
Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2406

AN EFFICIENT DESIGN MODEL VALIDATION FOR THE

QUALITY SOFTWARE DEVELOPMENT

1
MULUGU. NARENDHAR,

 2
Dr.K. ANURADHA

1
 Department of CSE, SNTI, Hyderabad, Telangana, India

2
 Department of CSE, GRIET, Hyderabad, Telangana, India

E-mail:
1
narendharm4@gmail.com,

2
kodali.anuradha@yahoo.com

ABSTRACT

Models are the main artifacts of the software development process which generally follows a model-based

paradigm. Business process models and data models play an important role in building information systems

and to represent the perspective on business knowledge and close depended on relations, which is

important to be validated to maintain the fault free and quality software development. Therefore, the design

relevant models are acts as the blueprints for the quality assurance in software development. In this paper,

we propose an efficient design model validation (DMV) supported utilizing the prescribed "specification

language" for the proclaiming construction of transformation attributes based on the invariants, pre and

post-conditions for generating partial functions used can be transformed for testing evaluation. We broaden

the utilize of specification languages for automatic creation of input test models. We also used the

prototypes of the Eclipse plug-in to provide specifications and calculations of metrics in related to models

supported by the Eclipse Modeling Framework.

Keyword: Design Modelling, Model Transformation, Quality Software Development, Validation Metrics

1. INTRODUCTION

Model transformation is a pillar of model-driven

engineering (MDE), it must be expanded by

means of the right engineering standards to ensure

accuracy. However, generally of the model

conversion technologies are now focused on

implementation phase support, and there are few

specifications for requirements, design, or

conversion tests. The outcome, conversions are

often hacked, manipulated, difficult to maintain,

inaccurate, or buggy. There are many

requirements modeling methods and requirements

model validation methods, and other requirements

modeling methods from dissimilar points of

observation in software systems reflect dissimilar

modeling conceptions.

The prerequisites modeling methods that are

aggressively attracting much consideration in

intellectual fields include "object-oriented

methods", "side-oriented methods", "function-

oriented methods", and "goal-oriented methods"

[21]. Model verification supports are different for

different demand models such as verification

method supported on semantic analysis [1],

verification method supported on the inference of

state machine [2], verification method supported

on ontology constraint [3], [4]. To resolve

requirements validation issues from other ways to

a certain extent. The concept of model-based

software development is becoming additional

popularity because it guarantees to improve the

effectiveness and superiority of software

development. It is prudent to solve artifact quality

problems during early software development

phases, such as the quality of the models you have

already joined. In particular, in model-driven

software development, models are the main

artifacts in which overall software product quality

assurance depends heavily on the quality

assurance of the software model involved.

The quality of the software model consists of

several dimensions. The paper considers a model

quality assurance processes that focus on the

syntactic dimensions of model quality. Syntax

quality aspects are all aspects that can be found

only in the model syntax. This includes, of

course, not only stability with language syntax

definitions [11] but also other aspects such as

conceptual integrity using the same patterns and

standards in comparable modeling situations and

adherence to modeling rules specifically defined

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2407

for software projects. These quality aspects and

other quality aspects are discussed in [1], for

example, where authors propose taxonomies for

software model quality.

The model-driven approach to software

development and software development industry

are acquisition increasing concentration.

Traditional development techniques that tend to

look on implementation, unlike the model-driven

software development at all stages of the software

development process, it focused on the use of

models. As a result of these changes the way the

software are designed and maintained, and the test

has changed significantly. Model development

supported on the "Unified Modeling Language"

(UML) [8] and used in numerous researchers

"state machine diagrams", "use case diagrams",

and "sequence diagrams" as UML diagrams for

using in test cases. The main improvements of

this model are supported by testing techniques,

software testing activities for the early stages of

the development process moving and design test

cases are self-determining of the specific design

implementation to increase productivity and

quality [4], [5].

Model transformations indicate how the elements

of the source metamodel are transformed from the

elements of the objective metamodel [13]. The

source metamodel fully indicates the complete

input model set, which is the input domain of the

transformation. In this circumstance, the

suggestion is to assess the suitability of the test

model for the scope of the source metamodel. For

example, a test model must instantiate everyone

class and each relation in the source metamodel at

the majority once. The following provides test

compliance criteria supported on the scope of the

source metamodel. We also examine the

automated creation of test models that meet these

principles [7].

