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ABSTRACT 

 

Systems that take the form of graphs of nodes and edges are common in various fields of study such as 

biology, and social and organizational studies. Typically, these systems exhibit community structure that 

corresponds to modular decomposition of functionality and common features of interest. In this paper, we 

endeavor to contribute to the efforts to enhance the visual representation of community structure. We 

propose refinements to the visual layout produced by force-layout model and treemap to foster desirable 

visual properties. Experiments are conducted on real world datasets to show the effectiveness of our 

approach and discuss its impact on the system overall performance. 
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1. INTRODUCTION  

 

In a graph of nodes and edges, finding 

communities (or clusters) consists of partitioning 

the graph into clusters such that there are many 

edges within clusters and relatively few edges 

between clusters. The need for discovering 

communities has emerged from the fact that most 

systems that take the form of graph exhibit 

community structure and finding those 

communities can reveal valuable information. For 

example, communities in collaboration network 

reveal research groups and highlight the pattern of 

collaboration between research fields [1]. 

Uncovering the underlying modules of a complex 

metabolic network shows that cellular functionality 

can be seamlessly partitioned into a collection of 

modules each of which performs an identifiable 

task, separable from the functions of other modules 

[2] [3]. In social networks, community structure 

corresponds to relationships between individuals 

arising due to personal, political and cultural 

reasons, giving rise to informal communities. 

Understanding informal communities underlying 

the formal organization is a key element in a 

successful management [4]. 

 

Community detection has received a great 

attention and a wide range of approaches has been 

presented in the literature [5] [6]. The various 

approaches employ measures, e.g. modularity [6] to 

ensure the results agree with some desirable 

properties, for example, high edge density of 

clusters and cluster separability. Nevertheless, less 

attention has been paid to how the communities are 

presented to investigators and whether the 

presentation can emphasize properties of the 

partition and the relations between communities. 

 

This paper is devoted to present a 

visualization scheme that aims at enhancing the 

visual perception of community structure while 

maintaining the familiar node-link view of the 

graph as opposed to the commonly used view of 

dendrogram. We are investing to address how the 

visualization can aid in conveying the findings of 

graph community detections.  Particularly, we 

introduce visual properties that correspond to 

properties that define a good graph partitioning. 

The visual properties support the understanding and 

investigation of community structure. 

 

We begin by seeking out some desirable 

visual properties that agree with the definition of 

good graph partitioning and further facilitate the 

investigation of community structure and relations 

which is particularly important when the graph is of 

a relatively large size. Subsequently, we 

incorporate refinements into the visual layout to 

emphasize those properties. Our visual layout 

employs force-layout model and treemap equipped 

with user interaction capabilities to enable graph 

exploration. We conduct experiments on various 

real world datasets and report the impact of our 

approach on the system performance. 
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The paper is organized as follows: section 

2 discusses previous efforts pertaining to graph 

community visualization. In section 3, we define 

graph communities and describe the method used to 

produce a community partitioning. Visual 

refinements to enhance visualization via desirable 

visual properties are presented in section 4. 

Experiments and discussion on the effectiveness of 

our approach and its impact on performance is 

presented in section 5. Section 6 concludes the 

paper. 

 

2. RELATED WORK 

 

The research field of graph drawing and 

visualization has received a great attention and 

there is a dedicated venue for publishing advances 

in geometric representation of graphs and networks. 

In this section, we limit our discussion to previous 

efforts that are concerned with visualization of 

graph communities and clusters. We refer readers 

to an extensive survey of graph visualization and 

navigation presented by Herman at el. [7] and a 

recent survey of large graph visualization presented 

by Hu and Shi [8]. 

 

Among the earliest efforts to visualize 

graph communities, Eades and Feng [9] extend the 

visualization of graph clusters into three dimension 

multilevel drawings. Heer at el. [10] present a 

visualization tool that supports interaction and 

exploration, and use ”blob” to highlight community 

structures. Di Giacomo at el. [11] present a graph-

based user interface for web clustering engines that 

employs a topology driven approach to generates 

semantic categories that are then depicted as 

connected boxes. 

