
Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2339

GENETIC NETWORK PROGRAMMING-REINFORCEMENT

LEARNING BASED SAFE AND SMOOTH MOBILE ROBOT

NAVIGATION IN UNKNOWN DYNAMIC ENVIRONMENTS

1,2

AHMED H. M. FINDI,
3
MOHAMMAD H. MARHABAN,

4
RAJA KAMIL,

5
MOHD KHAIR

HASSAN
1
 Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia,

Malaysia.
2
 Control and Systems Engineering Department, University of Technology, Baghdad, Iraq.

3
 Prof,

4, 5
 Assoc. Prof. Department of Electrical and Electronic Engineering, Faculty of Engineering,

Universiti Putra Malaysia, Malaysia.

E-mail:
1
ahmfindi@gmail.com,

3
mhm@upm.edu.my,

4
kamil@eng.upm.edu.my,

5
khair@eng.upm.edu.my

ABSTRACT

The problem of determining a smoothest and collision-free path with maximum possible speed for a Mobile

Robot (R) which is chasing a moving target in an unknown dynamic environment is addressed in this

paper. Genetic Network Programming with Reinforcement Learning (GNP-RL) has several important

features over other evolutionary algorithms such as combining offline and online learning on the one hand,

and combining diversified and intensified search on the other hand. However, it was used in solving the

problem of R navigation in static environment only. This paper presents GNP-RL as a first attempt to apply

it for R navigation in dynamic environment. The GNP-RL is designed based on an environment

representation called Obstacle-Target Correlation (OTC). The combination between features of OTC and

that of GNP-RL provides safe navigation (effective obstacle avoidance) in dynamic environment, smooth

movement, and reducing the obstacle avoidance latency time. Simulation in dynamic environment is used

to evaluate the performance of collision prediction based GNP-RL compared with that of two state-of-the

art navigation approaches, namely, Q-learning (QL) and Artificial Potential Field (APF). The simulation

results show that the proposed GNP-RL outperforms both QL and APF in terms of smoothness movement

and safer navigation. In addition, it outperforms APF in terms of preserving maximum possible speed

during obstacle avoidance.

Keywords: Genetic Network Programming with Reinforcement Learning (GNP-RL), Mobile robot

navigation, Obstacle avoidance, Unknown dynamic environment

1. INTRODUCTION

Nowadays, navigation in dynamic environment is

one of the emerging applications in mobile robot

(R) field. The research on navigation in static

environment is already matured [1], however, in

dynamic environment, which is crucial for many

real world applications, has recently received

substantial attention [2, 3]. The goals of navigation

are obstacle avoidance and navigation time

reduction. Nevertheless, another important feature

that should be included during navigation is

minimizing robot steering angle during obstacle

avoidance while providing maximum possible

speed to preserve R smooth movement and to avoid

big changes in speed set point.

Fuzzy Logic Controller (FLC) [4-8] is widely used

in R navigation because it is able to emulate human

reasoning capabilities of dealing with uncertainties

[9]. However, the design of a fuzzy controller is not

always easy as it seems and it requires a significant

time to obtain a reliable solution, as there are lots of

parameters values to define [10-12]. Therefore,

many evolutionary algorithms [13-15] were applied

to tune the parameters of FLC. The main advantage

of these methods is the designers may not need to

have a complete knowledge of the problem to be

solved. Moreover, the entire optimization process is

normally carried out off-line and once trained, the

FLC might be suitable for on-line implementations

[13, 14]. However the effectiveness of these

approaches has been studied in point-to-point

navigation in dynamic environment where target is

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2340

static and predefined. On the other hand, machine

learning algorithms [16-18] were proposed to

obtain time-optimal and collision free path of a R

during its navigation in dynamic environment.

However, a precise input/output dataset should be

provided for training process of these algorithms,

but obtaining the dataset is hard or sometimes is

impossible [19]. Instead, reinforcement learning

techniques [8, 20] are used to learn robots by its

online interaction with the environment without the

need to provide a dataset.

Artificial Potential Field (APF) [6, 16, 21-26] is

one of the most commonly used schemes in the

field of R navigation [20]. In the work of Ge and

Cui [22], the authors applied APF in a dynamic

environment containing a moving target where the

movement of R is assumed to be affected by two

potential field forces. The first field is called the

attractive potential field, which is generated by the

target and produced an attractive force that attracts

R to the position of the target all the time. The

second field is called repulsive potential field,

which is generated by the obstacles and produced a

repulsive force that moves R away from these

obstacles. Consequently, R moves under the effect

of the sum of these two forces where the repulsive

force is calculated as the sum of all repulsive forces

generated by all the obstacles in the environment.

However, APF suffers from local minima problem

[16]. In addition, preserving the smoothest path

during obstacle avoidance has not been considered

in these works.

In 2001, Mucientes et al. [27] presented Temporal

Fuzzy Rules (TFR) to provide avoidance of

collision even when the moving obstacles behave in

a totally unexpected manner. The works in [2, 28,

29] presented virtual plane, generalized velocity

obstacle, and reactive control design, respectively,

to allow R to avoid dynamic obstacles. However all

these techniques are based on measuring the

velocity of moving obstacles. Practically, this

measurement is noisy and difficult to obtain [28,

30] .

In 2011, Jaradat et al. [20] presented a smart

definition of the environment states to represent an

unknown dynamic environment with a moving

target to utilize Q-learning with a finite number of

states. However, the smooth movement and speed

control of R are not considered in their work, where

R should turn strictly (4/π±) to avoid colliding

with an obstacle and it always moves with constant

speed even if there is no obstacle in its way.

