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ABSTRACT 

 

Mathematics is considered the base for computer science. In particular, discrete mathematics is commonly 

used in many disciplines of computer science. One of the main topics that are discussed in discrete 

mathematics is quantifiers and their relations with logical operators. Accordingly, this paper proposes a new 

method to prove the validity of some implications involving quantifiers and logical operators. The proposed 

method is based on the idea of showing that whenever the premise of the implication is true, the conclusion 

cannot be false (must be true), so the implication is valid. On the other hand, if the conclusion can be false 

then the implication is not valid. 

Keywords: Predicate logic, Propositional logic, Quantifiers and Logical operators, Validity of 

implications.  

 

1. INTRODUCTION  
 

Predicate logic and propositional logic in 

discrete mathematics bring a great tool for 

reasoning properly about mathematics, algorithms, 

and computers. They are used widely in computer 

science, and we need to identify their basic 

concepts in order to study many of the more 

advanced subjects in computer science. 

Propositional logic is used widely in information 

retrieval, digital circuit design and computer 

architecture, designing programming languages and 

software engineering [1]. On the other hand, 

predicate logic is used to form the basis of Prolog 

(Programming in logic) which is a language that is 

used widely to stimulate intelligent through 

programs in the field of artificial intelligence [2]. In 

addition, Structured Query Language (SQL) which 

is used widely in designing database systems is 

formed based on the predicate logic [3]. However, 

predicate logic is considered as an extension to 

propositional logic by adding two quantifiers which 

make it more expressive than the propositional 

logic and more applicable in complex problems.  

 

One of the main issues in predicate logic is 

proving the validity of some assertions using 

different methods of proofs. In this paper, a new 

method is proposed for proving the quantifiers 

distribution over logical operators, which is 

considered an essential problem that is associated 

with predicate logic. This subject has been 

mentioned in few books and researches, and the 

processes of proving these relations are not clear 

enough. Our goal is to propose a new method that is 

more comprehensive, clearer, and deals with the 

problem in details. Additionally, the importance of 

this subject comes from the necessity of knowing 

which of these relationships are valid and which 

ones are invalid; this can assist in applying such 

topic in artificial intelligence, designing computer 

circuits, etc. 

 

Firstly, some definitions that are related to 

our work are introduced. Also, two methods that 

were used to prove the validity of some logical 

implications are presented in this section. 

 

Definition 1.  A predicate is an assertion that 

contains a finite number of variables and becomes a 

proposition when specific values are substituted for 

the variables from the domain of the predicate or 

when these variables are bound using quantifiers 

[4]. 

 

Definition 2. The domain of discourse of a 

predicate variable is the set of all values that may 

be substituted in place of the variable [5]. 
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Definition 3. “ The logical implication is a logical 

connective (or a binary operator) denoted by (→). 

The implication is used to form statement  of the 

form (p → q) (termed a conditional statement)  

which is read as : ( if  p then q ) or ( p only if q)  “. 

In logical implications, p is called the premise and 

q is called the conclusion . The converse of (p→q)  

is  (q → p) [6]. The truth table of  (p→q) is 

presented in table 1 [7] [8]. 
 

Table 1: The Truth Table of p → q 

 
p q p → q 

 

 

0 

 

0 

 

1 

 

0 

 

1 

 

1 

 

1 

 

0 

 

0 

 

1 

 

1 

 

1 

 

 

Definition 4. Quantification is a concept that 

specifies the quantity of cases in the domain of 

discourse that satisfy an open formula [9]. The two 

main quantifiers are: the universal (∀) and the 

existential (∃).    

  

Let P(x) be a predicate with domain D. A 

universal statement is a statement in the form ∀x 

P(x) . It is true if and only if (iff) P(x) is true for 

every x from D. It is false iff P(x) is false for at 

least one x from D. Let P(x) be a predicate with 

domain D. An existential statement is a statement in 

the form ∃x P(X). It is true iff P(x) is true for at 

least one x from D. It is false iff P(x) is false for 

every x from D [10]. 