 

Many of the visualization methods 

repeatedly apply clustering algorithms to generate 

hierarchical clustering of graphs. Quigley and 

Eades [12] propose to use the geometric clustering 

to generate graph views with multiple levels of 

abstraction. Lei et al. [13] introduce modularity-

based hierarchical clustering to visually summarize 

graphs within certain cluster depth. In Ask-

GraphView [14], the overall cluster hierarchy tree 

is combined with a clustered view of the focused 

subgraph to allow exploration of the entire large 

graph. Recently, a tile-based visual analytic 

approach that employs hierarchical graph layout 

groupings of communities from the top-level 

hierarchy down to individual nodes is presented in 

[15]. The approach imposes spatial constraints on 

the next lowest level of communities such that it is 

then laid out within the vicinity of parent level. In 

our approach, we employ Blondel's [16] method to 

generate communities of increasing levels and 

simultaneously build a hierarchy tree. In 

comparison to other methods, the leaf nodes are the 

communities found in the first pass which are used 

to build the graph for subsequent passes and 

consequently reduce the depth of the hierarch tree.  

 

The hierarchical nature of graph 

communities has encouraged the use of treemap 

[17] and curve space filling [18] to aid in the layout 

of hierarchical data. Holten [19] represents nodes as 

rectangles in treemap and uses edge bundling to 

aggregate edges, thus, reducing clutter. In [20], he 

presents forces to model the edges as flexible 

springs and consequently reduce clutter and 

minimize edge curvature. Muelder et al. [21] 

employs attractive forces to place the graph vertices 

in their associated regions in the treemap. Fekete et 

al. [22] present a technique that displays the 

hierarchical structure as a treemap and the 

adjacency edges as curved links. The links are 

depicted as quadratic Bezier curves that show 

direction using curvature without requiring an 

explicit arrow. Space filling curve approach is 

presented in [18] which guarantees that there will 

be no nodes that are colocated and improves the 

poor aspect ratios of treemap layout.  In 

comparison, our approach utilizes treemap layout 

with proposed refitments to foster desirable visual 

properties. We heavily rely on treemap to position 

communities and support the accommodation for 

hierarchical view. 

 

Besides the aforementioned differences 

between our proposed method and previous efforts, 

our method, to the best of our knowledge, is the 

first to incorporate visual properties that correspond 

to intrinsic properties that are derived from the 

formal definition of graph partitioning. Essentially, 

we want the visualization to assess the quality and 

support the perception of graph partitioning.  

 

3. GRAPH COMMUNITIES 
 

Given a graph G = (V, E) where V is the 

set of nodes and E is the set of (undirected) edges. 

A community clustering C = {C1, …, Ct} is a 

partition of V into clusters such that each 

community is a subset of the nodes and each node 

appears in exactly one cluster. 

 

A good partitioning of the graph will 

produce communities that have many edges within 
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clusters and relatively few edges between clusters. 

Moreover, the number of edges within clusters 

must be more than the expected number of such 

edges in a random graph. A well-known index for 

measuring the quality of partitioning is called 

modularity Q, proposed by Newman and Girvan 

[6], and is defined as follows: 

 

Q = (number of edges within communities) 

- (expected number of such edges) 

 

Which can be expressed in a node-based 

form as: 

� �
�

��
∑ ��	,� �


�
�

��
����	 , ���	,�   (1) 

 

where m is the number of edges, Ai,j 

represents the weight of the edge between i and j, ki 

=∑ �	��  is the sum of weights of edges attached to 

vertex i, δ(Ci, Cj) is 1 if i and j are in the same 

community, 0 otherwise. 

 

3.1 Finding Communities 

 

A wide range of approaches for finding 

communities has been presented in the literature 

[5], for example, based on hierarchical clustering 

[23], spectral clustering [24] [25], or external 

optimization [26]. None of these methods produces 

an optimal partitioning of the graph as it has been 

proven to be an NP problem [27]. 