Hereinafter, this methodology is referred as

Obstacle Target Correlation based Q-Learning

(OTCQL).

GNP-RL [31-36] is an extension of GNP [37] and it

is efficiently combined evolution and learning.

Evolutionary computation generally has an

advantage in diversified search ability, while

reinforcement learning has an advantage in

intensified search ability and online learning. Up to

our knowledge, GNP-RL designs have been used in

solving the problem of R navigation in static

environment only and based on sensor readings as

inputs which are efficient in static environment.

However, in dynamic environment, sensor readings

provide infinite number of states to cover all

variations of dynamic environment. Therefore, it

requires inflation in GNP-RL nodes to cover all

these states. Hence, providing environment

representation that represents all states of

environment in definite number of states is

necessary.

This paper presents an attempt to apply GNP-RL to

control navigation of R in dynamic environment. A

novel GNP-RL design is presented based on the

incorporation of the parameters of an environment

representation, called Obstacle-Target Correlation

(OTC), into the judgment nodes of GNP-RL. This

proposed design aims to obtain effective obstacle

avoidance using minimum change in steering angle

between the consecutive steps to smooth path

trajectory of R and finding maximum possible

speed that is sufficient to exceed obstacle

successfully without enforcing a high slowness on

robot speed. The main objectives of this paper are:

• Safe navigation in dynamic environment

containing a combination of static and dynamic

obstacles during chasing a moving target.

• Finding the minimum steering angle changes

between consecutive steps of R during obstacle

avoidance in such a way that R can move

smoothly without using sharp turning.

• Control the speed of R during obstacle avoidance

to compromise between maintaining the

maximum possible speed and providing safe

path.

• Integrating OTC and GNP-RL to earn the

benefits of both conceiving the surrounding

environment and features of GNP-RL and to

apply it for R navigation in dynamic

environment.

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2341

2. THE ENVIRONMENT

REPRESENTATION

The objective of this section is to represent

unknown dynamic environment surrounding R at

any instant of navigation process by a number of

variables. These variables give a considerable

perception of the surrounding environment in such

a way that R can navigate safely without colliding

with any obstacle until catching a moving target.

Fig.1 shows the representation of an environment

that surrounds R.

2.1. Definitions and Assumptions

 The following definitions and assumptions are

made [20].

1. The position of ����, ��� at each instant refers

to the origin of the coordination and its goal is

catching the target���� , ���. While, G is

continuously moving and its instantaneous

coordinates are known to R throughout all the

time of navigation without knowing its future

trajectory.

2. The environment is unknown and it contains

many obstacles which are either static or

dynamic. The dynamic obstacles (�) are moved

randomly and behaved in a totally unexpected

manner. At each time instant, R deals with one

obstacle and the nearest obstacle to R is denoted

by �
��
 , �
�.

3. The robot has a sensory system which is used to

measure the real time position of the obstacles

in a specific range.

4. The speed of R is always greater than that of G,

i.e.
� �
�, and it is always greater than or

equal to that of obstacles i.e.
� �
�.

5. R becomes in non-safe mode if��� � ��

otherwise, it is in safe mode. Collision happens

between R and �
when ��� � �� . On the other

hand, R is considered catching G if ��� � ��,

where ���is the distance between R and �
 , ��

is a safety distance,	�� is the collision

distance,	��� is the distance between R and G,

and �� is the winning distance.

Fig.1 The Environment Representation. (A) Analysis Of

Target And Obstacle Positions Related To R Position (B)

Divisions Of The Angle Α.[20]

2.2. The Environment Model

The environment model presented in [20] is

considered in this paper. As shown in Fig.1, the

environment of the robot consists of its target and

an obstacle. The target is dynamic and the obstacles

may be static or dynamic. The environment around

R is divided into either four orthogonal

regions:�1 � �4or eight regions ��� � ���. At

each instant, the environment is represented by the

region that contains the target ����, the region that

contains the closest obstacle to the robot (��) and

the region of the angle between the robot to

obstacle line and the robot to target line (���,

where the angle 	is computed as in eq.1:

1
sin

RO

D

d
α −=

(1)

where D is the distance between the obstacle and R

to target line. �� and ��are found in one of the

orthogonal regions: �1 � �4, while ��is found in

one of the eight regions ��� � ��� as shown in

Fig.1.

3. THE PROPOSED GNP-RL

In this paper, a novel GNP-RL design is proposed

to provide effective obstacle avoidance using

minimum steering angle changes so as to smooth

path trajectory of R and to reach the maximum

possible speed that is sufficient to exceed obstacle

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2342

successfully without need to excessive slowness of

robot speed.

3.1. GNP-RL Structure

GNP-RL is constructed of several nodes (n)

connected with each other and each node has a

unique number (0 to n-1). These nodes are

classified into start node, judgment node, and

processing node as shown in Fig. 2. The judgment

nodes and processing nodes are interconnected to

each other by directed links that indicate the

possible transitions from one node to another. The

starting node has neither function to do nor

conditional outbound connections. But it represents

the starting point of each node transition and it

functions to determine the first node, judgment or

processing, in node transition to be executed in

GNP-RL. Therefore, the first node is determined by

the outbound of the starting node which has no

inbound connection. Every judgment node has

many outbound connections, so one of these

connections is selected according to if-then

decision functions to find the next node to be

executed. While the processing nodes, which are

responsible for providing the suitable actions of R,

have only one outbound connection corresponding

to each action. On the other hand, judgment and

processing operations require time to be

implemented. This time is called time delay (�
),
which is assigned to each node, and participated in

evolving flexible and deadlock free programs.