 

It is proven that the existential quantifier 

(∃ ∧) does not distribute over the AND ( ) logical 

operator. Consequently,  

∃ ∧x  [ P(x)   Q(x)  ]  ¬ ∃ ∧∃↔[ x  P(x) x Q(x)  ]   

[7] [10], where P(x) and Q(x) are predicates with 

domain D, but one side implies the other is valid, so 

the following implication is valid: 

 ∃x  [ P(x)  ∧Q(x)  ] →[ ∃x  P(x) ∧  ∃x Q(x) ], and 

the converse is not valid [4] [7].  

 

Also, the universal quantifier (∀) is not 

distributable over the logical operator OR (∨). So, 

 ∀x  [ P(x)∨Q(x)  ]  ¬ ↔ [ ∀x P(x)  ∨ ∀x Q(x)]   [7] 

[10], but one side implies the other is valid, so the 

following implication is valid: 

 [∀x P(x) ∨ ∀x Q(x)]  → ∀x[ P(x) ∨ Q(x)] , and the 

converse is not valid [7] [11]. 

 

Furthermore, the (∃) quantifier does not 

distributes over the implication logical operator. As 

a consequent, 

∃x  [ P(x)  →  Q(x) ]  ¬ ↔ [ ∃x  P(x) → ∃xQ(x)  ]   

[7], but one side implies the other is valid, so the 

following implication is valid:  

[ ∃x  P(x) → ∃xQ(x) ]  → ∃x  [ P(x)  → Q(x)  ], 

and the converse is not valid [7]. 

 

In addition, the (∀) quantifier does not 

distribute over the implication logical operator. So,   

∀x  [ P(x)→Q(x)  ]  ¬ ↔ [ ∀x P(x)  → ∀x Q(x)] 

[7]. However, one side implies the other is valid as 

follows: 

∀x [ P(x) → Q(x)  ]  → [ ∀x P(x)  → ∀x Q(x)], but 

the converse is not valid [7]. 

 

Nabulsi (2000) [12] showed that the 

validity of the previous implications can be proven 

using the method of truth table.  

 

For example, to prove that 

∃x  [ P(x)  ∧ Q(x)  ]  →[ ∃x  P(x)∧ ∃x Q(x)  ] is 

valid, the author assumed that the universe is the set 

{0,1}, then proved the validity of this implication 

as follows: 

 

- ∃x[P(x)∧Q(x)] ↔ [P(0)∧ Q(0)]∨[ P(1) ∧Q(1)] . 

 

If we assumed that [ P(0)  ∧ Q(0) ] is denoted by A 

and [ P(1)  ∧ Q(1) ] is denoted by B then 

∃x  [ P(x)  ∧Q(x)  ]↔ A ∨ B. 

 

-[∃xP(x)∧∃xQ(x)] ↔ [P(0)∨P(1)] ∧ [Q(0)∨Q(1)]  . 

 

If we assumed that [P(0)∨P(1)] is denoted by C and 

[ Q(0)  ∨Q(1)]  ] is denoted by D then 

∃x  [P(x)∧ ∃x Q(x)] ↔ C ∧ D . 

 

- P(0), P(1), Q(0) and Q(1) are considered as four 

variables to construct the truth table of 16 cases as 

shown in table 2. The remaining implications can 

be proved in the same way.  

 

Rasiowa (1973) [13] discussed that the 

implication: 

[∀ ∨ ∀ ∀ ∨x  P(x)  x Q(x)  ]  → x[ P(x)   Q(x) ]  is 

proved to be valid by assuming that the conclusion 

is false; which means that [P(x)  ∨  Q(x)] is not 

satisfied for every  x∃D, so there is an element (a)  

∃ D, such that [P(x) ∨  Q(x) ] is a false proposition. 

So, p(x) is false and q(x) is false. Consequently,  

∀ ∀x  P(x)   is false and x Q(x) is false in the Left-

Hand Side (LHS), this will result in a false premise; 
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as a result, the implication is valid.  Also, the 

implication:   

∀ ∀ ∀x  [ P(x) → Q(x)  ]  → [ x P(x)  → x Q(x) ] is 

proved to be valid, by assuming that the conclusion 

[ ∀ ∀x P(x)  → x Q(x)] is false, and because it is 

false, then ∀ ∀x P(x) must be true and x Q(x)  must 

be false , so every element of D satisfies p(x). Also, 

there must be an element (a) such that q(x) is false. 