 

In this research, we employ a modularity 

optimization based approach that is presented by 

Blondel et al. [16]. The approach consists of two 

phases that are carried out repeatedly. The first 

phase finds communities of the current graph, and 

the second phase builds a new graph whose nodes 

are the communities found in the first phase and the 

edges are formed by bundling edges of the current 

graph in the first phase. The first phase is reapplied 

to the resulting graph from the second phase and 

the process continues until there is only one node 

that contains all the nodes in the original graph. The 

approach has been shown to be fast and can 

overcome the resolution limit due to the 

hierarchical multilevel nature of the algorithm. 

 

Figure 1 shows an illustrative example of 

Blondel's approach presented in [16]. The two 

phases of pass 1 are presented in figure 1 (a) and 

(b), and in figure 1 (c) we only show the resulting 

graph of pass 2. Each pass of the approach builds a 

supergraph of the graph generated at the previous 

pass. At pass i, the input graph is G
i
 = (V

i
, E

i
) and 

the output supergraph is G
i+1

 = (V
i+1

, E
i+1

), where 

V
i+1 

= C
i+1

 = {C1
i+1

, …, Ct
i+1

} are the communities 

found in G
i
, and E

i+1
 are the superedges formed by 

bundling edges in G
i
. The weight of the new 

superedges w
i+1

 = ∑ w���

�  : e(u) ∈ u
i+1

; e(v) ∈ v
i+1

. 

The original graph G = G
0
, and the last generated 

graph G
n-1

 contains one node only that represents 

one community that comprises of all nodes in the 

original graph. 

 

As the process goes on, we build and 

maintain a hierarchy tree of the communities, see 

figure 1 (d). Note that, in our approach, the leaf 

nodes are the communities found in pass 1 as 

opposed to hierarchical clustering where the leaves 

are the individual nodes in the original graph. This 

property will overcome the high fanning out factor 

that occurs in hierarchical clustering and will 

reduce the height of the hierarchy tree. The 

maintainability of the hierarchy tree is essential for 

view selection as explained later. 

 

4. ENHANCING VISUAL PROPERTIES 

 

The various graph community detection 

approaches result in a partition of the graph into 

disjoint clusters and typically a modularity index 

that falls between 0 and 1. The closer the 

modularity is to 1 the better the partition. When 

presenting such results to analysts, graph 

visualization with visual metaphors to highlight 

communities is typically used. Nevertheless, 

traditional graph visualization approaches are not 

particularly suitable for visualizing graphs that 

exhibit community structure. Such approaches will 

not adequately answer questions such as: What do 

we expect to see when visualizing a highly modular 

graph? Why community regions overlap? How far 

apart should communities be positioned? Therefore, 

there is a need for visualization that supports the 

investigation of graph communities. 

 

The design of graph community 

visualization involves the development of the visual 

layout and what desirable visual properties that 

visual layout must satisfy. For the visual layout, we 

opt to use the familiar node-link view that is 

typically drawn using a force-layout model [28]. 

The use of force-layout model is computationally 

expensive (O(VlogV) per iteration), however, it is 

perhaps the most commonly graph drawing used 

since the resulting view is quite intuitive and 

aesthetically pleasing. 

 

The design of desirable visual properties is 

crucial because they intend to emphasize the 
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Figure 1: An Illustrative Example Of Blondel's Approach [16]. (A) And (B) Show Phase 1 And Phase 2 Of Pass 1, 

Respectively, (C) Shows The Resulting Graph Of Pass 2, (D) Presents The Hierarchy Tree Built During The Process. 
 

 

findings of community detection algorithms. 

Moreover, they provide the visual ability to assess a 

good partitioning and perhaps question the results 

when they contradict the visual properties. 

