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ABSTRACT 

 

The problem of determining a smoothest and collision-free path with maximum possible speed for a Mobile 

Robot (R) which is chasing a moving target in an unknown dynamic environment is addressed in this 

paper. Genetic Network Programming with Reinforcement Learning (GNP-RL) has several important 

features over other evolutionary algorithms such as combining offline and online learning on the one hand, 

and combining diversified and intensified search on the other hand. However, it was used in solving the 

problem of R navigation in static environment only. This paper presents GNP-RL as a first attempt to apply 

it for R navigation in dynamic environment. The GNP-RL is designed based on an environment 

representation called Obstacle-Target Correlation (OTC). The combination between features of OTC and 

that of GNP-RL provides safe navigation (effective obstacle avoidance) in dynamic environment, smooth 

movement, and reducing the obstacle avoidance latency time. Simulation in dynamic environment is used 

to evaluate the performance of collision prediction based GNP-RL compared with that of two state-of-the 

art navigation approaches, namely, Q-learning (QL) and Artificial Potential Field (APF). The simulation 

results show that the proposed GNP-RL outperforms both QL and APF in terms of smoothness movement 

and safer navigation. In addition, it outperforms APF in terms of preserving maximum possible speed 

during obstacle avoidance. 

 

Keywords: Genetic Network Programming with Reinforcement Learning (GNP-RL), Mobile robot 

navigation, Obstacle avoidance, Unknown dynamic environment 

 
1. INTRODUCTION 

Nowadays, navigation in dynamic environment is 

one of the emerging applications in mobile robot 

(R) field. The research on navigation in static 

environment is already matured [1], however, in 

dynamic environment, which is crucial for many 

real world applications, has recently received 

substantial attention [2, 3]. The goals of navigation 

are obstacle avoidance and navigation time 

reduction. Nevertheless, another important feature 

that should be included during navigation is 

minimizing robot steering angle during obstacle 

avoidance while providing maximum possible 

speed to preserve R smooth movement and to avoid 

big changes in speed set point. 

Fuzzy Logic Controller (FLC) [4-8] is widely used 

in R navigation because it is able to emulate human 

reasoning capabilities of dealing with uncertainties 

[9]. However, the design of a fuzzy controller is not 

always easy as it seems and it requires a significant 

time to obtain a reliable solution, as there are lots of 

parameters values to define [10-12]. Therefore, 

many evolutionary algorithms [13-15] were applied 

to tune the parameters of FLC. The main advantage 

of these methods is the designers may not need to 

have a complete knowledge of the problem to be 

solved. Moreover, the entire optimization process is 

normally carried out off-line and once trained, the 

FLC might be suitable for on-line implementations 

[13, 14]. However the effectiveness of these 

approaches has been studied in point-to-point 

navigation in dynamic environment where target is 
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static and predefined. On the other hand, machine 

learning algorithms [16-18] were proposed to 

obtain time-optimal and collision free path of a R 

during its navigation in dynamic environment. 

However, a precise input/output dataset should be 

provided for training process of these algorithms, 

but obtaining the dataset is hard or sometimes is 

impossible [19]. Instead, reinforcement learning 

techniques [8, 20] are used to learn robots by its 

online interaction with the environment without the 

need to provide a dataset.   

Artificial Potential Field (APF) [6, 16, 21-26] is 

one of the most commonly used schemes in the 

field of R navigation [20]. In the work of Ge and 

Cui [22], the authors applied APF in a dynamic 

environment containing a moving target where the 

movement of R is assumed to be affected by two 

potential field forces. The first field is called the 

attractive potential field, which is generated by the 

target and produced an attractive force that attracts 

R to the position of the target all the time. The 

second field is called repulsive potential field, 

which is generated by the obstacles and produced a 

repulsive force that moves R away from these 

obstacles. Consequently, R moves under the effect 

of the sum of these two forces where the repulsive 

force is calculated as the sum of all repulsive forces 

generated by all the obstacles in the environment. 

However, APF suffers from local minima problem 

[16]. In addition, preserving the smoothest path 

during obstacle avoidance has not been considered 

in these works. 

In 2001, Mucientes et al. [27] presented Temporal 

Fuzzy Rules (TFR) to provide avoidance of 

collision even when the moving obstacles behave in 

a totally unexpected manner. The works in [2, 28, 

29]  presented virtual plane, generalized velocity 

obstacle, and reactive control design, respectively, 

to allow R to avoid dynamic obstacles. However all 

these techniques are based on measuring the 

velocity of moving obstacles. Practically, this 

measurement is noisy and difficult to obtain [28, 

30] . 

In 2011, Jaradat et al. [20] presented a smart 

definition of the environment states to represent an 

unknown dynamic environment with a moving 

target to utilize Q-learning with a finite number of 

states. However, the smooth movement and speed 

control of R are not considered in their work, where 

R should turn strictly ( 4/π± ) to avoid colliding 

with an obstacle and it always moves with constant 

speed even if there is no obstacle in its way. 

Hereinafter, this methodology is referred as 

Obstacle Target Correlation based Q-Learning 

(OTCQL).  

GNP-RL [31-36] is an extension of GNP [37] and it  

is efficiently combined evolution and learning. 

Evolutionary computation generally has an 

advantage in diversified search ability, while 

reinforcement learning has an advantage in 

intensified search ability and online learning. Up to 

our knowledge, GNP-RL designs have been used in 

solving the problem of R navigation in static 

environment only and based on sensor readings as 

inputs which are efficient in static environment.  

However, in dynamic environment, sensor readings 

provide infinite number of states to cover all 

variations of dynamic environment. Therefore, it 

requires inflation in GNP-RL nodes to cover all 

these states. Hence, providing environment 

representation that represents all states of 

environment in definite number of states is 

necessary. 