Therefore, P(x) → Q(x) in the LHS must be false, 

and this will result in a valid implication.  

 

The method proposed in [12] is long, time-

consuming, and provided one example only. On the 

other hand, the method in [13] is somewhat 

difficult, not very clear, and provided two examples 

only. This paper proposes a clearer and easier 

solution in comparison with the other two methods. 

 

The rest of this paper is organized as 

follows: Section 2 presents our proposed method. 

How to solve some examples using the proposed 

method is presented in Section 3.Finally, the drawn 

conclusions and the planned future work are 

discussed in Section 4. 

 
 

 

 

 

 

 

 

 

Table 2: The Truth Table of  ∃ ∧ x  [ P(x)    Q(x)  ]  ∃ ∧ ∃→[  x  P(x)   x Q(x)  ] 
 

 

2. METHODOLOGY 

 

This section will propose the new 

approach to prove some implications involving 

quantifiers and logical operators.  

 

Our method is based on the following 

idea: If we could prove that whenever the premise is  

true, the conclusion cannot be false which means it 

must be true, so the implication is valid, otherwise, 

the implication is not valid. This is due to the fact 

that an implication is false only when the premise is 

true and the conclusion is false according to third 

line of the truth table shown in table 1. 

 

Now we start proving the validity of the 

following four implications: 

1. ∃x [ P(x)  ∧Q(x)  ] →[ ∃x  P(x) ∧  ∃x Q(x)  ] 

 

2. [∀x P(x) ∨ ∀x Q (x)  ]  → ∀x[ P(x)  ∨ Q(x) ] 

 

3. [ ∃x P(x) → ∃x Q(x)  ]  → ∃x [ P(x)  → Q(x) ] 

 

4. ∀x [ P(x)→ Q(x)  ]  → [ ∀x P(x)  → ∀x Q(x)] 

 

P(0) P(1) Q(0) Q(1) A B A ∨  B C D C ∧  D (A ∨ ∧ B) → (C  D) 

0 0 0 0 0 0 0 0 0 0 1 

0 0 0 1 0 0 0 0 1 0 1 

0 0 1 0 0 0 0 0 1 0 1 

0 0 1 1 0 0 0 0 1 0 1 

0 1 0 0 0 0 0 1 0 0 1 

0 1 0 1 0 1 1 1 1 1 1 

0 1 1 0 0 0 0 1 1 1 1 

0 1 1 1 0 1 1 1 1 1 1 

1 0 0 0 0 0 0 1 0 0 1 

1 0 0 1 0 0 0 1 1 1 1 

1 0 1 0 1 0 1 1 1 1 1 

1 0 1 1 1 0 1 1 1 1 1 

1 1 0 0 0 0 0 1 0 0 1 

1 1 0 1 0 1 1 1 1 1 1 

1 1 1 0 1 0 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 
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Formula 1. ∃x[P(x)∧Q(x)]→[∃xP(x)∧∃xQ(x)] is 

valid. 

In this implication, the LHS (the premise) of the 

implication means that the same value of x can be 

chosen to satisfy both predicates P(x) and Q(x). 

However, the Right- Hand Side (RHS) (the 

conclusion) of the implication means that different 

values of x can be chosen in order to satisfy P(x) 

and Q(x).   

 

Proof.  The LHS is true if there is at least one value 

of x that satisfies both P(x) and Q(x). 

 

→  ∃x P(x) is true and ∃x Q(x) is true. 

 

→ The right side cannot be false, therefore the 

implication is valid. 

 

Formula 2. [∀xP(x)∨∀xQ(x)]→∀x[P(x)∨Q(x)] is 

valid. 

The LHS consist of two parts; ∀x P(x) and ∀x Q(x), 

it will be true if one or both of them is true. On the 

other hand, the RHS will be true if each value of x 

makes either P(x) or Q(x) true.  

 

Proof.  In the LHS there are three cases which 

make it true as follows: 

 

Case 1:  - ∀x P(x)   is true. 

 

               - ∀x Q(x) is true. 

 

              →  Each value of x makes both P(x) and 

                    Q(x) true in the RHS.  