 

In our investigation of desirable visual 

properties we resort to the broad definition of good 

community partitioning which indicates that 

communities need to have more within edges than a 

random graph. Specifically, the property needs to 

be better than that of a random graph. Analogously, 

we begin by studying visual properties of the view 

when compared to that of a random graph. The 

random graph is built using the configuration model 

[29] [30] that allows one to generate a graph model 

that has exactly a prescribed degree distribution. 

 

 

Figure 2 shows the layouts of Zachary’s Karata 

Club dataset [31] that contains two communities. In 

figure 2 (a), the two communities are shown with 

distinct colors and the convex hulls are depicted to 

emphasize that their polygonal regions do not 

intersect. Figure 2 (c) shows the random graph 

generated with the same degree sequence via the 

configuration model. Clearly, the polygonal regions 

are highly intersected and indistinguishable. The 

edges distribution of the original graph is presented 

using Circos view in figure 2 (b) which shows a 

high density of edges within the two communities 

and low density of between community edges 

represented by the relatively thin ribbon that extents 

from community 0 to community 1. In comparison, 

the wide ribbon between the communities in the 

random graph in figure 2 (d) signifies the high 

density of edges between communities which 

contradicts with the definition of good community 

partitioning. 

 

Our choice for considering specific 

desirable visual properties is based on the 

comparison with the view of random graph. 

Particularly, the visual properties must be better 

than what can be found in a random graph. Here, 

we list the visual properties that we consider: 

1. High density of edges within communities and 

low density of edges between communities 

2. Minimum intersection between community 

polygonal regions 

3. Edges within communities have almost the 

same length and are shorter than edges between 

communities 

4. Communities with a high number of edges 

between them are placed close to each other 

5. In hierarchical view, children are positioned 

within the vicinity of the parent node and 

siblings are positioned close to each other 

 

These visual properties are not necessarily 

the only properties that can be considered, however, 

our investigation, has shown them to be the most 

effective and inexpensive to enforce. In the 

following sections, we propose refinements of the 

visual layout to support these visual properties. 

 

4.1. Minimizing Communities Intersection 

We employ a force-layout model [28] that 

exerts attractive and repulsive forces to generate the 

layout. The force-layout is commonly used to 

visualize graphs, however, the layout does not take 

into account the graph community structure and can 

produce highly intersected polygonal regions, see 

figure 3 (a). The highly overlapped polygons can 

occlude the visualization and question the validity 

of the partitioning and what common features the 

communities present. Moreover, when viewing 

hierarchical community structures it complicates 

the view and does not guarantee that siblings are 

placed close to each other. 
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(a) (b) 

  
(c) (d) 

Figure 2: Zachary’s Karata Club Dataset [31]. (A) View Of The Original Graph Showing The Two Communities, (B) 

Circos View Of Edge Density In (A), (C) View Of The Random Graph Generated Using The Configuration Model, 

And (D) Circos View Of Edge Density Of Random Graph In (B). 

To minimize community intersection we 

modify the force calculation by introducing a 

gravitational force that attracts nodes that belong to 

the same community. Let |t| be the number of 

communities, {g0, g1,…, gt-1} represent the gravity 

centers for the communities, where gi consists of 

the tuple (pos, strength), where pos is the center of 

the gravity and strength represents the strength of 

gravitational attraction. The calculation of force is 

modified as follows: 

 

for all t ∈ C do 

    for all n ∈ c.nodes do 

        n.pos += (gt.pos – n.pos) * alpha * gt.strength 

 

where alpha is a cooling parameter. 

 

The force calculation refinement has O(V) 

complexity, however, in our implementation we 

include the computation of gravitational force with 

that of repulsive force and therefore there is barely 

any extra computational cost introduced. Moreover, 

practically, the extra force has a positive impact on 

the overall performance because it moves nodes 

quickly to their resting positions, consequently, 

causing the system to stabilize faster. Table 2, 

reports the reduction in number of iterations taken 

by the system with gravitational force. Figure 3 (a) 

shows the force-layout graph of Word Adjacencies 

dataset [25] with modularity = 0.27. The low 

modularity is the result of low edge density within 

communities which leads to highly overlapped 

community regions. The overlapping may 

discourage the user from investigating the common 

features of communities. In figure 3 (b), we show 
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the graph that results from introducing gravitational 

forces to attract communities. The gravity centers 

are depicted as squares and the positions are 

assigned manually (see section 4.2 for how to 

position gravity centers). The graph is more 

appealing, satisfies property (2), highlights the 

community structures, and encourages user to 

further investigate the common features within 

communities. 