In this paper, we deal with the problems by

extending the domain functionality with a set of

input test models from the transformation

specification requirements. As a result, we

guarantee the specification range of the

specification. The input model is premeditated by

means of the "SAT resolution technique" for the

ATL expressions created in specification [9] and

can be selected from a range of seven levels to

achieve various levels of comprehensiveness

when tested.

The other part of the paper is structured as

follows. Section-2 reconsider the related works

which looking on to the existing advancement in

the model transformation testing [18]. Afterward,

Section-3 discuss the proposed framework for

design model validation and the effectiveness of

different coverage criteria and section-4 describes

the experiment setup and results based on the

certain level of specification coverage. Section-5

draws the conclusion and future prospects of the

proposed works.

2. RELATED WORKS

Verification and validation are essential for

software development. In the circumstance of

model transformation, efforts aimed at

verification and validation can be classified into

three categories. (1) a work that can use formal

languages to implement transformations to ensure

or analyze transform belongings such as

"termination" or "determinism" [14]; (2)

Conversion to formal domain (iii) and

transformation testing for analysis such as "Petri

net", "Logical rewrite" [10], "Satisfaction (SAT)

problem" [15]. The first two approaches can

analyze common characteristics such as

"termination, determinism, rule independence,

rule applicability, or reachability of system state".

This paper follows the third methodology,

therefore we will rethink the work of model

conversion testing, paying particular

concentration to the "black box testing approach"

because it is the extent of the work to be

presented in this paper. There are three major

problems in the model conversion test [16], as the

creation of the input test model, description of the

scope of the verification scope, and function

creation.

2.1Creation of Input models

Most of the work on dealing with input test model

creation is for black box testing and simply takes

into account the characteristics of the input

metamodel but does not consider the source of the

conversion. In the Fozr instance [20], the author

performs an input metamodel and some typical

coverage criteria, for example, the automatic

creation of an input test model supported on the

partitioning and number of classes of attribute

values. Using this approach [23], the authors

present experiments in which dissimilar input test

sets are produced for diverse scheme and rules to

obtain a score of variation in the range of 72-87%.

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2408

In [9], the creation of the input test model should

be done by hand, using an imperative language

with arbitrarily chosen attribute values and end-

of-connection capabilities. The input model is

handcrafted, but it is not necessary limitations of

the literature and must comply with the simplified

input metamodel. This is so-called sub-model

alloys can be used for testing and has become a

primary constraint to find a suitable meta model

instances solver. Model fragments instead of this

sub-model are used to cover some of the models

and meta-model criteria, a similar approach is

presented in [20].

2.2 Validation Coverage criteria

Nowadays "black box testing" approaches for

model transformations do not take into account

coverage criteria or support input metamodel

coverage of attribute value, the number of related

classes and associations, etc. [17]. The

disadvantage of this operation is that some variant

attributes that were not considered when testing

the model (manual or automatic) may remain

untested. In turn, the white box testing approach

typically adopts a mixture of classic "white box

coverage criteria" and "variant-specific test

criteria" such as regulation coverage or decision-

making criteria. For example, in [24], the author

measures the range of determination of an input

test set. Nevertheless, there is no arguments of the

association among this coverage criterion and the

efficiency of the test set.

2.3 Construction of functions

Distinguishes whole functions from partial

functions with respect to the third task of the

model conversion test. The former is defined as

having an output model. For example, the test

case for "C-SAW Conversion Language" [26]

consists of an initial model and a supposed output

model. The incomplete function represents the

contract that the input and output models of the

transformation must meet. The majority

suggestions for incomplete functions utilize the

"object constraint language" (OCL) to specify

contracts [21]. The approach of [4], [19] is related

to the philosophy of the "xUnit framework" and

purposes can be particular as "OCL / EOL

assertions". There are earlier approaches that

allow specification of incomplete functions as

"graph patterns" or "model fragments" [6]. In

summarized, we can see that some conversion test

approaches make available automated test

carrying out, but do not manually maintain the

input model creation and requirements manually

[16]. The previous works look into the automatic

creation of the input model but don't take into

account the varying degrees of completeness for

conversion properties or testing.