This paper presents an attempt to apply GNP-RL to 

control navigation of R in dynamic environment. A 

novel GNP-RL design is presented based on the 

incorporation of the parameters of an environment 

representation, called Obstacle-Target Correlation 

(OTC), into the judgment nodes of GNP-RL. This 

proposed design aims to obtain effective obstacle 

avoidance using minimum change in steering angle 

between the consecutive steps to smooth path 

trajectory of R and finding maximum possible 

speed  that is sufficient to exceed obstacle 

successfully without enforcing a high slowness on 

robot speed. The main objectives of this paper are: 

• Safe navigation in dynamic environment 

containing a combination of static and dynamic 

obstacles during chasing a moving target. 

• Finding the minimum steering angle changes 

between consecutive steps of R during obstacle 

avoidance in such a way that R can move 

smoothly without using sharp turning. 

• Control the speed of R during obstacle avoidance 

to compromise between maintaining the 

maximum possible speed and providing safe 

path. 

•  Integrating OTC and GNP-RL to earn the 

benefits of both conceiving the surrounding 

environment and features of GNP-RL and to 

apply it for R navigation in dynamic 

environment.    
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2. THE ENVIRONMENT 

REPRESENTATION 

The objective of this section is to represent 

unknown dynamic environment surrounding R at 

any instant of navigation process by a number of 

variables. These variables give a considerable 

perception of the surrounding environment in such 

a way that R can navigate safely without colliding 

with any obstacle until catching a moving target. 

Fig.1 shows the representation of an environment 

that surrounds R. 

 

2.1. Definitions and Assumptions 

 The following definitions and assumptions are 

made [20]. 

1.  The position of ����, ��� at each instant refers 

to the origin of the coordination and its goal is 

catching the target���� , ���. While, G is 

continuously moving and its instantaneous 

coordinates are known to R throughout all the 

time of navigation without knowing its future 

trajectory. 

2.  The environment is unknown and it contains 

many obstacles which are either static or 

dynamic. The dynamic obstacles (�	) are moved 

randomly and behaved in a totally unexpected 

manner. At each time instant, R deals with one 

obstacle and the nearest obstacle to R is denoted 

by �
��
 , �
�.  

3.  The robot has a sensory system which is used to 

measure the real time position of the obstacles 

in a specific range. 

4.  The speed of R is always greater than that of G, 

i.e.
� � 
�, and it is always greater than or 

equal to that of obstacles i.e. 
� � 
�. 

5.  R becomes in non-safe mode if��� � �� 

otherwise, it is in safe mode. Collision happens 

between R and �
when ��� � �� . On the other 

hand, R is considered catching G if ��� � ��, 

where ���is the distance between R and �
 , �� 

is a safety distance,	�� is the collision 

distance,	��� is the distance between R and G, 

and �� is the winning distance. 

 

Fig.1 The Environment Representation. (A) Analysis Of 

Target And Obstacle Positions Related To R Position (B) 

Divisions Of The Angle Α.[20] 

2.2. The Environment Model 

The environment model presented in [20] is 

considered in this paper. As shown in Fig.1, the 

environment of the robot consists of its target and 

an obstacle. The target is dynamic and the obstacles 

may be static or dynamic. The environment around 

R is divided into either four orthogonal 

regions:�1 � �4or eight regions ��� � ���. At 

each instant, the environment is represented by the 

region that contains the target ����, the region that 

contains the closest obstacle to the robot (��) and 

the region of the angle between the robot to 

obstacle line and the robot to target line ( ���, 

where the angle  	is computed as in eq.1: 

1
sin

RO

D

d
α −=  

(1) 

where D is the distance between the obstacle and R 

to target line. �� and ��are found in one of the 

orthogonal regions: �1 � �4, while ��is found in 

one of the eight regions ��� � ��� as shown in 

Fig.1.   

3. THE PROPOSED GNP-RL 

In this paper, a novel GNP-RL design is proposed 

to provide effective obstacle avoidance using 

minimum steering angle changes so as to smooth 

path trajectory of R and to reach the maximum 

possible speed that is sufficient to exceed obstacle 
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successfully without need to excessive slowness of 

robot speed. 

3.1. GNP-RL Structure 

GNP-RL is constructed of several nodes (n) 

connected with each other and each node has a 

unique number (0 to n-1). These nodes are 

classified into start node, judgment node, and 

processing node as shown in Fig. 2. The judgment 

nodes and processing nodes are interconnected to 

each other by directed links that indicate the 

possible transitions from one node to another. The 

starting node has neither function to do nor 

conditional outbound connections. But it represents 

the starting point of each node transition and it 

functions to determine the first node, judgment or 

processing, in node transition to be executed in 

GNP-RL. Therefore, the first node is determined by 

the outbound of the starting node which has no 

inbound connection. Every judgment node has 

many outbound connections, so one of these 

connections is selected according to if-then 

decision functions to find the next node to be 

executed. While the processing nodes, which are 

responsible for providing the suitable actions of R, 

have only one outbound connection corresponding 

to each action. On the other hand, judgment and 

processing operations require time to be 

implemented. This time is called time delay (�
), 
which is assigned to each node, and participated in 

evolving flexible and deadlock free programs.  

 

Fig. 2. Basic Structure Of GNP-RL [31] 

The gene structure of each node is divided into two 

parts; macro node and sub-node parts as shown in 

Fig. 3. The macro part consists of node type (!"
) 

and time delay spent on executing a node (�
), 

where i represents the node number. In this work, 

!"
is set to 0, 1, or 2 to refer to start, judgment or 

processing nodes, respectively. �
 of judgment 

nodes is set to one time unit and that of processing 

nodes is set to five time units. The sub-node part 

consists of the judgment/processing code number 

(#$
%) which is a unique number, value of judgment 

(&
%), value of processing ('
%(), Q value ()
%() and 

the next node numbers connected from sub-node k 

in node i (*
%() where +,- means the parameter-of 

sub-node,in the node +, 1 � , � .
, and .
is the 

number of sub-nodes in node +.  