(a) (b) 

Figure 3: Graph Layout Of Word Adjacencies Dataset [25]. (A) Original View Where Convex Hulls Of Community 

Regions Are Highly Intersected (B) Using Gravitational Force Proposed In Our Approach With Strength = 0:5, The 

Gravity Centers Are Represented By Squares Of Corresponding Colors 

  
Figure 4: Positioning Communities Using Treemap 

Layout Of American College Football Dataset [34] 

 

4.2. Positioning Communities using Treemap 

 

In the previous section, we did not discuss 

how to position community gravity centers which is 

essential to support separation of community 

regions. While centers can be positioned manually, 

randomly, and perhaps uniformly, we are interested 

in a sophisticated way that takes up the whole 

available space and divides the space into regions 

of size proportional to the size of communities, for 

these reasons and more the choice of treemap 

comes natural for our purpose. Treemap is a space 

filling layout that is widely used to visualize 

hierarchical data [17] [32]. The layout recursively 

subdivides the space into rectangles that correspond 

to nodes in the hierarchy tree. The use of treemap to 

visualize the hierarchical clustering of a graph has 

been previously studied in [19] [21] [22]. In those 

studies, the graph must be clustered using a 

hierarchical method, such as agglomerative or 

divisive clustering [33]. In the generated hierarchy 

tree, the root represents a cluster of the whole 

dataset, the leaves represent individual nodes, and 

the nodes in between represent intermediate 

clusters. Typically, when visualized, nodes will fill 

up the entire space and edges are overlaid on top, 

either curved [21] [22] or bundled [19]. 

 

In our approach, a treemap layout is 

generated using the hierarchy tree to determine the 

gravity centers used to attract community nodes. 

The size of a treemap rectangle is proportional to 

the number of nodes within a community and is 



Journal of Theoretical and Applied Information Technology 
15th June 2017. Vol.95. No 11 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
2503 

 

used to approximate the length of edges within that 

community. Moreover, the center point of the 

rectangle represents the gravity center. In 

comparison with other methods, the generated 

treemap has a relatively small depth because the 

leaf nodes are the communities generated in the 

first pass of Blondel's method which are highly 

unlikely to be single nodes. This advantage can 

ease the exploration of graph as there are typically 

only few levels of communities. 

 

Figure 4 shows the graph layout of 

American College Football dataset [34] laid over a 

treemap. The size of each rectangle is proportional 

to the number of nodes in the communities. The 

length of within community edges is encouraged to 

be the same by setting a preferred length in our 

calculations to sqrt (area(rectangle)), while there is 

no such restriction on edges between communities. 

Please note that the nodes of each community are 

attracted to the center of the corresponding  

rectangle in the treemap and simultaneously they 

are attracted by nodes in other communities; this 

can lead to nodes position outside of their 

rectangles. Nevertheless, nodes can be forced to 

stay inside by adjusting the strength of gravitational 

force. 

 
 4.3. Ordering Treemap Layout 

 

The position of rectangles plays an 

essential role in the graph layout since they 

determine the center of attraction for nodes.  

Furthermore, the order of rectangles is equally 

important for drawing edges between communities, 

for example, when two highly connected 

communities are placed far from each other, the 

edges between them will have to run far and most 

likely cross many other edges and nodes which can 

lead to a cluttered view. Therefore, there is a need 

for a way to order treemap rectangles. Shneiderman 

and Wattenberg propose ways to order treemap 

layout that roughly preserve order such that nodes 

next to each other in order are placed adjacent [35]. 

Their method cannot work for our problem in hand 

because we do not have an inherent order of 

communities. 