In this paper, we present an approach

implementing specification-based conversion

testing that automates the creation of input test

models, functions and carrying out test scripts in

the same transformation specification. As a

prominent characteristic, you can use the

produced model to test the relevant properties of

the transformation. In addition, we describe a set

of specification exposure condition to facilitate

ever-increasing levels of thorough testing.

In this case, we aim to create a test model that

guarantees the conversion requirements [12], the

full metamodel coverage, i.e., the creation of all

meta model illustrations of a definite range.

Automated test case creation, as illustrated in this

paper, which can also measure up to the

technologies other than software testing, for

example, "testing of executable language

definitions" or a "grammar-based test method"

[29].

3. FRAMEWORK FOR DESIGN MODEL

VALIDATION

Figure 1 shows our work plan for the proposed

Design Model Validation (DMV) approach. In the

first action, the designer uses the "pattern-based

model" versus the "model specification language"

to specify the requirements of the transformation

such as pre-requisites, post-conditions, and

invariants. Developers are able to use this

specification as a guideline to execute

transformations utilizing their preferred language,

such as "ATL" [27], "ETL" [28], and so on. In

fact, with our familiarity, we have found that

specifications and implementations are often

iterative and sophisticated.

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2409

Figure. 1: Framework for Design Model Validation

Starting with the specification, the conversion

assessment can automatically create an absolute

test suite that can be utilized straight to test the

conversion execution. This test experiment suite

consists of: (i) a set of input test models that

encode invariants and assertions of requirements

[7], (ii) a set of input test models that can test

specific requirements, (iii) A test script that

automates the transform implementation for each

test model, uses the function to check the

conformity of the results, and reports the errors

found using the mtUnit engine [30].

Approximately, the guideline for creating the

input test model transforms the conditional and

invariant conditions into an "object-constrained

language" (OCL) invariant. By combining these

invariant conditions, the "Satisfaction" (SAT)

solver [15] A model that contains a combination

of attributes. How you combine multiple

properties to find a model depends on the selected

scope type.

Our approach for Design Model Validation

having the following steps:

1. We translate the belongings of the

standard in the form suitable for model

possession,

2. As a result of a specific strategy for

creating expressions that require the

satisfaction of multiple attributes in the

created model,

3. Use the restriction solver to uncover a

model that meets all the reliability

limitations of the input metamodel and

the specific combination of attributes

(depending on the selected coverage).

A. Translation of properties in the

specification

As a first action, we translate the specification

into a language that can automate model creation.

In particular, if there are possible solvers to find a

model that satisfies the OCL constraint set, OCL

is used as the target language [22], so there is no

necessitate to parse OCL formulas into other

languages in the properties of the specification.

Nevertheless, this is our special choice, and we

can use the framework in different target

languages whenever translations are provided in

our specification language.

The specification includes "pre-requisites", "post-

conditions", and "invariants", but merely the

prerequisites and invariants enclosed the

information that is useful in creating the input

model. The post-condition describes the attributes

of the output model and is used only for function

creation, not for the input model.

An invariant expression represents a property of

the formation when a specific source pattern

appears in the input model, certain target patterns

should appear or not appear in the output model.

It is, therefore, importance to create an input

model that contains an instance of the source

pattern and test whether the conversion of this

model actually produces an output model that

contains the target pattern.

As in list-1 shows, the proposed expression

transformed. It iterates through the objects in the

resource graph of the most important limit on

lines 1 to 3 and makes sure that the inactive

source graph does not appear on lines 4 to 7. This

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2410

code is created for everyone deactivation

condition. The function condition in related to the

condition that the passed object must satisfy: the

continuation of the link specified in the invariant,

the inequality for the object of the same type, and

the OCL shape, which examines all the terms of

the invariant for the input element. Possible

conditions of invariants are ignored because they

are surrounded by invariants. Additionally, if the

invariant is negative, the created representation is

the equal, but the non-particle is not preceded

because the constant source portion is still a

positive value.