In this work, #$
%represents the region, ��, ��,or 

�� to be judged by judgment nodes and direction of 

turning, left or right, for processing nodes, while &
% 

represents the value of judgment which contains the 

region value of target, obstacle or angle. Since �� 

and �� take one of four values and �� takes one of 

eight values, then either four or eight Q-values can 

be found in every sub-node of judgment nodes 

depending on the parameters ( ��, ��,and ��) of 

#$
%. Similarly, there are either four or eight *
%(in 

each sub-node of judgment nodes. For processing 

nodes, '
%( refers to angle of turn and robot speed 

for -=1 or 2, respectively. In addition, there is only 

one Q-value and one *
%(in each sub-node and .
 

is set to 2 for both judgment and processing nodes. 

 

The proposed GNP-RL contains one starting node, 

16 judgment nodes and 10 processing nodes. Once 

R encounters an obstacle, the controller turns from 

safe mode to non-safe mode in which GNP-RL 

guides R by starting the node transition. This 

transition aims to find a suitable processing action 

through judging current environment state.  

The node transition embarks with the start node 

which guides the execution to one of the judgment 

or processing nodes. If the current node i is a 

judgment node, one of the )
%(in each sub-node is 

selected based on the corresponding values of 

#$
%and &
%. The maximum Q-value among the 

selected Q-values is chosen with the probability 

1 � / or random one is chosen with the probability 

of /. Then the corresponding *
%(is selected. If the 

current node is processing, maximum of )
��and 

)
0�is selected when the probability is 1 � /, but 

one of these Q-values is chosen randomly when the 

probability is /. Corresponding to the selected Q-

value, the values of the #$
%,	'
%�,'
%0, *
%� specify 

robot movement direction, left or right, the degree 

of robot turning angle, the speed of the robot, and 

the number of the next node, respectively.  

The node transitions continues in judging the 

environment until finding the suitable processing 

node which supplies R by the required degree of the 
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turning angle and speed to avoid the encountered 

obstacle. Moreover, the selected processing node 

specifies the next node in GNP-RL, which should 

be executed if the non-safe state still valid. This 

process continues until R avoids the encountered 

obstacle and changes from non-safe to safe state. 

 

Fig. 3. The Gene Structure Of GNP-RL Nodes 

3.2. Learning and Evolution Process 

The learning aims to train individuals to find the 

best node transition of each one by updating the Q-

values through State Action Reward State Action 

(SARSA) [38], while evolution process aims to find 

the best structure of GNP-RL in population by 

evolving individuals along all generations. As 

shown in Fig. 4, the first step of learning and 

evolution process is the initialization of population 

in which the parameters and values of connections 

and node functions are set randomly while all Q-

values are set to zero. The second step is applying 

all learning trials on each individual to update its Q-

values and measure its fitness. At the end of each 

generation, the individual with the highest fitness is 

chosen as an elite individual and passed directly to 

the population of the next generation without any 

modification. The complementary individuals of 

the next generation are obtained from applying 

genetic operations: selection, crossover and 

mutation. At the last generation, the individual that 

provides best performance among all individuals is 

chosen to be utilized in controlling R in the testing 

task. 

 

Fig. 4. Flowchart Of GNP-RL: (A) Learning Task. (B) 

Testing Task. 
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3.2.1. Q- values update using SARSA 

The node transition of GNP-RL starts once the 

robot encounters an obstacle and it continues until 

obstacle avoidance takes place. The flowchart in 

Figure 4 illustrates the node transition in judgment 

and processing nodes. The Q-values updating is 

fulfilled as follows: 

1- Suppose the current node is judgment i at time t. 

Then one of the )
%( in each sub-node is 

selected based on the corresponding values of 

#$
%  and &
%. The maximum Q-value among the 

selected Q-values is chosen with the probability 

of 1 � / or random one is chosen with the 

probability of /. 

2- The selected Q-value refers to the selected sub-

node. Hence, the corresponding *
%(can be 

identified, which, in turn, refers to the next 

node. 

3- The node transition is transferred from current 

node + to next node 1 and one )	%(is selected by 

the same way shown in step 1. 

4- Repeat steps 1, 2 and 3 until *
%(refers to a 

processing node. 

5- When the next node 1 in node transition is a 

processing node, maximum of )	��and )	0� is 

selected when the probability is1 � /, but one of 

these Q-values is chosen randomly when the 

probability is /. Corresponding to the selected 

Q-value, the values of R movement direction 

(left or right) (#$	%�, the degree of R turning 

angle ('	%�), the speed of R ('	%0), and the 

number of the next node (*	%�) are specified. 

6- Judge the robot movement related to the 

obstacle and get reward 23. 

7- The Q-values update in Equation 2 is based on 

SARSA learning and carried out on all nodes 

along the node transition. 

( )

: (0 1)

: (0 1)

iik p k p t jk p ik pQ Q r Q Q

learn in g rate

d isco u n t rate

η µ

η η

µ µ

← + + −

< ≤

< ≤

(2) 

 

3.2.2. Genetic operations 

Crossover is executed between two parents 

generating two offspring. The first step of 

executing crossover operation is selecting each 

node i in the two parents, which are selected by 

using tournament selection, as a crossover node 

with the probability of Pc. Then, the two parents 

swap the genes of the corresponding crossover 

nodes (i.e. with the same node number). As a result, 

the generated offspring become the new individuals 

in the next generation. 

On the other hand, mutation is executed in one 

individual and a new individual is generated. The 

first step of executing mutation operation is 

selecting one individual using tournament selection. 