 

We propose a method to locally order 

rectangles in order to move highly connected 

communities closer to each other. Our method does 

not seek to find a global optimal order because 

rectangles cannot be freely moved around without 

introducing empty spaces. The method

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 5: Ordering Treemap Layout. (A) - (H) Shows A Sequence Of Ordering The Rectangles In The 8 Spans Generated By 

The Treemap. The Span That Is Being Ordered Is Highlighted With A Light Gray Color 
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input is the rectangles generated from Squarified 

Treemap [32] that come in vertical (Ver) or 

horizontal (Hor) spans (rows) of rectangles, and the 

edges connecting these rectangles which are 

derived from the hierarchy tree. The rectangles 

within spans are ordered by being moved vertically 

or horizontally based on pulls from other 

rectangles. Figure 5 shows a treemap layout 

generated from a synthetic dataset, for the purpose 

of illustrating our method we only show the spans 

generated by the treemap. As the figure shows, the 

spans are: 

 

spans[0] rects:[0, 1, 2, 3] dir:Ver 

spans[1] rects:[4, 5, 6] dir:Hor 

spans[2] rects:[7, 8] dir:Ver 

spans[3] rects:[9, 10] dir:Hor 

spans[4] rects:[11] dir:Ver 

spans[5] rects:[12] dir:Hor 

spans[6] rects:[13] dir:Ver 

spans[7] rects:[14] dir:Hor 

 

Our ordering method, described in 

algorithm 1, works as follows: for each span of 

rectangles we want to find the order that minimizes 

the length of edges (distance) between rectangles in 

this span and all other rectangles. The order is 

found by first computing the total length of edges 

for a rectangle at each possible position in the span 

(lines: 13 - 16), then for each position subtracting 

the cost (either gain or loss) of moving the 

rectangle to a different position (lines: 17 - 18). 

Finally, for each position, the rectangle that 

minimizes the length cost is chosen (lines: 6 - 7). 

The complexity of algorithm 1 is O(t
i
E

i
), where t

i
 

and E
i
 are number of communities and edges, 

respectively, at pass i of the hierarchy tree. 

 

Figure 5 (a) - (h) shows a sequence of 

ordering the rectangles in the 8 spans generated by 

the treemap. The span that is being ordered is 

highlighted with a light gray color. The total edges 

length is reduced from 19,765 to 14,661. Our 

method does not intrinsically target the number of 

intersections between edges however, practically, 

the reduction in edges length almost always leads to 

a reduction in the number of intersections, from 339 

to 292 in our example. In table 1, we report the 

results of our experiments conducted on real 

datasets which are commonly used in the literature. 

Our results show 10% to 15% reduction in the total 

length of edges between communities leading to a 

less cluttered view. 

 

 

 
Table 1: Length Of Edges Before And After Ordering 

Treemap Layout 

Dataset n m Edges 
Edges after 

ordering 

Zachary’s 
karata club 

34 78 250 250 

Word 
adjacency 

112 425 2,668 2,334 

American 

football 
115 613 8,983 7,366 

Power grid 4,941 6,594 22,264 20,260 

Collaboration 

99 
13,861 44,619 130,651 104,002 

Collaboration
03 

27,519 116,180 1,871,680 1,582,861 

 

6. DISCUSSION 

 

The main steps that are taken by our 

approach are summarized in figure 6. The visual 

output of each step is shown right below it. The 

input is a graph of nodes and edges that is likely to 

have communities; it can be undirected or directed 

graph. The graph size does not impose any 

restrictions on the system behavior, however, large 

graphs, that have hundreds of thousands of nodes 

and edges, can take hours to find communities [16]. 