Fig. 2. Basic Structure Of GNP-RL [31]

The gene structure of each node is divided into two

parts; macro node and sub-node parts as shown in

Fig. 3. The macro part consists of node type (!"
)

and time delay spent on executing a node (�
),

where i represents the node number. In this work,

!"
is set to 0, 1, or 2 to refer to start, judgment or

processing nodes, respectively. �
 of judgment

nodes is set to one time unit and that of processing

nodes is set to five time units. The sub-node part

consists of the judgment/processing code number

(#$
%) which is a unique number, value of judgment

(&
%), value of processing ('
%(), Q value ()
%() and

the next node numbers connected from sub-node k

in node i (*
%() where +,- means the parameter-of

sub-node,in the node +, 1 � , � .
, and .
is the

number of sub-nodes in node +.

In this work, #$
%represents the region, ��, ��,or

�� to be judged by judgment nodes and direction of

turning, left or right, for processing nodes, while &
%

represents the value of judgment which contains the

region value of target, obstacle or angle. Since ��

and �� take one of four values and �� takes one of

eight values, then either four or eight Q-values can

be found in every sub-node of judgment nodes

depending on the parameters (��, ��,and ��) of

#$
%. Similarly, there are either four or eight *
%(in

each sub-node of judgment nodes. For processing

nodes, '
%(refers to angle of turn and robot speed

for -=1 or 2, respectively. In addition, there is only

one Q-value and one *
%(in each sub-node and .

is set to 2 for both judgment and processing nodes.

The proposed GNP-RL contains one starting node,

16 judgment nodes and 10 processing nodes. Once

R encounters an obstacle, the controller turns from

safe mode to non-safe mode in which GNP-RL

guides R by starting the node transition. This

transition aims to find a suitable processing action

through judging current environment state.

The node transition embarks with the start node

which guides the execution to one of the judgment

or processing nodes. If the current node i is a

judgment node, one of the)
%(in each sub-node is

selected based on the corresponding values of

#$
%and &
%. The maximum Q-value among the

selected Q-values is chosen with the probability

1 � / or random one is chosen with the probability

of /. Then the corresponding *
%(is selected. If the

current node is processing, maximum of)
��and

)
0�is selected when the probability is 1 � /, but

one of these Q-values is chosen randomly when the

probability is /. Corresponding to the selected Q-

value, the values of the #$
%,	'
%�,'
%0, *
%� specify

robot movement direction, left or right, the degree

of robot turning angle, the speed of the robot, and

the number of the next node, respectively.

The node transitions continues in judging the

environment until finding the suitable processing

node which supplies R by the required degree of the

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2343

turning angle and speed to avoid the encountered

obstacle. Moreover, the selected processing node

specifies the next node in GNP-RL, which should

be executed if the non-safe state still valid. This

process continues until R avoids the encountered

obstacle and changes from non-safe to safe state.

Fig. 3. The Gene Structure Of GNP-RL Nodes

3.2. Learning and Evolution Process

The learning aims to train individuals to find the

best node transition of each one by updating the Q-

values through State Action Reward State Action

(SARSA) [38], while evolution process aims to find

the best structure of GNP-RL in population by

evolving individuals along all generations. As

shown in Fig. 4, the first step of learning and

evolution process is the initialization of population

in which the parameters and values of connections

and node functions are set randomly while all Q-

values are set to zero. The second step is applying

all learning trials on each individual to update its Q-

values and measure its fitness. At the end of each

generation, the individual with the highest fitness is

chosen as an elite individual and passed directly to

the population of the next generation without any

modification. The complementary individuals of

the next generation are obtained from applying

genetic operations: selection, crossover and

mutation. At the last generation, the individual that

provides best performance among all individuals is

chosen to be utilized in controlling R in the testing

task.

Fig. 4. Flowchart Of GNP-RL: (A) Learning Task. (B)

Testing Task.

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2344

3.2.1. Q- values update using SARSA

The node transition of GNP-RL starts once the

robot encounters an obstacle and it continues until

obstacle avoidance takes place. The flowchart in

Figure 4 illustrates the node transition in judgment

and processing nodes. The Q-values updating is

fulfilled as follows:

1- Suppose the current node is judgment i at time t.

Then one of the)
%(in each sub-node is

selected based on the corresponding values of

#$
% and &
%. The maximum Q-value among the

selected Q-values is chosen with the probability

of 1 � / or random one is chosen with the

probability of /.

2- The selected Q-value refers to the selected sub-

node. Hence, the corresponding *
%(can be

identified, which, in turn, refers to the next

node.

3- The node transition is transferred from current

node + to next node 1 and one)	%(is selected by

the same way shown in step 1.

4- Repeat steps 1, 2 and 3 until *
%(refers to a

processing node.

5- When the next node 1 in node transition is a

processing node, maximum of)	��and)	0� is

selected when the probability is1 � /, but one of

these Q-values is chosen randomly when the

probability is /. Corresponding to the selected

Q-value, the values of R movement direction

(left or right) (#$	%�, the degree of R turning

angle ('	%�), the speed of R ('	%0), and the

number of the next node (*	%�) are specified.

6- Judge the robot movement related to the

obstacle and get reward 23.

7- The Q-values update in Equation 2 is based on

SARSA learning and carried out on all nodes

along the node transition.

