
Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2497

ENHANCING VISUAL PROPERTIES OF GRAPH

COMMUNITIES

JAMAL ALSAKRAN

The University of Jordan, Computer Science Department, Jordan

E-mail: j.alsakran@ju.edu.jo

ABSTRACT

Systems that take the form of graphs of nodes and edges are common in various fields of study such as

biology, and social and organizational studies. Typically, these systems exhibit community structure that

corresponds to modular decomposition of functionality and common features of interest. In this paper, we

endeavor to contribute to the efforts to enhance the visual representation of community structure. We

propose refinements to the visual layout produced by force-layout model and treemap to foster desirable

visual properties. Experiments are conducted on real world datasets to show the effectiveness of our

approach and discuss its impact on the system overall performance.

Keywords: Graph Community, Modularity, Visualization, Treemap, Force-layout

1. INTRODUCTION

In a graph of nodes and edges, finding

communities (or clusters) consists of partitioning

the graph into clusters such that there are many

edges within clusters and relatively few edges

between clusters. The need for discovering

communities has emerged from the fact that most

systems that take the form of graph exhibit

community structure and finding those

communities can reveal valuable information. For

example, communities in collaboration network

reveal research groups and highlight the pattern of

collaboration between research fields [1].

Uncovering the underlying modules of a complex

metabolic network shows that cellular functionality

can be seamlessly partitioned into a collection of

modules each of which performs an identifiable

task, separable from the functions of other modules

[2] [3]. In social networks, community structure

corresponds to relationships between individuals

arising due to personal, political and cultural

reasons, giving rise to informal communities.

Understanding informal communities underlying

the formal organization is a key element in a

successful management [4].

Community detection has received a great

attention and a wide range of approaches has been

presented in the literature [5] [6]. The various

approaches employ measures, e.g. modularity [6] to

ensure the results agree with some desirable

properties, for example, high edge density of

clusters and cluster separability. Nevertheless, less

attention has been paid to how the communities are

presented to investigators and whether the

presentation can emphasize properties of the

partition and the relations between communities.

This paper is devoted to present a

visualization scheme that aims at enhancing the

visual perception of community structure while

maintaining the familiar node-link view of the

graph as opposed to the commonly used view of

dendrogram. We are investing to address how the

visualization can aid in conveying the findings of

graph community detections. Particularly, we

introduce visual properties that correspond to

properties that define a good graph partitioning.

The visual properties support the understanding and

investigation of community structure.

We begin by seeking out some desirable

visual properties that agree with the definition of

good graph partitioning and further facilitate the

investigation of community structure and relations

which is particularly important when the graph is of

a relatively large size. Subsequently, we

incorporate refinements into the visual layout to

emphasize those properties. Our visual layout

employs force-layout model and treemap equipped

with user interaction capabilities to enable graph

exploration. We conduct experiments on various

real world datasets and report the impact of our

approach on the system performance.

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2498

The paper is organized as follows: section

2 discusses previous efforts pertaining to graph

community visualization. In section 3, we define

graph communities and describe the method used to

produce a community partitioning. Visual

refinements to enhance visualization via desirable

visual properties are presented in section 4.

Experiments and discussion on the effectiveness of

our approach and its impact on performance is

presented in section 5. Section 6 concludes the

paper.

2. RELATED WORK

The research field of graph drawing and

visualization has received a great attention and

there is a dedicated venue for publishing advances

in geometric representation of graphs and networks.

In this section, we limit our discussion to previous

efforts that are concerned with visualization of

graph communities and clusters. We refer readers

to an extensive survey of graph visualization and

navigation presented by Herman at el. [7] and a

recent survey of large graph visualization presented

by Hu and Shi [8].

Among the earliest efforts to visualize

graph communities, Eades and Feng [9] extend the

visualization of graph clusters into three dimension

multilevel drawings. Heer at el. [10] present a

visualization tool that supports interaction and

exploration, and use ”blob” to highlight community

structures. Di Giacomo at el. [11] present a graph-

based user interface for web clustering engines that

employs a topology driven approach to generates

semantic categories that are then depicted as

connected boxes.