Then with the probability of Pm, each node branch 

is re-connected to another node, each node function 

(region type in the case of judgment and right/left 

turning in the case of processing) is changed to 

another one, and each parameter '
%( in the 

processing node is changed to another value. 

Finally, the generated new individual becomes the 

new one in the next generation.[31]. 

3.2.3. Fitness Function 

In a dynamic environment with a moving target, R 

tries to navigate safely from a start location to a 

location of catching the moving target. During this 

navigation, R should find a feasible collision-free 

path in which the steering angle changes between 

consecutive steps should be as less as possible and 

the movement should be fast enough to exceed 

obstacle without collision. The fitness function is 

designed to satisfy this purpose. 

During the learning task, every individual in a 

population in each generation has to fulfill obstacle 

avoidance during target chasing in every trial. A 

trial ends when R catches G, obstacle collision 

takes place, or the time step reaches the predefined 

time step limit (=100). At every step throughout 

obstacle avoidance activity, the reward (23) 
obtained by R is calculated by Eq. 3. The reward 

function is ranged between [0 1] and designed in 

order to learn obstacle avoidance behavior, that is, 

R has to avoid obstacles with trying to make ��� as 

large as possible where the reward decreases when 

R closes to an obstacle and vise versa.  

2
( )3

1

s
C d d

t
ROr C e

−
=  (3) 

where {1

0

1

RO c
d d

C

otherwise

≤
=  and {2

1

0

RO s
d d

C

otherwise

≤
=  

The fitness function is designed to measure the 

performance of R according to its steering angle 

change and speed. Hence, the fitness function of 

GNP-RL takes into account both objectives: 

minimization of steering angle change and 

maximization of R speed during obstacle 
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avoidance. The fitness function is calculated by 

Eq.4 when all trials of an individual end.  

2 2
max

1 1

3

( ) ( )

1

R

N M

n m

t

r v v
fitness

N M

C r

e
θ

ϖ

= =
∆ + −

= ∑ ∑  (4) 

where N is the total number of trials, M is the 

number of steps required to avoid an obstacle, 

max max

1
( )

T T
r

θ θθ
θ

θ θ

−−∆
∆ = =  is the rate of steering 

angle change (∆5) between two consecutive steps, 


� is the speed of the R, 
678 is the maximum 

speed of the R, {0

3 5

ROd dcC
otherwise

≤
= ,and 

total right left

total

η η η
ϖ

η

− −
= is a factor of balancing the 

movement of R in both directions where totalη , 

rightη , and leftη  are the total turning actions, 

number of turning to the right, and number of 

turning to the left during obstacle avoidance in all 

trials of an individual, respectively. This factor is 

used to prevent R from tending to move in one 

direction to minimize steering angle on the account 

of safe navigation. 

Fig. 5 shows the distribution of the fitness function 

values when its parameters are changed along all 

their range where it is assumed that ��� 9 1.5., 

�� 9 0.3., and �� 9 2.. It can be noted that the 

fitness values are increased when steering angle 

change is decreased and speed is increased. That is, 

the fitness values go to their maximum value when 

steering angle change approaches to zero and speed 

approaches to its maximum value. 

 

Fig. 5 Fitness Function 

 

3.3. Target Tracking 

In every learning or execution experiment, R 

embarks from its starting point and it continuously 

adjusts its orientation towards G. the speed of R is 

set to maximum value when its path is free of 

obstacles (safe mode) and it adjusts its steering 

angle towards G according to Eq.5 

max

max

( 1) *cos( ( ))( )

( ) ( 1) *sin( ( ))

x RGx

y y RG

R T v TR T

R T R T v T

θ

θ

− +
=

− +
  
     

 

(5) 

where ( )RG Tθ is the angle measured at instant T of 

the virtual line connecting R and G. But GNP-RL 

controls R speed and steering angle when it faces 

an obstacle (non-safe mode) according to Eq. 6 

where the speed of R is set by
2ikA  and ( )

RG
Tθ is 

either increased or decreased by
1ikA  depending on 

the direction of turning which is set by
ikID  .  

2 1

2 1

( ) ( 1) * cos( ( ) )

( ) ( 1) * sin( ( ) )

x x ik ik

y y ik RG ik

RG
R T R T A T A

R T R T A T A

θ

θ

− +
=

− +

   
      

m

m

 (6) 

3.4. GNP-RL Setup 

As shown in Table 1, there are sixteen judgment 

functions and two processing functions because��, 

��,and �� have sixteen states and R should turn to 

either left or right to avoid the encountered 

obstacle. Each processing node sets the degree of 

turning and speed of R at '
%�	and	'
%0 

respectively.  

 

Table 1 Node Function 

 
 

The evolution and learning parameters are shown in 

Table 2. The number of initial population, 

crossover probability, mutation probability, 

tournament size, and maximal offspring generation 

are set by 400, 0.1, 0.01, 6, and 6000, respectively, 

while the parameters of learning process are set by 

B 9 0.9, D 9 0.3, and / 9 0.1.The population in 

each generation consists of an elite individual, 299 

new individuals generated by crossover, and 100 

new individuals generated by mutation. Each 

individual consists of a start node, 16 judgment 

nodes, and 10 processing nodes. Initially, all the 

functions and parameters of all individuals are set 



Journal of Theoretical and Applied Information Technology 
15th June 2017. Vol.95. No 11 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
2346 

   

randomly based on their valid ranges, while the Q 

values of the sub-nodes are set to zero. The sum of 

i
d of all nodes used in a node transition of one R 

step should not exceed 21 time unites. If it exceeds 

this predefined time units without executing a 

processing node, R takes the same action in the 

previous step. Hence, the maximum number of 

nodes that can be used in one node transition cycle 

is sixteen judgment nodes and one processing node. 