()

: (0 1)

: (0 1)

iik p k p t jk p ik pQ Q r Q Q

learn in g rate

d isco u n t rate

η µ

η η

µ µ

← + + −

< ≤

< ≤

(2)

3.2.2. Genetic operations

Crossover is executed between two parents

generating two offspring. The first step of

executing crossover operation is selecting each

node i in the two parents, which are selected by

using tournament selection, as a crossover node

with the probability of Pc. Then, the two parents

swap the genes of the corresponding crossover

nodes (i.e. with the same node number). As a result,

the generated offspring become the new individuals

in the next generation.

On the other hand, mutation is executed in one

individual and a new individual is generated. The

first step of executing mutation operation is

selecting one individual using tournament selection.

Then with the probability of Pm, each node branch

is re-connected to another node, each node function

(region type in the case of judgment and right/left

turning in the case of processing) is changed to

another one, and each parameter '
%(in the

processing node is changed to another value.

Finally, the generated new individual becomes the

new one in the next generation.[31].

3.2.3. Fitness Function

In a dynamic environment with a moving target, R

tries to navigate safely from a start location to a

location of catching the moving target. During this

navigation, R should find a feasible collision-free

path in which the steering angle changes between

consecutive steps should be as less as possible and

the movement should be fast enough to exceed

obstacle without collision. The fitness function is

designed to satisfy this purpose.

During the learning task, every individual in a

population in each generation has to fulfill obstacle

avoidance during target chasing in every trial. A

trial ends when R catches G, obstacle collision

takes place, or the time step reaches the predefined

time step limit (=100). At every step throughout

obstacle avoidance activity, the reward (23)
obtained by R is calculated by Eq. 3. The reward

function is ranged between [0 1] and designed in

order to learn obstacle avoidance behavior, that is,

R has to avoid obstacles with trying to make ��� as

large as possible where the reward decreases when

R closes to an obstacle and vise versa.

2
()3

1

s
C d d

t
ROr C e

−
= (3)

where {1

0

1

RO c
d d

C

otherwise

≤
= and {2

1

0

RO s
d d

C

otherwise

≤
=

The fitness function is designed to measure the

performance of R according to its steering angle

change and speed. Hence, the fitness function of

GNP-RL takes into account both objectives:

minimization of steering angle change and

maximization of R speed during obstacle

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2345

avoidance. The fitness function is calculated by

Eq.4 when all trials of an individual end.

2 2
max

1 1

3

() ()

1

R

N M

n m

t

r v v
fitness

N M

C r

e
θ

ϖ

= =
∆ + −

= ∑ ∑ (4)

where N is the total number of trials, M is the

number of steps required to avoid an obstacle,

max max

1
()

T T
r

θ θθ
θ

θ θ

−−∆
∆ = = is the rate of steering

angle change (∆5) between two consecutive steps,

� is the speed of the R,
678 is the maximum

speed of the R, {0

3 5

ROd dcC
otherwise

≤
= ,and

total right left

total

η η η
ϖ

η

− −
= is a factor of balancing the

movement of R in both directions where totalη ,

rightη , and leftη are the total turning actions,

number of turning to the right, and number of

turning to the left during obstacle avoidance in all

trials of an individual, respectively. This factor is

used to prevent R from tending to move in one

direction to minimize steering angle on the account

of safe navigation.

Fig. 5 shows the distribution of the fitness function

values when its parameters are changed along all

their range where it is assumed that ��� 9 1.5.,

�� 9 0.3., and �� 9 2.. It can be noted that the

fitness values are increased when steering angle

change is decreased and speed is increased. That is,

the fitness values go to their maximum value when

steering angle change approaches to zero and speed

approaches to its maximum value.

Fig. 5 Fitness Function

3.3. Target Tracking

In every learning or execution experiment, R

embarks from its starting point and it continuously

adjusts its orientation towards G. the speed of R is

set to maximum value when its path is free of

obstacles (safe mode) and it adjusts its steering

angle towards G according to Eq.5

max

max

(1) *cos(())()

() (1) *sin(())

x RGx

y y RG

R T v TR T

R T R T v T

θ

θ

− +
=

− +
  
     

(5)

where ()RG Tθ is the angle measured at instant T of

the virtual line connecting R and G. But GNP-RL

controls R speed and steering angle when it faces

an obstacle (non-safe mode) according to Eq. 6

where the speed of R is set by
2ikA and ()

RG
Tθ is

either increased or decreased by
1ikA depending on

the direction of turning which is set by
ikID .

2 1

2 1

() (1) * cos(())

() (1) * sin(())

x x ik ik

y y ik RG ik

RG
R T R T A T A

R T R T A T A

θ

θ

− +
=

− +

   
      

m

m

 (6)

3.4. GNP-RL Setup

As shown in Table 1, there are sixteen judgment

functions and two processing functions because��,

��,and �� have sixteen states and R should turn to

either left or right to avoid the encountered

obstacle. Each processing node sets the degree of

turning and speed of R at '
%�	and	'
%0

respectively.

Table 1 Node Function

The evolution and learning parameters are shown in

Table 2. The number of initial population,

crossover probability, mutation probability,

tournament size, and maximal offspring generation

are set by 400, 0.1, 0.01, 6, and 6000, respectively,

while the parameters of learning process are set by

B 9 0.9, D 9 0.3, and / 9 0.1.The population in

each generation consists of an elite individual, 299

new individuals generated by crossover, and 100

new individuals generated by mutation. Each

individual consists of a start node, 16 judgment

nodes, and 10 processing nodes. Initially, all the

functions and parameters of all individuals are set

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2346

randomly based on their valid ranges, while the Q

values of the sub-nodes are set to zero. The sum of

i
d of all nodes used in a node transition of one R

step should not exceed 21 time unites. If it exceeds

this predefined time units without executing a

processing node, R takes the same action in the

previous step. Hence, the maximum number of

nodes that can be used in one node transition cycle

is sixteen judgment nodes and one processing node.