List-1: Outline for invariants

Often specifications include constant conditions

with the same source and different targets. For

example, Task 1 and Task 2 in Figure.1 utilized

together with the tasks as sources. The previous

indicates how to precisely interpret the job, and

the latter identifies the wrong conversion. In this

case, you can test the two invariants by creating

an input model that contains the tasks. Therefore,

duplicate source conditions, that is the same

source of key constraints and inactive conditions)

are removed from the created OCL representation

set. Do not remove sub-assumptions so that size

and context conditions test different models.

Figure. 2: Some invariants for the transformation

For example, in the invariant ParallelFlow3 in

Figure-2, and List-1 lines 1 through 7 in related to

the encoding of the immutable source pattern,

while lines 8 through 9 encode the inactive state.

List-2: Expression for invariant Parallel Flow

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2411

Finally, the prerequisite specifies the input model

requirements for the transformation. That do not

meet these prerequisites have to work a

transformation of input samples appropriately.

The validity of the transformation of the type of

input is rarely achieved, but in the case of an

external method or the transformation of the

application is guaranteed. Therefore, it must meet

all the prerequisites for the rule that adopts all of

the specification created by the input models. To

do this, we create constraints and create as pre-

requisite for input on the OCL constraint

satisfaction model which was created to increase

the input of all the models include an OCL

constraint code is shown List-3. The availability

of lines 2 through 4 are shown in this expression

finds all occurrences of the condition of the

occurrence of the primary constraint to each one

of them. If there is no expression, the result

expression is similar as the invariant expression,

and if it is negative, the created appearance is

displayed as a leading line by <not> as line-1 in

list-3.

List-3: Outline for pre-conditions

In List-4, it demonstrates the OCL expression

created from the prerequisite as represented in

Figure-3. A "OneStartEvent" as in line-1,

Multiple "StartEvents" as in line 3 to 5, and

"PathsForFlow" on lines 7 to 13.

Figure. 3: Some preconditions of the transformation

List-4: Phrases for pre-conditions in Figure. 3

It does not change the specification and post-

conditions; we have created a series of claims that

will serve as a test suite.

B. Coverage criteria for input model creation

It is a two-step process for model creation. First,

identify the characteristics of each type of input

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2412

should be created for this type of an OCL

expression. The criteria are based on the

definitions of the scope of this specification. It is

then formed with the input meta-model and the

OCL constraint solver is an expression of the

code provides a prerequisite. It tries a position to

find the right model input enough to give

expression OCL needs, and requirements

metamodel integrity. For some phrases, it doesn't

locate the model in the range specified. In this

case, we may intend to expand the search or not

to create the models for individual expression.

We categorize few levels of specification

coverage for the created test set are increases in

the range of exhaustively as, properties, close

properties, and t-way closed. Attributes and t-way

levels combine source models to create models

that can test multiple invariants of specifications.

The remaining levels create a model that does not

involve the occurrence of a specific invariant.

• Property coverage: This is the most

comprehensive coverage applicable when the

specification's invariant is independent.

• Closed property coverage: This criterion is

not included in the description of the

appearance of some of the sources of change

that extend the previous model by creating

additional patterns. Interestingly, the change

is consistent with the unchanging words of

blank samples do not have to be original.

Source model shows the result of some type

but its absence does not change any result.

However, in this way is even more

interesting in the input model. The aim of the

transformation is not a valid because the rest

of the models and variables and post-

conditions to yield the integrity of the

sanctions should target metamodel.

• t-way coverage: Most errors are due to a

number of factors or characteristics of

software systems. These observations and t-

wise testing [25] is a test case creation

system which includes all of the possible

combinations of t-attributes.

C. Apply of Constraint Solver to locate Models

satisfaction

Some expressions created at the coverage level

mentioned above may not be satisfactory, and if

many combinations are not satisfactory for

example, using a thorough strategy, the constraint

solver consumes a lot of unnecessary runtimes.

For this purpose, one general expression is

formulated that covers how many invariants

should be considered, and where some of them

may be invalidated but not precisely specified. If

the condition solver locates satisfactory tasks,

then this tasks can infer from the constraint not

only the model but also the invariant

constructions considered in the invariant.

The solutions already found in the iterative

execution can be found in all combinations or

when the constraint solver is no longer satisfied

until you cannot find it. It can then stop the search

because it can not satisfy the other configuration.

