY OF

SOFTWARE PRODUCT LINE. Journal of

Theoretical and Applied Information

Technology, 94(2), 327.

[17] Abbas, A., Siddqui, I. F., Lee, S. U. J., &

Bashir, A. K. (2017). Binary Pattern for Nested

Cardinality Constraints for Software Product

Line of IoT-based Feature Models. IEEE

Access.

[18] N.M.F Qureshi, et al. "KEY EXCHANGE

AUTHENTICATION PROTOCOL FOR NFS

ENABLED HDFS CLIENT", Journal of

Theoretical and Applied Information

Technology, vol. 95, no. 7, pp. 1353-1361,

2017.

[19] I.F Siddiqui, et al. "Comparative Analysis of

Centralized Vs. Distributed Locality-based

Repository over IoT-Enabled Big Data in Smart

Grid Environment", Proceedings of the Korean

Society of Computer Information Conference,

vol. 25, pp. 75-79, 2017.

[20] I.F. Siddiqui, et al. "A HIDDEN MARKOV

MODEL TO PREDICT HOT SOCKET ISSUE

IN SMART GRID", Journal of Theoretical and

Applied Information Technology, vol. 94, no. 2,

pp. 408-415, 2016.

[21] I.F. Siddiqui, et al. "A Comparative Study of

Multithreading APIs for Software of ICT

Equipment," J. Indian Journal of Science and

Technology, vol. 9, no. 48, pp. 1-5, Dec. 2016.

[22] I.F. Siddiqui, et al. "A Framework for Verifying

Consistency of SQL-DB Ontology using

Alloy," In Proc. 16th Korea Computer

Congress, 2014, pp.497-499.

[23] I.F. Siddiqui, et al. "Access Control as a Service

for Information Protection in Semantic Web

based Smart Environment," J. Journal of Korean

Society for Internet Information, vol. 17, no. 5,

pp. 9-16, Oct. 2016.

[24] I.F. Siddiqui, et al. "Privacy-Aware Smart

Learning: Providing XACML as a Service in

Semantic Web based Smart Environment," In

Proc. 7th International Conference on Internet

Symp., 2015, pp.97-101.

[25] Jin, Hui, et al. "Adapt: Availability-aware

mapreduce data placement for non-dedicated

distributed computing." Distributed Computing

Systems (ICDCS), 2012 IEEE 32nd

International Conference on. IEEE, 2012.

[26] Guo, Zhenhua, Geoffrey Fox, and Mo Zhou.

"Investigation of data locality in

mapreduce." Cluster, Cloud and Grid

Computing (CCGrid), 2012 12th IEEE/ACM

International Symposium on. IEEE, 2012.

[27] Maheshwari, Nitesh, Radheshyam Nanduri, and

Vasudeva Varma. "Dynamic energy efficient

data placement and cluster reconfiguration

algorithm for MapReduce framework." Future

Generation Computer Systems 28.1 (2012):

119-127.

[28] A. Rasheed, and M. Mohamed. "Fedora

Commons with Apache Hadoop: A Research

Study", 2013.

[29] A. Spivak and D. Nasonov, "Data Preloading

and Data Placement for MapReduce

Performance Improving", Procedia Computer

Science, vol. 101, pp. 379-387, 2016.

[30] Palanisamy, Balaji, et al. "Purlieus: locality-

aware resource allocation for MapReduce in a

cloud." Proceedings of 2011 International

Conference for High Performance Computing,

Networking, Storage and Analysis. ACM, 2011.

[31] N. M. F. Qureshi, and D. R. Shin, "RDP: A

storage-tier-aware Robust Data Placement

strategy for Hadoop in a Cloud-based

Heterogeneous Environment", KSII

Transactions on Internet and Information

Systems, vol. 10, no. 9, 2016, pp. 4063-4086.

[32] J. S. Yedidia, “Message-passing algorithms for

inference and optimization,” Journal of

Journal of Theoretical and Applied Information Technology
30th June 2017. Vol.95. No 12

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2665

Statistical Physics, vol. 145, no. 4, pp. 860-890,

2011

[33] M. Khosla, “Message Passing Algorithms,”

PHD thesis, 9 , 2009

[34] Z. Ghahramani, “An introduction to hidden

Markov models and Bayesian networks,”

International Journal of Pattern Recognition and

Artificial Intelligence, vol. 15, no. 1, pp. 9-42,

2001.

[35] Ajit Singh, EM Algorithm, 2005.

[36] G. D. Forney, “The viterbi algorithm,” in Proc.

of the IEEE, vol. 61, no. 3, pp. 268-278, 1973