As a consequence, this process prevents node

transition from falling in non-stop loops

Table 2 Simulation Parameters

4. SIMULATION

The simulation is composed of two tasks: learning

and execution. The learning task aims to find an

individual that has the ability to achieve the desired

safe, smooth, and fast navigation. The selected

individual in the learning phase is tested in the

execution phase throughout exposing R to

intensive and complicated experiments. In this

paper, the simulation is implemented using

MATLAB software.

4.1. Learning Task

The individual that has the best performance is

found during the learning task. On one hand, the

learning task produces an individual from search

space that has the connections which can provide

the best performance of R. On the other hand,

SARSA is used to learn each individual in such a

way that a connection in a judgment node among

all available connections or an action in a

processing node among all available actions is

selected for each surrounding environment state.

In GNP-RL, an individual represents a network of

GNP-RL. The performance of a GNP-RL is

evaluated as follows. R moves from the start point

and chases the moving target in every trial. A 100

trails, 100N = , were conducted, each trial

contains a static and a dynamic obstacles. The

GNP-RL is applied to control R when it is in non-

safe mode. The rate of steering angle change,

2�Δ5�, and the set point of speed (
�) are used in

calculating the fitness value in each step of non-

safe mode. After applying GNP-RL on all trials, the

fitness value of that individual is calculated using

Eq.4. These steps are repeated on all individuals in

the population. The individual with highest fitness

is selected as elite. The genetic operations,

selection, crossover, and mutation, are then applied

to generate the next generation. Since then, the

same steps of calculating the fitness values are

applied to each individual to find the individual that

has the highest fitness. In this paper, the total

number of generations is 6000, and the highest

fitness value in each generation is shown in Fig. 6.

It can be seen that the highest fitness value of the

first generation is 2.063, and this value is

continuously changed along all generations until it

stabilizes at 3.614 in the last generation. The

individual which has the highest fitness value (elite)

in the last generation is used later in the execution

task to measure its efficiency in providing the

required safe navigation and smooth movement.

Fig. 6. Fitness Values Of GNP-RL

4.2. Execution Task

After accomplishing the learning task, which

produces a GNP-RL network with best

performance among all other networks in the search

space, several test scenarios were conducted to

assess the performance of GNP-RL under wide

variety of environment conditions in which several

static and dynamic obstacles were used to disturb

the R movement.

4.2.1. Execution test

Many experiments were conducted to test the

efficiency of the proposed GNP-RL. One of these

experiments is explained in this section as shown in

Fig.7. In this experiment, four dynamic obstacles

(d1-d4) that move randomly and eight static

obstacles (s1-s8) are located in the work space. In

addition, the dynamic target (black color) is moving

in upward exponentially sinusoidal form starting

from [40 60]
T
 with speed explained in Eq.7.

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2347

0.02(90)
3 * sin

0.3

0.15

y
Gy

x

G

y

G
v

v
v

e
− −

= =

   
         

 

(7)

The movements and locations of R, dynamic

obstacles, static obstacles, and G are shown in Fig.

7(a). The set point of
� is set to maximum (0.75

m/s) when it is in safe mode (green color) �� F

��� � ��. But when R becomes in the non-safe

mode (red color), this set point is controlled by

GNP-RL, while the speed of each dynamic obstacle

(d1-d4) is 0.5 m/s. Fig. 7(b-f) are expansions of the

environment in obstacle avoidance occurrences to

illustrate the details of R steps at those moments. In

this scenario �� 9 0.3., �� 9 2., and �� 9

0.3..

R started its navigation at [100 30]
T

with maximum

speed to chase G and adjusted its turning angle

towards the target but it encountered d1 at [98.65

30.66]
T
 when it was in the third step as shown in

Fig. 7(b) . At this moment the robot controller was

changed from safe to non-safe mode in which

GNP-RL changed the steering angle of R to the left

by (28.92
˚
) and changed the set point of speed to

0.65 m/s. The steering angle changes (∆5) in all the

consecutive steps are almost close to zero without

change in speed. This action helped R to exceed d1

successfully, where minimum ��� 9 1.55., with

smooth path and satisfactory speed.

Fig. 7(c) shows the capability of R under control of

GNP-RL to exceed static obstacles. In step 17, R

encountered s1 that made it changes its movement

to the left for six steps to be in safe mode and

continued its way to the target. Later, s2, s3, and s4

were also exceeded until it became in safe mode in

step 41 where the maximum ∆5 used in static

obstacles avoidance is 30.38
˚
.

Fig. 7(d) and (e) show the effect of GNP-RL on R

response when it faced two dynamic obstacles that

disturbed its movement from different directions. In

both cases, GNP-RL handles the problem of

collision occurrence by changing its direction to the

either left or right. No big steering angles have been

used to avoid these obstacles where maximum

33.36θ∆ =
o

took place in the first and last steps of

each non-safe region, while small steering angles

used in the following steps.

Fig. 7(f) gives an example of disturbing R

movement by static obstacles and a dynamic

obstacle that is moving in parallel with the

trajectory of R and standing in the way between R

and G. In this example, R exceeded s6 and s7

successfully and before completing s8 avoidance it

trapped with d4 that is moving in parallel with R.

Three tries were done by R to move toward target

but it encountered d4 and entered non-safe region.