Many of the visualization methods

repeatedly apply clustering algorithms to generate

hierarchical clustering of graphs. Quigley and

Eades [12] propose to use the geometric clustering

to generate graph views with multiple levels of

abstraction. Lei et al. [13] introduce modularity-

based hierarchical clustering to visually summarize

graphs within certain cluster depth. In Ask-

GraphView [14], the overall cluster hierarchy tree

is combined with a clustered view of the focused

subgraph to allow exploration of the entire large

graph. Recently, a tile-based visual analytic

approach that employs hierarchical graph layout

groupings of communities from the top-level

hierarchy down to individual nodes is presented in

[15]. The approach imposes spatial constraints on

the next lowest level of communities such that it is

then laid out within the vicinity of parent level. In

our approach, we employ Blondel's [16] method to

generate communities of increasing levels and

simultaneously build a hierarchy tree. In

comparison to other methods, the leaf nodes are the

communities found in the first pass which are used

to build the graph for subsequent passes and

consequently reduce the depth of the hierarch tree.

The hierarchical nature of graph

communities has encouraged the use of treemap

[17] and curve space filling [18] to aid in the layout

of hierarchical data. Holten [19] represents nodes as

rectangles in treemap and uses edge bundling to

aggregate edges, thus, reducing clutter. In [20], he

presents forces to model the edges as flexible

springs and consequently reduce clutter and

minimize edge curvature. Muelder et al. [21]

employs attractive forces to place the graph vertices

in their associated regions in the treemap. Fekete et

al. [22] present a technique that displays the

hierarchical structure as a treemap and the

adjacency edges as curved links. The links are

depicted as quadratic Bezier curves that show

direction using curvature without requiring an

explicit arrow. Space filling curve approach is

presented in [18] which guarantees that there will

be no nodes that are colocated and improves the

poor aspect ratios of treemap layout. In

comparison, our approach utilizes treemap layout

with proposed refitments to foster desirable visual

properties. We heavily rely on treemap to position

communities and support the accommodation for

hierarchical view.

Besides the aforementioned differences

between our proposed method and previous efforts,

our method, to the best of our knowledge, is the

first to incorporate visual properties that correspond

to intrinsic properties that are derived from the

formal definition of graph partitioning. Essentially,

we want the visualization to assess the quality and

support the perception of graph partitioning.

3. GRAPH COMMUNITIES

Given a graph G = (V, E) where V is the

set of nodes and E is the set of (undirected) edges.

A community clustering C = {C1, …, Ct} is a

partition of V into clusters such that each

community is a subset of the nodes and each node

appears in exactly one cluster.

A good partitioning of the graph will

produce communities that have many edges within

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2499

clusters and relatively few edges between clusters.

Moreover, the number of edges within clusters

must be more than the expected number of such

edges in a random graph. A well-known index for

measuring the quality of partitioning is called

modularity Q, proposed by Newman and Girvan

[6], and is defined as follows:

Q = (number of edges within communities)

- (expected number of such edges)

Which can be expressed in a node-based

form as:

� �
�

��
∑ ��	,� �

��

��
����	 , ���	,� (1)

where m is the number of edges, Ai,j

represents the weight of the edge between i and j, ki

=∑ �	�� is the sum of weights of edges attached to

vertex i, δ(Ci, Cj) is 1 if i and j are in the same

community, 0 otherwise.

3.1 Finding Communities

A wide range of approaches for finding

communities has been presented in the literature

[5], for example, based on hierarchical clustering

[23], spectral clustering [24] [25], or external

optimization [26]. None of these methods produces

an optimal partitioning of the graph as it has been

proven to be an NP problem [27].

In this research, we employ a modularity

optimization based approach that is presented by

Blondel et al. [16]. The approach consists of two

phases that are carried out repeatedly. The first

phase finds communities of the current graph, and

the second phase builds a new graph whose nodes

are the communities found in the first phase and the

edges are formed by bundling edges of the current

graph in the first phase. The first phase is reapplied

to the resulting graph from the second phase and

the process continues until there is only one node

that contains all the nodes in the original graph. The

approach has been shown to be fast and can

overcome the resolution limit due to the

hierarchical multilevel nature of the algorithm.