 

              →  The RHS is true. 

 

Case 2:   - ∀x P(x) is true. 

 

                - ∀x Q(x) is false.  

 

                → Each value of x makes P(x) true in the 

                     RHS. 

 

                → The RHS is true. 

Case 3:  - ∀x P(x) is false. 

 

               - ∀x Q(x) is true. 

 

              → Each value of x makes Q(x) true in the 

                   RHS. 

 

              → The RHS is true. 

 

According to the previous three cases the RHS will 

always be true (cannot be false), therefore, the 

implication is valid. 

 

Formula 3. [∃xP(x)→∃xQ(x)]→∃x[P(x)→Q(x)]   

is valid.  

 

In order to prove Formula 3, it needs to be rewritten 

into an equivalent one for simplicity; in classical 

logic , (p→q) is logically equivalent to  (¬ p ∨ q) 

[6]. Therefore,  

 

{[∃x  P(x)→∃xQ(x)]→∃x[P(x)→Q(x)]} ↔  

 

{[¬∃x P(x)∨∃xQ(x)]→∃x[¬P(x)∨Q(x)]} ↔ 

 

{[¬∃xP(x)∨∃xQ(x)  ]→[ ∃x¬ P(x)∨∃xQ(x)]} 

             

It is known that ¬∃xP(x) is equivalent to ∀x¬ P(x) 

[4]. So, after replacing ¬∃xP(x) by ∀x¬P(x),we are 

going to prove that 

[∀x¬P(x)∨∃xQ(x)]→[∃x¬P(x)∨∃xQ(x)] is valid. 

 

Proof.  In the LHS there are three cases which 

make it true as follows: 

 

Case 1:   - ∀x ¬ P(x)  is true. 

 

                - ∃x Q(x) is true. 

 

                → ∃x ¬P(x) is true because  

                     [∀x¬ P(x) →∃x ¬P(x) ] is valid [7], 

                     and ∃x Q(x) is  also  true in the RHS. 

  

              → The RHS is true. 

 

Case 2 :  -  ∀x ¬ P(x)  is true.  

 

                - ∃x Q(x) is false. 

 

                →   ∃x ¬ P(x) is true in the RHS of the 

                       implication.  

 

                →  The RHS is true. 

Case 3:  - ∀x ¬ P(x)  is false. 

 

               -  ∃x Q(x) is true. 

 

               →   ∃x Q(x) is true in the RHS. 

 

               →   The RHS is true. 

 

According to the previous three cases of Formula 3, 

the RHS will always be true (cannot be false), 

therefore, the implication is valid. 
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Formula 4. ∀x[P(x)→Q(x)]→[∀xP(x)→∀xQ(x)] is 

valid. 

In order to prove Formula 4, it needs to be rewritten 

into an equivalent form for simplicity;  

 

{∀x[P(x)→Q(x)]→[∀xP(x)→∀xQ(x)]} ↔ 

 

{∀x[¬P(x)∨Q(x)]→[¬∀xP(x)∨∀xQ(x)]} 

 

It is known that ¬∀xP(x) is equivalent to ∃x¬ P(x) 

[4]. So, after replacing ¬∀xP(x) by ∃x¬ P(x), we 

are going to prove that 

∀x [¬ P(x)∨Q(x)]→[∃x¬P(x)∨∀xQ(x)] is valid. 

 

The LHS becomes true if each value of x makes 

either ¬ P(x) or Q(x) true. In the RHS, there is two 

parts; ∃x¬P(x) and ∀xQ(x) and it is sufficient that 

one of them is true, so the RHS becomes true.  

 

Proof.  In the LHS there are three cases that make it 

true: 

 

Case 1: In the LHS some values of x make ¬ P(x) 

true and the remaining values of x make Q(x) true.  

 

            →    ∃x ¬ P(x)  is true in the RHS. 

 

            →    The RHS is true. 

 

Case 2: In the LHS, all values of x will make  

¬ P(x) true. 

 

 →   ∀x ¬ P(x)   is true.  

 

→   ∃x ¬ P(x) is true in the RHS.  

 

 →   The RHS will be true. 

 

Case 3:  In the LHS, all values of x will make Q(x) 

true.  