Table-1 shows a generalized representation of

most of the coverage levels provided. It provides

the generalized closed t-way coverage and closed

combinations are moreover difficult to justify

additional overhead.

Table-1 Generalised terms for the dissimilar levels of coverage

Regardless of the assurance coverage we choose,

the model of creation process has some

configurable aspects or empirical methods that

can influence the dimension and number of

models created. For example, when seems for a

model to test multiple invariants with non-empty

intersections, we can consider different

overlapping levels, from non-overlapping, as the

source of invariant is segregated to maximum

overlapping. Second, if the combination already

exists in a previously created model for a more

demanding or exhaustive test, we can skip a

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2413

model creation for a specific grouping of

properties and minimize the range of the created

test set.

4. EXPERIMENT EVALUATION

The proposed framework is implemented by

Eclipse EMF tool supported for the model

framework. This section describes some

experiments to measure the efficiency of the input

model created to detect conversion failures. Our

goal is to identify coverage criteria that can detect

a large computation mistakes with the little

attempt, that is with a minute set of test data. In

this experiment, we focused on two types of

coverage such as property and 2-way. These are

the effortless coverage criterion and accordingly,

the most precious and smallest test dataset

creation time. So it is interesting to know if the

test suite created by even the simplest criteria can

detect a large number of errors.

4.1 Setup

The test bed for the experiment is a series of

"ATL model" conversions that consist of 120

lines of code conversion executed for the

executing examples as well as presenting the

variations of the ATL variants repository.

Converts a class schema model into a relational

model from the 107 line of database model and

another from BibTeX are converted to an XML-

based format for DocBook having a 261 line of

codes [31].

Table-3: Input meta-models and its Quantity of specifications in the tested

(a) Class-to-Relational, (b) BPMN-to-Petri nets, (c) BibTeX-to-DocBook

The specification of the executing illustration was

written ahead of the implementation, but in the

other case, the specification was written in the

documentation provided in the ATL variants

repository after implementation. This document

contains a very detailed description of the natural

language conversion rules that encode the pattern.

Since we did not add anything that is not in the

documentation to the statement, the completeness

of the specification for the transformation at the

ATL variants repository depends on the

documentation available.

Table-3 collects the number of pre-conditions,

post-conditions, and invariants of the final

specification and the size of the input metamodel

for every one case. The "BPMN metamodel" is

the mainly difficult in expressions of the number

of relationships among classes, but the class

diagram meta model is effortless of the three with

little relevance to the "BibTeX metamodel", but it

uses inheritance profoundly.

4.2. Results

In the specification, we derived a set of tests for

each scope type in the properties and 2-way. This

experiment was performed on Intel Core i3

having 6 Gb RAM. The number displayed near

the graphic line in related to the number of

models created from the numeral models searched

for a number of appearances, the solver does not

find the explanation model in the specified range.

In general, the more invariants the more models

will be created, resulting in a longer time for

creation. Nevertheless, the size of the input meta-

model and the number of pre-conditions to be

specified to have a great impact on the model

search. That is why the time "BibTeX-DocBook"

specification is shorter than the time of "BPMN-

to-Petri". Even more than the previous

specification invariants, input metamodel

describes the size of more models is created. In

the first case, a number of pre-conditions to solve

each model is lesser than the each model search.

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2414

Figure. 5: Model Creation Time For Property

Coverage

 Figure. 5 illustrates the median of the period it

obtained for the tool to locate every tested model

utilizing the attribute scope. We utilized metric

values as a metric to reduce the consequence of

anomalies. This median is 2.1 seconds for the

Class-to-Relational specification, 2.65 seconds for

the "BibTeX-DocBook", and 123 seconds for the

"BPMN-Petri" network. As mentioned earlier, the

variation in model creation time is mainly the size

of the input metamodel and the number of

prerequisites for the specification. For "BPMN-

to-Petri", the highest creation period was 242.6

seconds at a time, 8 models were created in less

than 9 s, and 5 models were created in 18 s.