Figure 1 shows an illustrative example of

Blondel's approach presented in [16]. The two

phases of pass 1 are presented in figure 1 (a) and

(b), and in figure 1 (c) we only show the resulting

graph of pass 2. Each pass of the approach builds a

supergraph of the graph generated at the previous

pass. At pass i, the input graph is G
i
 = (V

i
, E

i
) and

the output supergraph is G
i+1

 = (V
i+1

, E
i+1

), where

V
i+1

= C
i+1

 = {C1
i+1

, …, Ct
i+1

} are the communities

found in G
i
, and E

i+1
 are the superedges formed by

bundling edges in G
i
. The weight of the new

superedges w
i+1

 = ∑ w���

� : e(u) ∈ u
i+1

; e(v) ∈ v
i+1

.

The original graph G = G
0
, and the last generated

graph G
n-1

 contains one node only that represents

one community that comprises of all nodes in the

original graph.

As the process goes on, we build and

maintain a hierarchy tree of the communities, see

figure 1 (d). Note that, in our approach, the leaf

nodes are the communities found in pass 1 as

opposed to hierarchical clustering where the leaves

are the individual nodes in the original graph. This

property will overcome the high fanning out factor

that occurs in hierarchical clustering and will

reduce the height of the hierarchy tree. The

maintainability of the hierarchy tree is essential for

view selection as explained later.

4. ENHANCING VISUAL PROPERTIES

The various graph community detection

approaches result in a partition of the graph into

disjoint clusters and typically a modularity index

that falls between 0 and 1. The closer the

modularity is to 1 the better the partition. When

presenting such results to analysts, graph

visualization with visual metaphors to highlight

communities is typically used. Nevertheless,

traditional graph visualization approaches are not

particularly suitable for visualizing graphs that

exhibit community structure. Such approaches will

not adequately answer questions such as: What do

we expect to see when visualizing a highly modular

graph? Why community regions overlap? How far

apart should communities be positioned? Therefore,

there is a need for visualization that supports the

investigation of graph communities.

The design of graph community

visualization involves the development of the visual

layout and what desirable visual properties that

visual layout must satisfy. For the visual layout, we

opt to use the familiar node-link view that is

typically drawn using a force-layout model [28].

The use of force-layout model is computationally

expensive (O(VlogV) per iteration), however, it is

perhaps the most commonly graph drawing used

since the resulting view is quite intuitive and

aesthetically pleasing.

The design of desirable visual properties is

crucial because they intend to emphasize the

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2500

Figure 1: An Illustrative Example Of Blondel's Approach [16]. (A) And (B) Show Phase 1 And Phase 2 Of Pass 1,

Respectively, (C) Shows The Resulting Graph Of Pass 2, (D) Presents The Hierarchy Tree Built During The Process.

findings of community detection algorithms.

Moreover, they provide the visual ability to assess a

good partitioning and perhaps question the results

when they contradict the visual properties.

In our investigation of desirable visual

properties we resort to the broad definition of good

community partitioning which indicates that

communities need to have more within edges than a

random graph. Specifically, the property needs to

be better than that of a random graph. Analogously,

we begin by studying visual properties of the view

when compared to that of a random graph. The

random graph is built using the configuration model

[29] [30] that allows one to generate a graph model

that has exactly a prescribed degree distribution.

Figure 2 shows the layouts of Zachary’s Karata

Club dataset [31] that contains two communities. In

figure 2 (a), the two communities are shown with

distinct colors and the convex hulls are depicted to

emphasize that their polygonal regions do not

intersect. Figure 2 (c) shows the random graph

generated with the same degree sequence via the

configuration model. Clearly, the polygonal regions

are highly intersected and indistinguishable. The

edges distribution of the original graph is presented

using Circos view in figure 2 (b) which shows a

high density of edges within the two communities

and low density of between community edges

represented by the relatively thin ribbon that extents

from community 0 to community 1. In comparison,

the wide ribbon between the communities in the

random graph in figure 2 (d) signifies the high

density of edges between communities which

contradicts with the definition of good community

partitioning.

Our choice for considering specific

desirable visual properties is based on the

comparison with the view of random graph.

