
Journal of Theoretical and Applied Information Technology 
30th June 2017. Vol.95. No 12 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
2776 

 

SPECTRAL H2 FAULT ESTIMATION OBSERVER 

DESIGN BASED ON ALLOCATION OF THE CORRECTION 

EFFECT 
 

1
EVGENY I. VEREMEY,

 2
YAROSLAV V. KNYAZKIN 

1
Professor,  Saint-Petersburg State University, Faculty of Applied Mathematics and Control 

Processes, Russia 
2
Graduate student, Saint-Petersburg State University, Faculty of Applied Mathematics and Control 

Processes, Russia 

 

E-mail:  
1
e_veremey@mai.ru, 

2 
yaroslavknyazkin@gmail.com   

 

 

ABSTRACT 

 
The paper is devoted to problem of additive fault estimation observer design for LTI plants with scalar 
measurement and external disturbance with the known spectral structure. The filter with the calculated 
parameters should enhance such performances as rapidity of the fault estimation and its insensitivity to the 
polyharmonical disturbance signal with the certain central frequency, provided by the special filter, 
generating the corrective signal. The specific spectral approach of H2 optimization in frequency domain, 
based on the polynomial factorization, is applied with the aim to improve computational effectiveness of 
the synthesis. Some theoretical aspects are discussed and numerical algorithm for practical implementation 
is formulated. Their effectiveness is demonstrated by the numerical example with implementation of 
MATLAB package. 
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1. INTRODUCTION  

 

Increasing complexity of the controlled 

plants results a high probability of system failures, 

which makes problems of safety and reliability 

crucial. Fault tolerant control (FTC) techniques can 

be used to achieve these properties and it has been 

paid serious attention for the past two decades [1]. 

Nowadays, fault tolerant control techniques can be 

classified into two types:  passive FTC [2,3], using 

robust with respect to possible faults controllers, 

and active one [4-7], i.e. design of additional 

control laws, depending on real-time fault 

estimation, provided by the special module (fault 

estimation observer).  

As it follows from the above, fast and 

accurate estimation of the fault is necessary to 

design effective active fault tolerant controller. As a 

result, various effective approaches have been 

developed and there are a lot of papers devoted to 

this problem (about 100 of them are cited in [5]). 

Most of the described solutions (e.g. 

multiconstrained full-order fault estimation 

observer (FFEO) design) are based on Lyapunov 

stability theory and linear matrix inequalities. Such 

approaches usually include a regional pole 

placement  and ∞H  performance level to provide 

the certain degree of stability and suppression of 

the external disturbance effect. 

However, such problems with its initially 

known structure are not fully studied until now. 

There are a lot of situations (e.g. marine ship 

motion process), where the external disturbance has 

known structure, e.g. can be described as a random 

Gaussian process with the given spectral power 

density. This property should be taken into account 

to improve effectiveness of the adaptive observers. 

The circumstances, mentioned above, 

motivate us to research devoted to fault estimation 

observer design for controlled plants affected by 

polyharmonical external disturbances. Algorithm of 

parameters computation, characterizing the 

allocation of the correction effect (i. e. accuracy of 

the state vector estimation) and a special filter, 

providing insensitivity to the signal with the certain 

frequency, is proposed. The presented method is 

based on H2 optimization ideology. 
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One of the key features of this paper is 

implementation of specific spectral approach [8] in 

frequency domain, based on polynomial model 

representation instead of well-known methods, 

based on Riccati equations or on linear matrix 

inequalities (LMI). This technique is used with the 

aim to increase computational effectiveness: its 

complexity is not very high that is crucial for 

systems with real-time regime of operating, e.g. for 

onboard control systems. 

This paper has the following structure. The 

next section demonstrates the equations of 

controlled plant, structure of the observer-filter and 

initial problem statement. Section 3 is devoted to 

alternative problem statement, used as basis for the 

investigations, demonstrated in the rest of paper, 

description of the proposed approach with 

implementation of mean-square optimization 

ideology and formulation of the observer design 

algorithm. In Section 4, we present illustrative 

numerical example of synthesis. Finally, in Section 

5, we describe overall results the investigation and 

mention some directions of the future research. 

 

2. PROBLEM STATEMENT 

 

Consider the following linear time 

invariant system: 

 
,
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where 0n
Rx∈   is the state space vector, ( )tu  is the 

scalar control,  )(td is the external disturbance, 

( )tf  is the additive fault action and )(ty  is the 

output measured signal. All components of the 

matrices ,,,,, PEcbA are given constants. 

The adaptive fault estimation observer is 

constructed as 
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where ν  is the correcting term, vector xL , values lf 

, l0 and the transfer function ( ) ( ) ( )sWsWsW 21 /≡  

are to be calculated. The designed observer-filter 

must generate fast and accurate fault estimation 

signal ( )tf̂ , despite the presence of the external 

disturbance. The fault signal is slow varying within 

the framework of this paper, i.e., 0≈f& . Denote 

the following notations 

xxex
ˆ−= , ffe f

ˆ−= , yye y
ˆ−= , 

where ex is the state estimation error vector, ef  is 

error of the fault estimation and ey is output 

estimation error, and consider errors dynamics for 

the state and fault estimation process with the 

estimator (2), 
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Let us use the following notations 
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and rewrite the systems (2) and (3) as  
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We can rewrite the equations (3) in frequency 

domain 
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respectively, (5), (6) could be rewritten as 
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Consider the possible case, when nsL =)(
~

deg , i.e. 