Therefore, GNP-RL moved R away of d4 to avoid

this obstacle. This situation made R switches

between safe and non-safe regions for three times

until R exceeded the effect of d4.

It can be seen that R is capable of avoiding all of

static obstacles successfully, though they are

located close to each other. It is also noted that the

GNP-RL is efficient in avoiding the dynamic

obstacles that disturbed R movement from different

directions without using sharp turning angles.

These obstacles avoidances prove that the robot

learned from the experiments in the training phase

such that it acquired the capability to avoid this

kind of obstacles.

Fig. 7. Navigation In Dynamic Environment Under GNP-

RL Control

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2348

4.2.2. Performance evaluation of GNP-RL

This subsection aims to conduct simulation to

examine the efficiency and feasibility of the

proposed GNP-RL in comparison with OTCQL

[20] and APF [22]. Ten experiments were

conducted and applied to each navigation scheme to

measure their efficiency under same circumstances.

In each experiment, G is moved in either sinusoidal

or exponentially sinusoidal form and started its

movement from different positions in either

direction, different number of dynamic obstacles

with random movement, different number of static

obstacles, and R started its navigation from

different positions. Fig. 8 shows the results of

applying these three schemes on the ten

experiments.

Referring to Fig 8 (a), it can be noted that the mean

value of steering angle change (D∆G) is ranged

between -1.269 and 1.28 which refers to the

convergence of D∆Gin all schemes under study,

where APF shows the minimum D∆Gin most of the

conducted experiments. This small range of D∆G is

due to the use of small steering angles during safe

mode that are enough to chase the target but the big

steering angles are used only during non-safe mode

when R encounters an obstacle.

Fig. 8 (b) shows the standard deviation of steering

angle change (H∆G), for all the applied schemes and

it can be seen that GNP-RL shows the minimum

H∆G among all the conducted experiments. That is,

R under control of GNP-RL has the smoothest

trajectory path than that of OTCQL and APF where

the difference between H∆Gof GNP-RL and that of

OTCQL is varied between (7.06) and (24.18), and

it varied between (8.71) and (41.04) comparing

with APF. Meanwhile, the maximum H∆G in most

of the applied experiments is taken place when R

under control of APF which refers to big variations

of steering angle producing worst tortuous

trajectory. The maximum angle difference (∆5IJ�)

used in every experiment for all the schemes under

study proves also this fact. As shown in Fig. 8 (c),

the largest steering angles are used by APF to

exceed obstacles, while GNP-RL uses the minimum

steering angle in all experiments, ranging between

(30.06) and (84.07). This refers to the efficiency of

GNP-RL to exceed same obstacles with minimum

steering angle change. Moreover, OTCQL uses

fixed and large steering angle (45
o

m) during

obstacle avoidance resulting high H∆G which refers

to non-smooth navigation path (Fig.8 (a-c)).

However, OTCQL shows moderate ∆5, ranging

around 90˚, between the performance of APF and

GNP-RL. Consequently, large steering angles that

have been used in APF and OTCQL cause a non-

smooth trajectory of R while GNP-RL provides the

smoothest path during obstacle avoidance without

the need for sharp turning.

According to OTCQL design, the speed of R is

constant throughout the entire navigation process

(Fig.8 (d-e)). Hence, it is assumed to be set to its

maximum value in these experiments. As a result,

R under control of OTCQL moves in highest

navigation speed than that of other schemes but

such R speed control has a negative impact on the

efficiency of safe navigation as it will be explained

in section 4.2.3. GNP-RL shows its capability to

drive R in a reasonable speed ranges between 0.68

and 0.74 m/s while maintaining its smooth

movement. Moreover, GNP-RL shows low

variation of speed (HK 9 0.024, 0.057), that is, R

changes its speed smoothly without the need for

sudden changes. In contrast, APF drives R with a

slowest speed (DK 9 0.56, 0.707) and highest

variation of speed (HK 9 0.124, 0.177).

Fig. 8. Performance of R under control of GNP-RL,

OTCQL, and APF. (a) Mean of ∆N�O∆N� (b) Standard

deviation of ∆N�P∆N� (c) Maximum ∆N�∆NQRS� (d)

Mean of speed (OT) (e) Standard deviation of speed (PT).

4.2.3. Safe navigation test

This subsection aims to examine the efficiency of

the proposed GNP-RL, compared with OTCQL and

APF, in exceeding static and dynamic obstacles to

satisfy safe navigation.

For this purpose, a simulation workspace is

designed to ensure the existence of a facing

between R and at least one obstacle when it

navigates in each trial. Every experiment of the

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2349

designed workspace composed of 200 trials; each

trial contains 12 dynamic obstacles and 12 static

obstacles. The positions of these obstacles are

initially predefined and stayed permanent in all

trials. The dynamic obstacles are moving in straight

lines without changing their directions during the

execution time of each trial. But, the orientation

angle of all dynamic obstacles is either incremented

or decremented in each consecutive trial. Moreover,

the movement direction of G and the starting

positions of R and G are chosen randomly in each

trial, where the movement direction of the target is

either up, down, right or left. If any trial in an

experiment has no facing between the R and an

obstacle, it is repeated with another random

selection of positions of R and G until a facing

takes place. One of these trials is shown in Fig. 9,

which represents the GNP-RL control of R in trial

number 143 of one of the conducted experiment. It

can be seen that R, which moves to the left, exceeds

a dynamic obstacle (d10) and two static obstacles

(s2 and s1), respectively, before catching the target

which is moving down.