Particularly, the visual properties must be better

than what can be found in a random graph. Here,

we list the visual properties that we consider:

1. High density of edges within communities and

low density of edges between communities

2. Minimum intersection between community

polygonal regions

3. Edges within communities have almost the

same length and are shorter than edges between

communities

4. Communities with a high number of edges

between them are placed close to each other

5. In hierarchical view, children are positioned

within the vicinity of the parent node and

siblings are positioned close to each other

These visual properties are not necessarily

the only properties that can be considered, however,

our investigation, has shown them to be the most

effective and inexpensive to enforce. In the

following sections, we propose refinements of the

visual layout to support these visual properties.

4.1. Minimizing Communities Intersection

We employ a force-layout model [28] that

exerts attractive and repulsive forces to generate the

layout. The force-layout is commonly used to

visualize graphs, however, the layout does not take

into account the graph community structure and can

produce highly intersected polygonal regions, see

figure 3 (a). The highly overlapped polygons can

occlude the visualization and question the validity

of the partitioning and what common features the

communities present. Moreover, when viewing

hierarchical community structures it complicates

the view and does not guarantee that siblings are

placed close to each other.

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2501

(a) (b)

(c) (d)

Figure 2: Zachary’s Karata Club Dataset [31]. (A) View Of The Original Graph Showing The Two Communities, (B)

Circos View Of Edge Density In (A), (C) View Of The Random Graph Generated Using The Configuration Model,

And (D) Circos View Of Edge Density Of Random Graph In (B).

To minimize community intersection we

modify the force calculation by introducing a

gravitational force that attracts nodes that belong to

the same community. Let |t| be the number of

communities, {g0, g1,…, gt-1} represent the gravity

centers for the communities, where gi consists of

the tuple (pos, strength), where pos is the center of

the gravity and strength represents the strength of

gravitational attraction. The calculation of force is

modified as follows:

for all t ∈ C do

 for all n ∈ c.nodes do

 n.pos += (gt.pos – n.pos) * alpha * gt.strength

where alpha is a cooling parameter.

The force calculation refinement has O(V)

complexity, however, in our implementation we

include the computation of gravitational force with

that of repulsive force and therefore there is barely

any extra computational cost introduced. Moreover,

practically, the extra force has a positive impact on

the overall performance because it moves nodes

quickly to their resting positions, consequently,

causing the system to stabilize faster. Table 2,

reports the reduction in number of iterations taken

by the system with gravitational force. Figure 3 (a)

shows the force-layout graph of Word Adjacencies

dataset [25] with modularity = 0.27. The low

modularity is the result of low edge density within

communities which leads to highly overlapped

community regions. The overlapping may

discourage the user from investigating the common

features of communities. In figure 3 (b), we show

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2502

the graph that results from introducing gravitational

forces to attract communities. The gravity centers

are depicted as squares and the positions are

assigned manually (see section 4.2 for how to

position gravity centers). The graph is more

appealing, satisfies property (2), highlights the

community structures, and encourages user to

further investigate the common features within

communities.

(a) (b)

Figure 3: Graph Layout Of Word Adjacencies Dataset [25]. (A) Original View Where Convex Hulls Of Community

Regions Are Highly Intersected (B) Using Gravitational Force Proposed In Our Approach With Strength = 0:5, The

Gravity Centers Are Represented By Squares Of Corresponding Colors

Figure 4: Positioning Communities Using Treemap

Layout Of American College Football Dataset [34]

4.2. Positioning Communities using Treemap

In the previous section, we did not discuss

how to position community gravity centers which is

essential to support separation of community

regions. While centers can be positioned manually,

randomly, and perhaps uniformly, we are interested

in a sophisticated way that takes up the whole

available space and divides the space into regions

of size proportional to the size of communities, for

these reasons and more the choice of treemap

comes natural for our purpose. Treemap is a space

filling layout that is widely used to visualize

hierarchical data [17] [32]. The layout recursively

subdivides the space into rectangles that correspond

to nodes in the hierarchy tree. The use of treemap to

visualize the hierarchical clustering of a graph has

been previously studied in [19] [21] [22]. In those

studies, the graph must be clustered using a

hierarchical method, such as agglomerative or

divisive clustering [33]. In the generated hierarchy

tree, the root represents a cluster of the whole

dataset, the leaves represent individual nodes, and

the nodes in between represent intermediate

clusters. Typically, when visualized, nodes will fill

up the entire space and edges are overlaid on top,

either curved [21] [22] or bundled [19].