00 ≠l . We can rewrite expression of the corrective 

term ( )sν  as 
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and using the new transfer function 
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Consider transfer function from the external 

disturbance ( )td  to the error of the fault estimation 
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where Δ2(s) is characteristic polynomial of the 

closed-loop system (3) 
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Stability of the polynomial (10) guarantees 

asymptotic convergence of estimation errors, i.e. all 

its roots must be located in the open left half plane.  

External disturbance )(td  for the system 

(1) can be considered as a random stationary 

Gaussian process with zero mathematical 

expectation and with the following spectral power 

density:  
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where the polynomials ( )sNd  and ( )sT  are 

Hurwitz. A sea disturbance, considered in the 

Section 4, has the following structure 
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where β is the central frequency and α=stβ, where 

ts  presents the spectrum blurriness. Here we note 

that the constant factor could be neglected for a 

case of scalar disturbance signal. We can also 

represent it in the simpler polyharmonical form   

 ( ) ( )∑
=

ϕ+σ=
hn

i

iidi tAtd
1

sin , (12)

where diA , iσ , iϕ  are amplitudes, frequencies and 

phases of the corresponding harmonics. Let us 

define values, characterizing effectiveness of the 

designed observer: fault estimation process settling 

time pT  and ωJ  

 ( ){ }idedi
i

jFAJ
f

σ=ω max , (13) 

expressing influence of the disturbance  ( )td  to the 

fault estimation process. Note that pT  and ωJ  are 

functions of L , ( )sW  and, in such a way, we 

should design such items 0L , ( )sW0  that 

 ( )( ) 0
00 , ωω ≤ JsWJ L , ( )( ) 0

00 , pp TsWT ≤L , 

where 0
ωJ , 0

pT  are given desired values of ωJ  and 

pT . Solution of this problem can be considered as 

minimization of the functional  
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3. OPTIMIZATION PROBLEM WITH 

ALLOCATION OF THE CONTROL ACTION 

 
It can be seen that the error dynamics, presented 

by equations (6) (and effectiveness of the observer-
filter (2), respectively), depend on the vector L , 
characterizing the correction effect, and the transfer 
function W(s), which must guarantee suppression of 
harmonic external disturbance signal with the 
certain central frequency. One of the ways is to 
solve this problem quasi-optimally, calculating 
these parameters consequently, e.g. using vector L  
computed by any method [9], but computational 
complexity significantly increases in this case. Let 
us propose the alternative algorithm of their 
simultaneous search. Here we note that the 
considered task is close to the problem of mean-
square synthesis with allocation of the control 
action [10] (i.e. the parameters, characterizing a 
control effect to coordinates of the state space 
vector, are not fixed a priory and are to be chosen 
to increase effectiveness of the control process) in 
some details. Denote new corrective term 
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and rewrite the expression (7) in the frequency 

domain as 
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Error dynamics of the closed-loop system (15) 

depends only on the transfer function V(s) and the 

aforementioned problem can be solved with 

implementation of H - optimization ideology. One 

of the ways is to state mean-square optimization 

problem. Let introduce the mean square functional 

of a form 
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where the second summand can be treated as 

intensity of the estimation process. The parameter k 

characterizes the tradeoff between sensitivity to 

external disturbance and degree of stability of the 

closed-loop loop system (i.e. response speed of the 

fault estimation). Note that if the functional (16) is 

designed for “economical” mode (with enough 

large value of k), the numerators of the transfer 

function  W(s)  must have pair of complex-

conjugated  roots close to the jβ±  to guarantee 

frequency properties. 

Let us note that most of cited papers 

describe algorithms of fault estimation observer 

design based on linear matrix inequalities. 

However, much easier method, described in [8], 

can be applied for the system with the scalar 

external disturbance and the measurement signal. 

The special approach in frequency domain, based 

on polynomial factorization and on a special 

parameterization of a set of stabilizing controllers, 

has significant advantages. First, it takes into 

account spectral structure of the signal )(td . 

Second, it has high computational effectiveness that 

is crucial for onboard control systems, e.g. marine 

autopilots. Finally, the spectral presentation is 

convenient to explore behavior of the closed-loop 

system (3). Also we remark, that the 

polynomial ( )sN , which is determined by identity 

 ( ) ( ) ( ) ( ) ( ) ( ),2 sNsNsPsPssNsN dd −−−≡−  

characterizing external disturbance effect, is divisor 

of the characteristic polynomial (10) of the closed-

loop system (5) [8], i.e. it must be Hurwitz to 

provide its stability. One of the ways of this 

problem solving is to replace ( )sN  to the close 

Hurwitz polynomial ( )sN
~

: 
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where the parameter 0>p  can be used for 

optimization too. Finally, we formulate the 

following algorithm. 
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2. Set the parameters k and p in (14), (5). Execute 

factorization of the polynomials 
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where ( )sG  and ( )sP1  are Hurwitz polynomials. 