Fig. 9. Workplace Trial Of Dynamic Environment

Ten experiments were conducted to measure the

degree of safe navigation of R under control of

GNP-RL, OTCQL, and APF where each

experiment includes 200 trials. Hit and miss rates

are used as a measure of efficiency of these

algorithms. Hit rate can be defined as the frequency

of the trials with which R successes to catch G

without colliding with any obstacles. Accordingly,

the miss rate is the frequency of the trials with

which R fails to catch G. Fig. 10 shows the

resulting hit/miss rates of applying these ten

experiments.

Fig.10. Hit/Miss Rates Of GNP-RL, OTCQL And APF

Algorithms (A) Hit Rates (B) Miss Rates

It can be seen that GNP-RL shows better hit rate

than that of other algorithms where the hit rate of

GNP-RL is increased by 4.51% than that of APF

and 1.1% than that of OTCQL. This refers to the

efficiency of GNP-RL in avoiding obstacles

providing safest navigation comparing with the

other algorithms under study, where its hit rate

ranges between 177 and 187. Although, R under

OTCQL presents fastest navigation, it is not

efficient in exceeding obstacles, where its hit rate

ranges between 175 and 184. In addition, its path is

tortuous due to the large steering angles used to

avoid obstacles. However, it provides a moderate

safety ranges between GNP-RL and APF. On the

other hand, APF presents lesser safety navigation

than GNP-RL and OTCQL where its miss rate,

which ranges between 10% and 16.5%, is almost

higher than that of GNP-RL and OTCQL in all the

conducted experiments. In addition to the safe

navigation feature presented by GNP-RL, it

presents the smoothest path during obstacle

avoidance without using sharp turnings as shown in

previous subsection.

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2350

5. CONCLUSION

This paper proposes a new formulation of GNP-RL

 for R navigation in dynamic environment

based on OTC environment representation. R

navigation is studied and simulated in an

environment containing static and dynamic

obstacles as well as a moving target. The

integration between OTC and GNP-RL provides a

suitable action for variant states of the dynamic

environment. Efficiency and effectiveness of the

proposed GNP-RL have been demonstrated through

comparisons with two state-of the arts in R

navigation, i.e. OTCQL and APF.

The proposed GNP-RL shows notable improvement

in terms of safe navigation, smoothness movement

and maximum possible speed to exceed obstacles.

For safe navigation, GNP-RL shows approximately

equal performance with OTCQL (GNP-RL

outperforms OTCQL by 1.1%) and exceeds APF

by 4.51%. On the other hand, GNP-RL provides

smoothest navigation than that of OTCQL and APF

where minimum standard deviation of steering

angle of R is presented in all the applied

experiments. For fast navigation, R speed is set to

maximum when it is under control of OTCQL.

Therefore, fastest navigation is shown under such

kind of control. However, GNP-RL shows an

approximate performance to OTCQL where R

speed is near to maximum value with small change

in its set point, and it outperforms the speed of

APF. In the future, it is recommended to study the

effect of replacing the evaluation of the surrounding

environment in judgment nodes by fuzzy rules.

REFERENCES:

[1] Zhang, Y., L. Zhang, and X. Zhang. Mobile

Robot path planning base on the hybrid genetic

algorithm in unknown environment. in

Intelligent Systems Design and Applications,

2008. ISDA'08. Eighth International

Conference on. 2008. IEEE.

[2] Belkhouche, F., Reactive path planning in a

dynamic environment. Robotics, IEEE

Transactions on, 2009. 25(4): p. 902-911.

[3] Du Toit, N.E. and J.W. Burdick, Robot motion

planning in dynamic, uncertain environments.

Robotics, IEEE Transactions on, 2012. 28(1):

p. 101-115.

[4] Parhi, D.R., Navigation of mobile robots using

a fuzzy logic controller. Journal of intelligent

and robotic systems, 2005. 42(3): p. 253-273.

[5] Li, W. Fuzzy logic-basedperception-

action'behavior control of a mobile robot in

uncertain environments. in Fuzzy Systems,

1994. IEEE World Congress on Computational

Intelligence., Proceedings of the Third IEEE

Conference on. 1994. IEEE.

[6] Jaradat, M.A.K., M.H. Garibeh, and E.A.

Feilat, Autonomous mobile robot dynamic

motion planning using hybrid fuzzy potential

field. Soft Computing, 2012. 16(1): p. 153-164.

[7] Mobadersany, P., S. Khanmohammadi, and S.

Ghaemi. An efficient fuzzy method for path

planning a robot in complex environments. in

Electrical Engineering (ICEE), 2013 21st

Iranian Conference on. 2013. IEEE.

[8] Mendonça, M., L.V.R. de Arruda, and F.

Neves Jr, Autonomous navigation system using

event driven-fuzzy cognitive maps. Applied

Intelligence, 2012. 37(2): p. 175-188.

[9] Farooq, U., et al. A two loop fuzzy controller

for goal directed navigation of mobile robot. in

Emerging Technologies (ICET), 2012

International Conference on. 2012.

[10] Er, M.J. and C. Deng, Obstacle avoidance of a

mobile robot using hybrid learning approach.

Industrial Electronics, IEEE Transactions on,

2005. 52(3): p. 898-905.

[11] McNeill, F.M. and E. Thro, Fuzzy logic: a

practical approach. 2014: Academic Press.

[12] Piltan, F., et al., Design mathematical tunable

gain PID-like sliding mode fuzzy controller

with minimum rule base. International Journal

of Robotic and Automation, 2011. 2(3): p. 146-

156.