As a consequence, this process prevents node 

transition from falling in non-stop loops 

Table 2 Simulation Parameters 

 
 

4. SIMULATION 

The simulation is composed of two tasks: learning 

and execution. The learning task aims to find an 

individual that has the ability to achieve the desired 

safe, smooth, and fast navigation. The selected 

individual in the learning phase is tested in the 

execution phase throughout exposing R to 

intensive and complicated experiments. In this 

paper, the simulation is implemented using 

MATLAB software. 

4.1. Learning Task 

The individual that has the best performance is 

found during the learning task. On one hand, the 

learning task produces an individual from search 

space that has the connections which can provide 

the best performance of R. On the other hand, 

SARSA is used to learn each individual in such a 

way that a connection in a judgment node among 

all available connections or an action in a 

processing node among all available actions is 

selected for each surrounding environment state.  

In GNP-RL, an individual represents a network of 

GNP-RL. The performance of a GNP-RL is 

evaluated as follows. R moves from the start point 

and chases the moving target in every trial. A 100 

trails, 100N = , were conducted, each trial 

contains a static and a dynamic obstacles. The 

GNP-RL is applied to control R when it is in non-

safe mode. The rate of steering angle change, 

2�Δ5�, and the set point of speed ( 
�) are used in 

calculating the fitness value in each step of non-

safe mode. After applying GNP-RL on all trials, the 

fitness value of that individual is calculated using 

Eq.4. These steps are repeated on all individuals in 

the population. The individual with highest fitness 

is selected as elite. The genetic operations, 

selection, crossover, and mutation, are then applied 

to generate the next generation. Since then, the 

same steps of calculating the fitness values are 

applied to each individual to find the individual that 

has the highest fitness. In this paper, the total 

number of generations is 6000, and the highest 

fitness value in each generation is shown in Fig. 6. 

It can be seen that the highest fitness value of the 

first generation is 2.063, and this value is 

continuously changed along all generations until it 

stabilizes at 3.614 in the last generation. The 

individual which has the highest fitness value (elite) 

in the last generation is used later in the execution 

task to measure its efficiency in providing the 

required safe navigation and smooth movement.  

 

Fig. 6. Fitness Values Of GNP-RL 

4.2. Execution Task 

After accomplishing the learning task, which 

produces a GNP-RL network with best 

performance among all other networks in the search 

space, several test scenarios were conducted to 

assess the performance of GNP-RL under wide 

variety of environment conditions in which several 

static and dynamic obstacles were used to disturb 

the R movement.  

4.2.1. Execution test 

Many experiments were conducted to test the 

efficiency of the proposed GNP-RL. One of these 

experiments is explained in this section as shown in 

Fig.7. In this experiment, four dynamic obstacles 

(d1-d4) that move randomly and eight static 

obstacles (s1-s8) are located in the work space. In 

addition, the dynamic target (black color) is moving 

in upward exponentially sinusoidal form starting 

from [40 60]
T
 with speed explained in Eq.7. 
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(7) 

The movements and locations of R, dynamic 

obstacles, static obstacles, and G are shown in Fig. 

7(a). The set point of 
� is set to maximum (0.75 

m/s) when it is in safe mode (green color) �� F

��� � ��. But when R becomes in the non-safe 

mode (red color), this set point is controlled by 

GNP-RL, while the speed of each dynamic obstacle 

(d1-d4) is 0.5 m/s. Fig. 7(b-f) are expansions of the 

environment in obstacle avoidance occurrences to 

illustrate the details of R steps at those moments. In 

this scenario �� 9 0.3., �� 9 2., and �� 9

0.3.. 

R started its navigation at [100 30]
T 

with maximum 

speed to chase G and adjusted its turning angle 

towards the target but it encountered d1 at [98.65 

30.66]
T
 when it was in the third step as shown in 

Fig. 7(b) . At this moment the robot controller was 

changed from safe to non-safe mode in which 

GNP-RL changed the steering angle of R to the left 

by (28.92
˚
) and changed the set point of speed to 

0.65 m/s. The steering angle changes (∆5) in all the 

consecutive steps are almost close to zero without 

change in speed. This action helped R to exceed d1 

successfully, where minimum ��� 9 1.55., with 

smooth path and satisfactory speed.  

Fig. 7(c) shows the capability of R under control of 

GNP-RL to exceed static obstacles. In step 17, R 

encountered s1 that made it changes its movement 

to the left for six steps to be in safe mode and 

continued its way to the target. Later, s2, s3, and s4 

were also exceeded until it became in safe mode in 

step 41 where the maximum ∆5 used in static 

obstacles avoidance is 30.38
˚
. 

Fig. 7(d) and (e) show the effect of GNP-RL on R 

response when it faced two dynamic obstacles that 

disturbed its movement from different directions. In 

both cases, GNP-RL handles the problem of 

collision occurrence by changing its direction to the 

either left or right. No big steering angles have been 

used to avoid these obstacles where maximum 

33.36θ∆ =
o

took place in the first and last steps of 

each non-safe region, while small steering angles 

used in the following steps.  

Fig. 7(f) gives an example of disturbing R 

movement by static obstacles and a dynamic 

obstacle that is moving in parallel with the 

trajectory of R and standing in the way between R 

and G. In this example, R exceeded s6 and s7 

successfully and before completing s8 avoidance it 

trapped with d4 that is moving in parallel with R. 

Three tries were done by R to move toward target 

but it encountered d4 and entered non-safe region. 

Therefore, GNP-RL moved R away of d4 to avoid 

this obstacle. This situation made R switches 

between safe and non-safe regions for three times 

until R exceeded the effect of d4.  

It can be seen that R is capable of avoiding all of 

static obstacles successfully, though they are 

located close to each other. It is also noted that the 

GNP-RL is efficient in avoiding the dynamic 

obstacles that disturbed R movement from different 

directions without using sharp turning angles. 