Receive the polynomial ( )sN
~

 (17): 
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4. Construct the auxiliary transfer function 

 

( ) ( ) ( )

( ) ( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ,)(/

~
)(

~
)(

,)(/
~

)(
~

,/

20
2

0
1

0
2

0
1

sGsNsAksRsTsV

sGsNsRsTsAsV

sVsVsVV

−−−−=

−−=

==

(21) 

where a division to ( )sG −  is done totally. 

 

5. Choose n (or less, if necessary) roots iξ  of the 

polynomial ( )sV1 . Calculate the following 

polynomial  
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Let us note that complex conjugate roots 1, +ξ ii  

close to jβ±  must be the roots of the polynomial 

( )sW10  to provide frequency properties of the 

designed observer-filter.  

 

6. Construct two vectors 
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of the coefficients of the polynomials 
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respectively, and the matrix 
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consisting of the coefficients of the following ones 
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7. Set nll 0
*
0 =  and compute the solution 0LL =  of 

the set of linear equations 
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8. Receive the transfer function of the optimal filter 
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9. Let consider state space realization of the transfer 

function ( )sW0
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, computed above: 
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The fault estimation observer-filter (4) with the 

computed parameters can be considered in state-

space form as the following plant 
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10. Evaluate the functional (14) ),( 0WJJ 0L= . If 

its value is not close to zero, then minimize J , 

repeating steps 2-10 with new parameters k , p , 

searched with any numerical method or with 

enumeration. Receive the optimal parameters 
*kk = , *pp = . 

 

11. Calculate optimal 0LL = ,  )()( 0 sWsW = , 

using optimal *k , *p . 

 

4. NUMERICAL EXAMPLE 

 

Let us illustrate the practical 

implementation of the proposed approach by the 

example of a marine ship moving on the horizontal 

plane with constant longitudinal speed [11]. 

Assume that we have mathematical model (1) of 

the ship motion with the constant speed under sea 

wave action and with the following parameters: 
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Vector 3E∈x  consists of three components: drift 

angle, angular velocity and yaw angle (measured 

one). External disturbance ( )td can de expressed 

by the formula (11) with the parameters 

 .01.0,45.0,1052.1 0
4 ==ω=β⋅= −

tr sD  

Besides, the polyharmonical representation  

 )1.1sin(1.0)9.0sin(1.0)sin()( 000 ttttd ω+ω+ω=  

also can be used. Now we define 01.00 =ωJ , 

220 =pT  and apply the algorithm, described in the 

previous section, using the initial 50=k , 1.0=p . 

Optimal 1.0* =p , 100* =k  are received by the 
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enumeration.  Let us consequently execute all steps 

of the optimal observer-filter design. 
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2. Receive outputs of the factorizations (18) 
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4. The auxiliary transfer function ( )sV0 (21) 
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5. The roots of the polynomial ( )sV01  are 
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We use 1ξ , 4ξ , 5ξ  to construct the polynomial 
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7. Solve (23) and receive 
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Fig. 1 represents magnitude of the transfer function 

(9) of the closed loop system with parameters 

computed in this section. The curve Aω has a 

pronounced dip in the area of the central frequency 

0ω , i. e. effect of the harmonical external 

disturbance is successfully suppressed. 

  

Figure 1: Frequency response of the 
optimal closed-loop system. 

Assume that the constant fault signal )(tf  

is created as 

 {
.else,0

,500300,6/
)(

≤≤π
=

t
tf  

and Fig. 2 represents process of its estimation.  

 

 

Figure 2: Fault estimation process 
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From the above simulation results it can be 

concluded that the observer, designed in this 

section, successfully estimates the fault. Let note 

that rapidity of the estimation can be improved by 

varying the parameter lf , but its significant 

increasing can upset stability of the closed loop 

system.  

 

5. CONCLUSIONS 

 

A fault estimation strategy for a class of 

SISO LTI systems has been proposed in this paper. 

The specific algorithm of adaptive fault estimation 

observer analytical synthesis, based on polynomial 

factorization, is presented that is the main goal of 

this paper. Effectiveness of this scheme is 

demonstrated by application to the plane motion 

model of the marine ship. 

Let us consider main merits of the 

proposed approach. First, the observer with 

calculated parameters can estimate additive faults 

(e.g. actuator ones) with satisfactory accuracy and 

rapidity. Second, problem of suppression of 

polyharmonical disturbance signals with the certain 

central frequency is successfully solved as well. On 

the other hand, there are some serious demerits. 

First, the proposed approach does not take into 

account dynamics of the fault. Second, it cannot be 

applied necessary to deal with more general plants 

then SISO ones, i.e. multidimensional output, 

external disturbance and control signals.  

Overcoming of the mentioned demerits is 

the object of the future research. Also robust 

features or various delays should be taken into 

account in the sequel. 
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