[13] Hui, N.B. and D.K. Pratihar, A comparative

study on some navigation schemes of a real

robot tackling moving obstacles. Robotics and

Computer-Integrated Manufacturing, 2009.

25(4): p. 810-828.

[14] Hui, N.B., V. Mahendar, and D.K. Pratihar,

Time-optimal, collision-free navigation of a

car-like mobile robot using neuro-fuzzy

approaches. Fuzzy Sets and Systems, 2006.

157(16): p. 2171-2204.

[15] Pratihar, D.K., K. Deb, and A. Ghosh, A

genetic-fuzzy approach for mobile robot

navigation among moving obstacles.

International Journal of Approximate

Reasoning, 1999. 20(2): p. 145-172.

[16] Dinham, M. and G. Fang. Time optimal path

planning for mobile robots in dynamic

environments. in Mechatronics and

Automation, 2007. ICMA 2007. International

Conference on. 2007. IEEE.

[17] Vukosavljev, S.A., et al. Mobile robot control

using combined neural-fuzzy and neural

network. in Computational Intelligence and

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2351

Informatics (CINTI), 2011 IEEE 12th

International Symposium on. 2011. IEEE.

[18] Singh, M.K., D.R. Parhi, and J.K. Pothal.

ANFIS Approach for Navigation of Mobile

Robots. in Advances in Recent Technologies in

Communication and Computing, 2009.

ARTCom'09. International Conference on.

2009. IEEE.

[19] Domínguez-López, J.A., et al., Adaptive

neurofuzzy control of a robotic gripper with

on-line machine learning. Robotics and

Autonomous Systems, 2004. 48(2): p. 93-110.

[20] Kareem Jaradat, M.A., M. Al-Rousan, and L.

Quadan, Reinforcement based mobile robot

navigation in dynamic environment. Robotics

and Computer-Integrated Manufacturing, 2011.

27(1): p. 135-149.

[21] Ratering, S. and M. Gini, Robot navigation in a

known environment with unknown moving

obstacles. Autonomous Robots, 1995. 1(2): p.

149-165.

[22] Ge, S.S. and Y.J. Cui, Dynamic motion

planning for mobile robots using potential field

method. Autonomous Robots, 2002. 13(3): p.

207-222.

[23] Sgorbissa, A. and R. Zaccaria, Planning and

obstacle avoidance in mobile robotics.

Robotics and Autonomous Systems, 2012.

60(4): p. 628-638.

[24] Agirrebeitia, J., et al., A new APF strategy for

path planning in environments with obstacles.

Mechanism and Machine Theory, 2005. 40(6):

p. 645-658.

[25] Yaonan, W., et al., Autonomous mobile robot

navigation system designed in dynamic

environment based on transferable belief

model. Measurement, 2011. 44(8): p. 1389-

1405.

[26] Li, G., et al., Effective improved artificial

potential field-based regression search method

for autonomous mobile robot path planning.

International Journal of Mechatronics and

Automation, 2013. 3(3): p. 141-170.

[27] Mucientes, M., et al., Fuzzy temporal rules for

mobile robot guidance in dynamic

environments. Systems, Man, and Cybernetics,

Part C: Applications and Reviews, IEEE

Transactions on, 2001. 31(3): p. 391-398.

[28] Wilkie, D., J. van den Berg, and D. Manocha.

Generalized velocity obstacles. in Intelligent

Robots and Systems, 2009. IROS 2009.

IEEE/RSJ International Conference on. 2009.

IEEE.

[29] Chunyu, J., et al. Reactive target-tracking

control with obstacle avoidance of unicycle-

type mobile robots in a dynamic environment.

in American Control Conference (ACC), 2010.

2010. IEEE.

[30] Chang, C.C. and K.-T. Song, Environment

prediction for a mobile robot in a dynamic

environment. Robotics and Automation, IEEE

Transactions on, 1997. 13(6): p. 862-872.

[31] Mabu, S., A. Tjahjadi, and K. Hirasawa,

Adaptability analysis of genetic network

programming with reinforcement learning in

dynamically changing environments. Expert

Systems with Applications, 2012. 39(16): p.

12349-12357.

[32] Sendari, S., S. Mabu, and K. Hirasawa. Fuzzy

genetic Network Programming with

Reinforcement Learning for mobile robot

navigation. in Systems, Man, and Cybernetics

(SMC), 2011 IEEE International Conference

on. 2011. IEEE.

[33] Li, X., et al., Probabilistic Model Building

Genetic Network Programming Using

Reinforcement Learning. 2011. 2(1): p. 29-40.

[34] Mabu, S., et al. Evaluation on the robustness of

genetic network programming with

reinforcement learning. in Systems Man and

Cybernetics (SMC), 2010 IEEE International

Conference on. 2010. IEEE.

[35] Mabu, S., et al. Genetic Network Programming

with Reinforcement Learning Using Sarsa

Algorithm. in Evolutionary Computation, 2006.

CEC 2006. IEEE Congress on. 2006. IEEE.

[36] Sendari, S., S. Mabu, and K. Hirasawa. Two-

Stage Reinforcement Learning based on

Genetic Network Programming for mobile

robot. in SICE Annual Conference (SICE),

2012 Proceedings of. 2012. IEEE.

[37] Li, X., S. Mabu, and K. Hirasawa, Towards the

maintenance of population diversity: A hybrid

probabilistic model building genetic network

programming. Trans. of the Japanese Society

for Evol. Comput, 2010. 1(1): p. 89-101.

[38] Sutton, R.S. and A.G. Barto, Reinforcement

learning: An introduction. Vol. 1. 1998:

Cambridge Univ Press.