The good news is that it only needs to be computed 

once and it can possibly carried out offline and then 

fed to the system. As the graph shows, in the first 

step, communities are generated at different 

resolution levels and the hierarchy tree is built. The 

Algorithm 1 Ordering Treemap 

1: for all s ∈ spans do 

2:     if s.rects:length == 1 then 

3:         continue 

4:     for all r ∈ s.rects do 

5:         lens[r] = LengthCost(r, s) 

6:     for all r ∈ s.rects do 

7:         r.center = min(lens[r]) 

8: 

9: function LengthCost(r; s) 

10:     Output: Array of costs of links length of    

11:          positioning r at the center of all rects of s 

12: 

13:     for all pos ∈ s.rects do 

14:         for all l ∈ r.links do 

15:             � link distance when r is at pos:center 

16:         lens[pos:center] += distance(l; pos:center) 

17:     for i = 0; s:rects:length - 1 do 

18:         for j = i + 1, s.rects:length - 1 do 

19:             lens[i] += lens[i] - lens[ j] 

20: return lens 
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communities found, by definition, satisfy property 

(1). This step is carried out only once while the 

remaining steps are performed repeatedly based on 

user interaction. In view selection, the user gets to 

select what level of details to include in the 

generated graph. The user can interactively change 

his selection seeking more or less details. Once the 

communities have been selected they are sent to the 

treemap layout. The treemap layout determines the 

gravity centers used for attracting and positioning 

communities, thus, emphasizing properties (2), (3), 

and (5). A reordering of treemap is applied to bring 

closer those communities that have high number 

edges between them and therefore encouraging 

property (4). 

 

In the last step, the graph is drawn using a 

force-layout model. The graph drawing represents 

the performance bottle neck of the approach as it 

takes O(VlogV) per iteration which renders it 

intractable for large graphs. Luckily, the user can 

consult with the hierarchy tree view to include only 

nodes of interest leading to fewer nodes being 

drawn. In our approach, the force calculation is 

modified to include the gravitational force that is 

exerted to attract nodes within communities closer 

to each other. In practice, the additional force 

enhances the performance causing the system to 

reach a local minima faster. Table 2 reports the 

number of iterations without and with gravitational 

force required for the system to stabilize. The 

experiments are executed 100 times and the average 

numbers of iterations are reported in the table. 

 

 

Table 2: Number Of Iterations Required By The 

Force-Layout Model Without And 

With Gravitational Forces 

Dataset Iterations 

Iterations with 

gravitational 
force 

Zachary’s karata club 
210 155 

Word adjacency 
288 178 

American football 
176 121 

Power grid 70 39 

Collaboration 99 
65 50 

Collaboration03 
62 43 

 

 
Figure 6: The Main Steps Of Our Approach 

 

Figure 7 shows the results of Power Grid 

dataset [36] that consists of 4,940 nodes and 6,564 

edges, and modularity = 0.93. The high modularity 

suggests a good partitioning of the data which is not 

quite evident in figure 7 (a). The communities are 

hardly, if at all, distinguishable and the view is 

highly cluttered which can easily discourage users 

from seeking out more information. Furthermore, 

none of the visual properties (1) - (5) seems to be 

supported. The obscure view can hinder the user 

ability to draw conclusion about the true structure 

of the graph. In figure 7 (b), we show the results of 

our approach on a view selection of the 37 

communities at the leaf level of the hierarchy tree. 

Clearly, there is hardly any intersection between 

communities and highly connected communities are 

positioned close to each other. Figure 7 (c) shows 

the results of a view selection that consists of 3  
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communities (out of 4) at the second level of the 

hierarchy tree and 12 leaf communities that are the  

children of the fourth communities from the higher 

level. The view represents an example of 

overview+details capabilities through which users 

can interactively explore the view investigating and 

seeking interesting patterns in the data. 

 

7. CONCLUSION 

 

We have incorporated refinements to the 

visual layout of graph community structure in order 

to satisfy desirable visual properties that aim at 

enhancing the perception of communities and 

support the investigation of their common features. 

The proposed approach has been tested on real 

datasets of medium sizes and has shown to 

effectively support separation of community 

regions and reduction of view clutter. Furthermore, 

the refinement in force calculation has been shown 

to improve the overall performance of the system. 
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