In our approach, a treemap layout is

generated using the hierarchy tree to determine the

gravity centers used to attract community nodes.

The size of a treemap rectangle is proportional to

the number of nodes within a community and is

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2503

used to approximate the length of edges within that

community. Moreover, the center point of the

rectangle represents the gravity center. In

comparison with other methods, the generated

treemap has a relatively small depth because the

leaf nodes are the communities generated in the

first pass of Blondel's method which are highly

unlikely to be single nodes. This advantage can

ease the exploration of graph as there are typically

only few levels of communities.

Figure 4 shows the graph layout of

American College Football dataset [34] laid over a

treemap. The size of each rectangle is proportional

to the number of nodes in the communities. The

length of within community edges is encouraged to

be the same by setting a preferred length in our

calculations to sqrt (area(rectangle)), while there is

no such restriction on edges between communities.

Please note that the nodes of each community are

attracted to the center of the corresponding

rectangle in the treemap and simultaneously they

are attracted by nodes in other communities; this

can lead to nodes position outside of their

rectangles. Nevertheless, nodes can be forced to

stay inside by adjusting the strength of gravitational

force.

 4.3. Ordering Treemap Layout

The position of rectangles plays an

essential role in the graph layout since they

determine the center of attraction for nodes.

Furthermore, the order of rectangles is equally

important for drawing edges between communities,

for example, when two highly connected

communities are placed far from each other, the

edges between them will have to run far and most

likely cross many other edges and nodes which can

lead to a cluttered view. Therefore, there is a need

for a way to order treemap rectangles. Shneiderman

and Wattenberg propose ways to order treemap

layout that roughly preserve order such that nodes

next to each other in order are placed adjacent [35].

Their method cannot work for our problem in hand

because we do not have an inherent order of

communities.

We propose a method to locally order

rectangles in order to move highly connected

communities closer to each other. Our method does

not seek to find a global optimal order because

rectangles cannot be freely moved around without

introducing empty spaces. The method

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Ordering Treemap Layout. (A) - (H) Shows A Sequence Of Ordering The Rectangles In The 8 Spans Generated By

The Treemap. The Span That Is Being Ordered Is Highlighted With A Light Gray Color

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2504

input is the rectangles generated from Squarified

Treemap [32] that come in vertical (Ver) or

horizontal (Hor) spans (rows) of rectangles, and the

edges connecting these rectangles which are

derived from the hierarchy tree. The rectangles

within spans are ordered by being moved vertically

or horizontally based on pulls from other

rectangles. Figure 5 shows a treemap layout

generated from a synthetic dataset, for the purpose

of illustrating our method we only show the spans

generated by the treemap. As the figure shows, the

spans are:

spans[0] rects:[0, 1, 2, 3] dir:Ver

spans[1] rects:[4, 5, 6] dir:Hor

spans[2] rects:[7, 8] dir:Ver

spans[3] rects:[9, 10] dir:Hor

spans[4] rects:[11] dir:Ver

spans[5] rects:[12] dir:Hor

spans[6] rects:[13] dir:Ver

spans[7] rects:[14] dir:Hor

Our ordering method, described in

algorithm 1, works as follows: for each span of

rectangles we want to find the order that minimizes

the length of edges (distance) between rectangles in

this span and all other rectangles. The order is

found by first computing the total length of edges

for a rectangle at each possible position in the span

(lines: 13 - 16), then for each position subtracting

the cost (either gain or loss) of moving the

rectangle to a different position (lines: 17 - 18).

Finally, for each position, the rectangle that

minimizes the length cost is chosen (lines: 6 - 7).

The complexity of algorithm 1 is O(t
i
E

i
), where t

i

and E
i
 are number of communities and edges,

respectively, at pass i of the hierarchy tree.