These obstacles avoidances prove that the robot 

learned from the experiments in the training phase 

such that it acquired the capability to avoid this 

kind of obstacles. 

 

Fig. 7. Navigation In Dynamic Environment Under GNP-

RL Control 
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4.2.2. Performance evaluation of GNP-RL 

This subsection aims to conduct simulation to 

examine the efficiency and feasibility of the 

proposed GNP-RL in comparison with OTCQL 

[20] and APF [22]. Ten experiments were 

conducted and applied to each navigation scheme to 

measure their efficiency under same circumstances. 

In each experiment, G is moved in either sinusoidal 

or exponentially sinusoidal form and started its 

movement from different positions in either 

direction, different number of dynamic obstacles 

with random movement, different number of static 

obstacles, and R started its navigation from 

different positions. Fig. 8 shows the results of 

applying these three schemes on the ten 

experiments. 

Referring to Fig 8 (a), it can be noted that the mean 

value of steering angle change (D∆G) is ranged 

between -1.269 and 1.28 which refers to the 

convergence of D∆Gin all schemes under study, 

where APF shows the minimum D∆Gin most of the 

conducted experiments. This small range of D∆G is 

due to the use of small steering angles during safe 

mode that are enough to chase the target but the big 

steering angles are used only during non-safe mode 

when R encounters an obstacle. 

Fig. 8 (b) shows the standard deviation of steering 

angle change (H∆G), for all the applied schemes and 

it can be seen that GNP-RL shows the minimum 

H∆G among all the conducted experiments. That is, 

R under control of GNP-RL has the smoothest 

trajectory path than that of OTCQL and APF where 

the difference between H∆Gof GNP-RL and that of 

OTCQL is varied between (7.06) and (24.18),  and 

it varied between  (8.71) and (41.04) comparing 

with APF. Meanwhile, the maximum H∆G in most 

of the applied experiments is taken place when R 

under control of APF which refers to big variations 

of steering angle producing worst tortuous 

trajectory. The maximum angle difference (∆5IJ�) 

used in every experiment for all the schemes under 

study proves also this fact.  As shown in Fig. 8 (c), 

the largest steering angles are used by APF to 

exceed obstacles, while GNP-RL uses the minimum 

steering angle in all experiments, ranging between 

(30.06) and (84.07). This refers to the efficiency of 

GNP-RL to exceed same obstacles with minimum 

steering angle change. Moreover, OTCQL uses 

fixed and large steering angle ( 45
o

m ) during 

obstacle avoidance resulting high H∆G which refers 

to non-smooth navigation path (Fig.8 (a-c)). 

However, OTCQL shows moderate ∆5, ranging 

around 90˚, between the performance of APF and 

GNP-RL. Consequently, large steering angles that 

have been used in APF and OTCQL cause a non-

smooth trajectory of R while GNP-RL provides the 

smoothest path during obstacle avoidance without 

the need for sharp turning. 

According to OTCQL design, the speed of R is 

constant throughout the entire navigation process 

(Fig.8 (d-e)). Hence, it is assumed to be set to its 

maximum value in these experiments. As a result, 

R under control of OTCQL moves in highest 

navigation speed than that of other schemes but 

such R speed control has a negative impact on the 

efficiency of safe navigation as it will be explained 

in section 4.2.3. GNP-RL shows its capability to 

drive R in a reasonable speed ranges between 0.68 

and 0.74 m/s while maintaining its smooth 

movement. Moreover, GNP-RL shows low 

variation of speed (HK 9 0.024, 0.057), that is, R 

changes its speed smoothly without the need for 

sudden changes. In contrast, APF drives R with a 

slowest speed (DK 9 0.56, 0.707) and highest 

variation of speed (HK 9 0.124, 0.177).  

 

Fig. 8. Performance of R under control of GNP-RL, 

OTCQL, and APF. (a) Mean of ∆N�O∆N� (b) Standard 

deviation of ∆N�P∆N� (c) Maximum ∆N�∆NQRS� (d) 

Mean of speed (OT) (e) Standard deviation of speed (PT). 

4.2.3. Safe navigation test 

This subsection aims to examine the efficiency of 

the proposed GNP-RL, compared with OTCQL and 

APF, in exceeding static and dynamic obstacles to 

satisfy safe navigation. 

For this purpose, a simulation workspace is 

designed to ensure the existence of a facing 

between R and at least one obstacle when it 

navigates in each trial. Every experiment of the 
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designed workspace composed of 200 trials; each 

trial contains 12 dynamic obstacles and 12 static 

obstacles. The positions of these obstacles are 

initially predefined and stayed permanent in all 

trials. The dynamic obstacles are moving in straight 

lines without changing their directions during the 

execution time of each trial. But, the orientation 

angle of all dynamic obstacles is either incremented 

or decremented in each consecutive trial. Moreover, 

the movement direction of G and the starting 

positions of R and G are chosen randomly in each 

trial, where the movement direction of the target is 

either up, down, right or left. If any trial in an 

experiment has no facing between the R and an 

obstacle, it is repeated with another random 

selection of positions of R and G until a facing 

takes place. One of these trials is shown in Fig. 9, 

which represents the GNP-RL control of R in trial 

number 143 of one of the conducted experiment. It 

can be seen that R, which moves to the left, exceeds 

a dynamic obstacle (d10) and two static obstacles 

(s2 and s1), respectively, before catching the target 

which is moving down. 

 

 

Fig. 9. Workplace Trial Of Dynamic Environment 

Ten experiments were conducted to measure the 

degree of safe navigation of R under control of 

GNP-RL, OTCQL, and APF where each 

experiment includes 200 trials. Hit and miss rates 

are used as a measure of efficiency of these 

algorithms. Hit rate can be defined as the frequency 

of the trials with which R successes to catch G 

without colliding with any obstacles. Accordingly, 

the miss rate is the frequency of the trials with 

which R fails to catch G. Fig. 10 shows the 

resulting hit/miss rates of applying these ten 

experiments. 