               →   ∀x Q(x) is true in the RHS. 

 →   The RHS is true. 

 

All the cases of Formula 4 resulted in a true value 

for the RHS. Therefore, the implication is valid. 

 

3. EXAMPLES OF HOW TO SOLVE 

PROBLEMS USING THE PROPOSED 

METHOD 

 

In this section the validity of two examples 

using the proposed method of proof will be 

verified.   The criteria to evaluate the validity of the 

implications is the following: whenever the premise 

of the implication is true, the conclusion must be 

true, so the implication is valid. If the conclusion 

can be false, then the implication is not valid. 

 

 

Example 1. Prove or disprove the following 

implication:  

 

[∀xP(x) ∨  ∀ ∃xQ(x)]→[ xP(x) ∨  ∀x Q(x)] 

 

Solution. The left side has three cases in order to be 

true: 

 

Case 1: ∀ ∀xP(x) and x Q(x) are both true. 

 

Case 2: ∀ ∀xP(x) is false and x Q(x) is true. 

 

In case 1 and case 2: 

 

             - ∀xQ(x) in the LHS is true. 

 

             →  ∀xQ(x) is true in the RHS. 

 

             →  The RHS is true. 

 

Case 3:  - ∀x P(x) is true.  

 

               - ∀x Q(x) is false. 

 

              →  ∃x P(x) is true in the RHS because 

                     [∀x P(x) ∃→ x P(x)] is valid.  

 

              →  The RHS is true. 

 

All the three cases resulted in having the RHS to be 

true. For that reason, the implication is valid. 

 

Example 2. Prove or disprove the following 

implication: 

 

[ ∃x P(x) ∨  ∃x Q(x) ]→[∀x P(x) ∨  ∃x Q(x) ] 

 

Solution. Let Assume that the LHS is true, so in 

order to be true, there will be three cases: 

 

Case 1: ∃x P(x)   and ∃x Q(x)  are both true. 

 

Case 2: ∃x  P(x)   is false and  ∃x Q(x)  is  

       true. 

 

In case 1 and case 2: 

 

              -  ∃x Q(x) is true in the LHS. 
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              →   ∃x Q(x) is true in the RHS.  

 

              →    The RHS is true. 

 

Case 3:  - ∃x  P(x)   is true in the LHS. 

 

              - ∃x Q(x) is false in the LHS. 

 

               →   ∃x Q(x) is false in the RHS.  

 

               → ∀x P(x) is true or false in the RHS 

 

               →  the RHS can be true or false. 

 

In case 3, the RHS is either true or false, so the 

implication is not valid. 

 

4. CONCLUSIONS AND FUTURE WORK 

 

This paper proposed a new method to verify 

the validity of implications involving quantifiers 

distribution over logical operators. The idea is 

based on the fact that whenever the premise of the 

implication is true, the conclusion of that 

implication cannot be false (must be true), which 

results in a valid implication. Moreover, if the 

conclusion can be false the implication is not valid. 

Accordingly, we used the proposed method to 

prove the validity of the following four 

implications: 

 

 

1.  ∃ ∧x  [ P(x)  Q(x)  ]  → [ ∃x  P(x)∧ ∃  x Q(x)  ] 

 

2.  [ ∀ ∨∀ ∀ ∨x  P(x) x Q(x)  ]  → x [ P(x)    Q(x)  ] 

 

3.  [ ∃ ∃ ∃x  P(x)→ xQ(x) ]  → x  [ P(x)  → Q(x) ] 

    

4.  ∀ ∀ ∀x  [ P(x)→Q(x)  ]  → [ x P(x)  → x Q(x) ] 

 

Additionally, the following two problems: 

 

[ ∀ ∨∀ ∃ ∨ ∀x  P(x) x Q(x)  ]  → [ x  P(x)  x Q(x)  ] 

and [∃ ∨∃xP(x) x Q(x)] → [ ∀ ∨ ∃x P(x)  x Q(x)  ] 

were verified by using the proposed method. We 

showed that the first one is valid and the second is 

not valid.  

 

In future, we will investigate other methods to 

prove relations between quantifiers and logical 

operators, which are more simple and efficient. 
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