Figure. 6. Model Creation Time For 2-Way Coverage

The graph of Figure. 6 illustrates the similar

metric, but for "2-way coverage" model, the

locator must believe an invariant pair. The

differentiation in creation period with respect to

attribute coverage can be ignored in the "Class-to-

Relational" and "BibTeX-to-DocBook"

specifications. In compare, the median value in

our running example is more than the 2-way

coverage that is 132.85 seconds in compared to

123.85 seconds. This indicates more model

creation time having more models with more

creation time. Because the results are similar, it

does not display the closed variants of the real

estate and the creation time for 2-ways coverage

criteria.

Models created using our technique can detect

unintentional errors in the transformation

implementation, so it is useful even if you use the

least comprehensive scope. It is also easy to

create and can satisfy additional prerequisites

conditions, that is if the model obeys the rules to

the meta model and is required for conversion. In

this regard, automatic model creation also

facilitated to recognize the prerequisites of the

input model. The input model is more accurate by

checking the function more efficiently in software

development.

5. CONCLUSION

The proposed design model validation aims to test

the intent of the transformation and allows the

created model to test the transformation properties

of interest. In addition, models created with our

technology to be liable to be smaller. This has the

improvement that the analysis model is kept

intentionally. This test model is created to test a

specific combination of strain invariants to be

examined more efficiently by the function. We

performed several experiments to automatically

create test suites from different variation

standards based on various specification-based

coverage standards and then measure the

efficiency of the created tests.

In the future, we target to conduct more research

with larger case studies to assess whether

transformation scores are higher for test sets

created utilizing dissimilar coverage criteria in

these cases. Beginning with the results of this

experiment, we can outline to incorporate

additional technologies for metamodel-based and

white-box-based input model creation. Also one

can implement the mechanisms to detect and

remove duplicate models from the created test set

in an enhanced works.

REFERENCES

[1]. L. Burgueno, J. Troya, M. Wimmer, and A.

Vallecillo, "Static Fault Localization in

Model Transformations", IEEE Transactions

On Software Engineering, Vol. 41, No. 5,

May 2015.

[2]. J. S. Cuadrado, E. Guerra, and J. de Lara,

"A Component Model for Model

Transformations", IEEE Transactions On

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2415

Software Engineering, Vol. 40, No. 11,

November 2014.

[3]. M. Schur, A.S. Roth, and A. Zeller, "Mining

Workflow Models from Web Applications",

IEEE Transactions On Software

Engineering, Vol. 41, No. 12, December

2015.

[4]. Claudio Dias-Neto and G. H. Travassos,

"Supporting the Combined Selection of

Model-Based Testing Techniques", IEEE

Transactions On Software Engineering, Vol.

40, No. 10, October 2014.

[5]. F. Belli and M. Beyazit, "Exploiting Model

Morphology for Event-Based Testing",

IEEE Transactions On Software

Engineering, Vol. 41, No. 2, February 2015.

[6]. Nathan Weston, Ruzanna Chitchyan, Awais

Rashid, "Formal semantic conflict detection

in aspect-oriented requirements",

Requirements Engineering, 14(4): 247-268,

2009.

[7]. Felix C., Juan C. Duenas, and R. Garcia-

Carmona, "An Autonomous Engine for

Services Configuration and Deployment",

IEEE Transactions On Software

Engineering, Vol. 38, No. 3, May/June 2012

[8]. Joao Araujo, Jon Whittle, "Modeling and

composing scenario-based requirements

with aspects", Proceedings of the 12th IEEE

International Requirements Engineering

Conference, Washington, 122-131, 2004.

[9]. Esther Guerra, Mathias Soeken,

"Specification-driven model transformation

testing", Springer softw Syst Model,

14:623–644, DOI 10.1007/s10270-013-

0369-x, 2015.

[10]. Chi-Lun Liu, "Ontology-Based

Requirements Conflicts Analysis in Activity

Diagrams", Proceedings of the International

Conference on Computational Science and

Its Applications.Berlin: Springer- Verlag,

2009.

[11]. Jianmei Guo, Yinglin Wang, Pablo

Trinidad, David Benavides, "Consistency

Maintenance for Evolving Feature Models",

Expert Systems with Applications, 39(5):

4987-4998, 2012.

[12]. Ying Jin, Huaxiao Liu,Peng Zhang, "An

approach to analysing and verifying aspect-

oriented requirements model", Chinese

Journal of Computers, 36(1).63-73, 2013.

[13]. T. Arendt, E. Biermann, S. Jurack, C.