 

Fig.10. Hit/Miss Rates Of GNP-RL, OTCQL And APF 

Algorithms (A) Hit Rates (B) Miss Rates 

It can be seen that GNP-RL shows better hit rate 

than that of other algorithms where the hit rate of 

GNP-RL is increased by 4.51% than that of APF 

and 1.1% than that of OTCQL. This refers to the 

efficiency of GNP-RL in avoiding obstacles 

providing safest navigation comparing with the 

other algorithms under study, where its hit rate 

ranges between 177 and 187. Although, R under 

OTCQL presents fastest navigation, it is not 

efficient in exceeding obstacles, where its hit rate 

ranges between 175 and 184. In addition, its path is 

tortuous due to the large steering angles used to 

avoid obstacles. However, it provides a moderate 

safety ranges between GNP-RL and APF. On the 

other hand, APF presents lesser safety navigation 

than GNP-RL and OTCQL where its miss rate, 

which ranges between 10% and 16.5%, is almost 

higher than that of GNP-RL and OTCQL in all the 

conducted experiments. In addition to the safe 

navigation feature presented by GNP-RL, it 

presents the smoothest path during obstacle 

avoidance without using sharp turnings as shown in 

previous subsection.  
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5. CONCLUSION 

This paper proposes a new formulation of GNP-RL 

 for R navigation in dynamic environment 

based on OTC environment representation. R 

navigation is studied and simulated in an 

environment containing static and dynamic 

obstacles as well as a moving target. The 

integration between OTC and GNP-RL provides a 

suitable action for variant states of the dynamic 

environment. Efficiency and effectiveness of the 

proposed GNP-RL have been demonstrated through 

comparisons with two state-of the arts in R 

navigation, i.e. OTCQL and APF. 

The proposed GNP-RL shows notable improvement 

in terms of safe navigation, smoothness movement 

and maximum possible speed to exceed obstacles. 

For safe navigation, GNP-RL shows approximately 

equal performance with OTCQL (GNP-RL 

outperforms OTCQL by 1.1% ) and exceeds APF 

by 4.51%. On the other hand, GNP-RL provides 

smoothest navigation than that of OTCQL and APF 

where minimum standard deviation of steering 

angle of R is presented in all the applied 

experiments. For fast navigation, R speed is set to 

maximum when it is under control of OTCQL. 

Therefore, fastest navigation is shown under such 

kind of control. However, GNP-RL shows an 

approximate performance to OTCQL where R 

speed is near to maximum value with small change 

in its set point, and it outperforms the speed of 

APF.  In the future, it is recommended to study the 

effect of replacing the evaluation of the surrounding 

environment in judgment nodes by fuzzy rules.   

 

REFERENCES: 

 

[1] Zhang, Y., L. Zhang, and X. Zhang. Mobile 

Robot path planning base on the hybrid genetic 

algorithm in unknown environment. in 

Intelligent Systems Design and Applications, 

2008. ISDA'08. Eighth International 

Conference on. 2008. IEEE. 

[2] Belkhouche, F., Reactive path planning in a 

dynamic environment. Robotics, IEEE 

Transactions on, 2009. 25(4): p. 902-911. 

[3] Du Toit, N.E. and J.W. Burdick, Robot motion 

planning in dynamic, uncertain environments. 

Robotics, IEEE Transactions on, 2012. 28(1): 

p. 101-115.  

[4] Parhi, D.R., Navigation of mobile robots using 

a fuzzy logic controller. Journal of intelligent 

and robotic systems, 2005. 42(3): p. 253-273. 

[5] Li, W. Fuzzy logic-basedperception-

action'behavior control of a mobile robot in 

uncertain environments. in Fuzzy Systems, 

1994. IEEE World Congress on Computational 

Intelligence., Proceedings of the Third IEEE 

Conference on. 1994. IEEE. 

[6] Jaradat, M.A.K., M.H. Garibeh, and E.A. 

Feilat, Autonomous mobile robot dynamic 

motion planning using hybrid fuzzy potential 

field. Soft Computing, 2012. 16(1): p. 153-164. 

[7] Mobadersany, P., S. Khanmohammadi, and S. 

Ghaemi. An efficient fuzzy method for path 

planning a robot in complex environments. in 

Electrical Engineering (ICEE), 2013 21st 

Iranian Conference on. 2013. IEEE. 

[8] Mendonça, M., L.V.R. de Arruda, and F. 

Neves Jr, Autonomous navigation system using 

event driven-fuzzy cognitive maps. Applied 

Intelligence, 2012. 37(2): p. 175-188. 

[9] Farooq, U., et al. A two loop fuzzy controller 

for goal directed navigation of mobile robot. in 

Emerging Technologies (ICET), 2012 

International Conference on. 2012. 

[10] Er, M.J. and C. Deng, Obstacle avoidance of a 

mobile robot using hybrid learning approach. 

Industrial Electronics, IEEE Transactions on, 

2005. 52(3): p. 898-905.  

[11] McNeill, F.M. and E. Thro, Fuzzy logic: a 

practical approach. 2014: Academic Press. 

[12] Piltan, F., et al., Design mathematical tunable 

gain PID-like sliding mode fuzzy controller 

with minimum rule base. International Journal 

of Robotic and Automation, 2011. 2(3): p. 146-

156. 

[13] Hui, N.B. and D.K. Pratihar, A comparative 

study on some navigation schemes of a real 

robot tackling moving obstacles. Robotics and 

Computer-Integrated Manufacturing, 2009. 

25(4): p. 810-828. 

[14] Hui, N.B., V. Mahendar, and D.K. Pratihar, 

Time-optimal, collision-free navigation of a 

car-like mobile robot using neuro-fuzzy 

approaches. Fuzzy Sets and Systems, 2006. 

157(16): p. 2171-2204. 

[15] Pratihar, D.K., K. Deb, and A. Ghosh, A 

genetic-fuzzy approach for mobile robot 

navigation among moving obstacles. 

International Journal of Approximate 

Reasoning, 1999. 20(2): p. 145-172. 

[16] Dinham, M. and G. Fang. Time optimal path 

planning for mobile robots in dynamic 

environments. in Mechatronics and 

Automation, 2007. ICMA 2007. International 

Conference on. 2007. IEEE. 

[17] Vukosavljev, S.A., et al. Mobile robot control 

using combined neural-fuzzy and neural 

network. in Computational Intelligence and 



Journal of Theoretical and Applied Information Technology 
15th June 2017. Vol.95. No 11 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
2351 

   

Informatics (CINTI), 2011 IEEE 12th 

International Symposium on. 2011. IEEE. 

[18] Singh, M.K., D.R. Parhi, and J.K. Pothal. 

ANFIS Approach for Navigation of Mobile 

Robots. in Advances in Recent Technologies in 

Communication and Computing, 2009. 

ARTCom'09. International Conference on. 

2009. IEEE. 

[19] Domínguez-López, J.A., et al., Adaptive 

neurofuzzy control of a robotic gripper with 

on-line machine learning. Robotics and 

Autonomous Systems, 2004. 48(2): p. 93-110. 

[20] Kareem Jaradat, M.A., M. Al-Rousan, and L. 

Quadan, Reinforcement based mobile robot 

navigation in dynamic environment. Robotics 

and Computer-Integrated Manufacturing, 2011. 

27(1): p. 135-149. 

[21] Ratering, S. and M. Gini, Robot navigation in a 

known environment with unknown moving 

obstacles. Autonomous Robots, 1995. 1(2): p. 

149-165. 

[22] Ge, S.S. and Y.J. Cui, Dynamic motion 

planning for mobile robots using potential field 

method. Autonomous Robots, 2002. 13(3): p. 

207-222. 

[23] Sgorbissa, A. and R. Zaccaria, Planning and 

obstacle avoidance in mobile robotics. 

Robotics and Autonomous Systems, 2012. 

60(4): p. 628-638. 

[24] Agirrebeitia, J., et al., A new APF strategy for 

path planning in environments with obstacles. 

Mechanism and Machine Theory, 2005. 40(6): 

p. 645-658. 

[25] Yaonan, W., et al., Autonomous mobile robot 

navigation system designed in dynamic 

environment based on transferable belief 

model. Measurement, 2011. 44(8): p. 1389-

1405. 

[26] Li, G., et al., Effective improved artificial 

potential field-based regression search method 

for autonomous mobile robot path planning. 

International Journal of Mechatronics and 

Automation, 2013. 3(3): p. 141-170. 

[27] Mucientes, M., et al., Fuzzy temporal rules for 

mobile robot guidance in dynamic 

environments. Systems, Man, and Cybernetics, 

Part C: Applications and Reviews, IEEE 

Transactions on, 2001. 31(3): p. 391-398. 

[28] Wilkie, D., J. van den Berg, and D. Manocha. 

Generalized velocity obstacles. in Intelligent 

Robots and Systems, 2009. IROS 2009. 

IEEE/RSJ International Conference on. 2009. 

IEEE. 

[29] Chunyu, J., et al. Reactive target-tracking 

control with obstacle avoidance of unicycle-

type mobile robots in a dynamic environment. 

in American Control Conference (ACC), 2010. 

2010. IEEE. 

[30] Chang, C.C. and K.-T. Song, Environment 

prediction for a mobile robot in a dynamic 

environment. Robotics and Automation, IEEE 

Transactions on, 1997. 13(6): p. 862-872. 

[31] Mabu, S., A. Tjahjadi, and K. Hirasawa, 

Adaptability analysis of genetic network 

programming with reinforcement learning in 

dynamically changing environments. Expert 

Systems with Applications, 2012. 39(16): p. 

12349-12357. 

[32] Sendari, S., S. Mabu, and K. Hirasawa. Fuzzy 

genetic Network Programming with 

Reinforcement Learning for mobile robot 

navigation. in Systems, Man, and Cybernetics 

(SMC), 2011 IEEE International Conference 

on. 2011. IEEE. 

[33] Li, X., et al., Probabilistic Model Building 

Genetic Network Programming Using 

Reinforcement Learning. 2011. 2(1): p. 29-40. 

[34] Mabu, S., et al. Evaluation on the robustness of 

genetic network programming with 

reinforcement learning. in Systems Man and 

Cybernetics (SMC), 2010 IEEE International 

Conference on. 2010. IEEE. 

[35] Mabu, S., et al. Genetic Network Programming 

with Reinforcement Learning Using Sarsa 

Algorithm. in Evolutionary Computation, 2006. 

CEC 2006. IEEE Congress on. 2006. IEEE. 

[36] Sendari, S., S. Mabu, and K. Hirasawa. Two-

Stage Reinforcement Learning based on 

Genetic Network Programming for mobile 

robot. in SICE Annual Conference (SICE), 

2012 Proceedings of. 2012. IEEE. 

[37] Li, X., S. Mabu, and K. Hirasawa, Towards the 

maintenance of population diversity: A hybrid 

probabilistic model building genetic network 

programming. Trans. of the Japanese Society 

for Evol. Comput, 2010. 1(1): p. 89-101. 

[38] Sutton, R.S. and A.G. Barto, Reinforcement 

learning: An introduction. Vol. 1. 1998: 

Cambridge Univ Press. 
 

 

 