Krause, G. Taentzer, Henshin, "Advanced

Concepts and tools for In-Place EMF Model

Transformation", In Model Driven

Engineering Languages and Systems, 13th

International Conference, MoDELS 2010.

Proceedings, LNCS, Springer, pp. 121–135,

2010.

[14]. T. Mens and Pieter Van Gorp, "A

Taxonomy of Model Transformation",

Electronic Notes in Theoretical Computer

Science, DOI:10.1016/j.entcs.2005.10.021,

Elsevier, 2006.

[15]. J.Cabot, R.Clarisó, E.Guerra, J.de Lara,

"Verification and validation of declarative

model-to-model transformations through

invariants", Journal of System Software

83(2), 283–302, 2010.

[16]. Z. Javed, P. A. Strooper and G. N. Watson,

"Automated generation of test cases using

modeldriven architecture", In Proc. of the

ICSE 2nd International Workshop on

Automation of Software Test (AST), 2007.

[17]. Tian, Z. Duan, and Z. Duan, "Making

CEGAR More Efficient in Software Model

Checking", IEEE Transactions On Software

Engineering, Vol. 40, No. 12, December

2014.

[18]. B.Baudry, T.Dinh-trong, J.-M.Mottu,

D.Simmonds, R.France, S.Ghosh, F.Fleurey,

Y.Le Traon, "Model transformation testing

challenges", In ECMDA Workshop on

Integration of Model Driven Development

and Model Driven Testing, 2006.

[19]. Nebut, F. Fleurey, Y. Le Traon, and J.

Jezequel, "Automatic Test Generation: A

Use Case Driven Approach", IEEE

Transactions On Software Engineering, Vol.

32, No. 3, March 2006.

[20]. W. Leungwattanakit, C. Artho, M. Hagiya,

Y. Tanabe, M. Yamamoto, and K.

Takahashi, "Modular Software Model

Checking for Distributed Systems", IEEE

Transactions On Software Engineering, Vol.

40, No. 5, May 2014

[21]. M. Fowler, K. Scott, "UML Distilled: A

Brief Guide to the Standard Object

Modeling Language", Addison-Wesley.

1999.

[22]. Soeken, M., Wille, R., Kuhlmann, M.,

Gogolla, M., Drechsler, R. "Verifying

UML/OCL models using boolean

satisfiability, In: IEEE on DATE’10, pp.

1341–1344,2010.

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2416

[23]. S.Sen, J.-M.Mottu, M.Tisi, J. Cabot, "Using

models of partial knowledge to test model

transformations", In: ICMT’12, vol. 7307 of

LNCS, pp. 24–39. Springer, Berlin, 2012.

[24]. J.A.M. Quillan, J.F.Power, "White-box

coverage criteria for model

transformations", In 1st International

Workshop on Model Transformation with

ATL, 2009.

[25]. S.Oster, , I.Zorcic, , F.Markert, , M.Lochau,

"MoSo-PoLiTe: tool support for pairwise

and model-based software product line

testing", In: VaMoS’11, ACM International

Conference Proceedings Series, pp. 79–82.

ACM, 2011.

[26]. Y.Lin, J.Zhang, J.Gray, "A framework for

testing model transformations", In Model-

driven Software Development—Research

and Practice in Software Engineering.

Springer, Berlin, 2005.

[27]. F.Jouault, F.Allilaire, J.Bézivin, I.Kurtev,

"ATL: a model transformation tool",

Science Comput. Program. 72(1–2), 31–39

,2008.

[28]. D.S.Kolovos, R.F.Paige, F.Polack, "The

epsilon transformation language", In ICMT

08, vol. 5063 of LNCS, pp. 46–60. Springer,

Berlin, 2008.

[29]. R.Lämmel, W.Schulte, "Controllable

combinatorial coverage in grammar-based

testing", In TestCom’06, pp. 19–38, 2006.

[30]. E.Guerra, , J.de Lara, , D.Kolovos, ,

R.Paige, , O.dos Santos, "Engineering

model transformations with transML",

Software Syst. Model. 12(3), 555–577,

2013.

[31]. ATL Transformations Source,

"http://www.eclipse.org/atl/atlTransformatio

ns/".