Figure 5 (a) - (h) shows a sequence of

ordering the rectangles in the 8 spans generated by

the treemap. The span that is being ordered is

highlighted with a light gray color. The total edges

length is reduced from 19,765 to 14,661. Our

method does not intrinsically target the number of

intersections between edges however, practically,

the reduction in edges length almost always leads to

a reduction in the number of intersections, from 339

to 292 in our example. In table 1, we report the

results of our experiments conducted on real

datasets which are commonly used in the literature.

Our results show 10% to 15% reduction in the total

length of edges between communities leading to a

less cluttered view.

Table 1: Length Of Edges Before And After Ordering

Treemap Layout

Dataset n m Edges
Edges after

ordering

Zachary’s
karata club

34 78 250 250

Word
adjacency

112 425 2,668 2,334

American

football
115 613 8,983 7,366

Power grid 4,941 6,594 22,264 20,260

Collaboration

99
13,861 44,619 130,651 104,002

Collaboration
03

27,519 116,180 1,871,680 1,582,861

6. DISCUSSION

The main steps that are taken by our

approach are summarized in figure 6. The visual

output of each step is shown right below it. The

input is a graph of nodes and edges that is likely to

have communities; it can be undirected or directed

graph. The graph size does not impose any

restrictions on the system behavior, however, large

graphs, that have hundreds of thousands of nodes

and edges, can take hours to find communities [16].

The good news is that it only needs to be computed

once and it can possibly carried out offline and then

fed to the system. As the graph shows, in the first

step, communities are generated at different

resolution levels and the hierarchy tree is built. The

Algorithm 1 Ordering Treemap

1: for all s ∈ spans do

2: if s.rects:length == 1 then

3: continue

4: for all r ∈ s.rects do

5: lens[r] = LengthCost(r, s)

6: for all r ∈ s.rects do

7: r.center = min(lens[r])

8:

9: function LengthCost(r; s)

10: Output: Array of costs of links length of

11: positioning r at the center of all rects of s

12:

13: for all pos ∈ s.rects do

14: for all l ∈ r.links do

15: � link distance when r is at pos:center

16: lens[pos:center] += distance(l; pos:center)

17: for i = 0; s:rects:length - 1 do

18: for j = i + 1, s.rects:length - 1 do

19: lens[i] += lens[i] - lens[j]

20: return lens

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2505

communities found, by definition, satisfy property

(1). This step is carried out only once while the

remaining steps are performed repeatedly based on

user interaction. In view selection, the user gets to

select what level of details to include in the

generated graph. The user can interactively change

his selection seeking more or less details. Once the

communities have been selected they are sent to the

treemap layout. The treemap layout determines the

gravity centers used for attracting and positioning

communities, thus, emphasizing properties (2), (3),

and (5). A reordering of treemap is applied to bring

closer those communities that have high number

edges between them and therefore encouraging

property (4).

In the last step, the graph is drawn using a

force-layout model. The graph drawing represents

the performance bottle neck of the approach as it

takes O(VlogV) per iteration which renders it

intractable for large graphs. Luckily, the user can

consult with the hierarchy tree view to include only

nodes of interest leading to fewer nodes being

drawn. In our approach, the force calculation is

modified to include the gravitational force that is

exerted to attract nodes within communities closer

to each other. In practice, the additional force

enhances the performance causing the system to

reach a local minima faster. Table 2 reports the

number of iterations without and with gravitational

force required for the system to stabilize. The

experiments are executed 100 times and the average

numbers of iterations are reported in the table.

Table 2: Number Of Iterations Required By The

Force-Layout Model Without And

With Gravitational Forces

Dataset Iterations

Iterations with

gravitational
force

Zachary’s karata club
210 155

Word adjacency
288 178

American football
176 121

Power grid 70 39

Collaboration 99
65 50

Collaboration03
62 43

Figure 6: The Main Steps Of Our Approach

Figure 7 shows the results of Power Grid

dataset [36] that consists of 4,940 nodes and 6,564

edges, and modularity = 0.93. The high modularity

suggests a good partitioning of the data which is not

quite evident in figure 7 (a). The communities are

hardly, if at all, distinguishable and the view is

highly cluttered which can easily discourage users

from seeking out more information. Furthermore,

none of the visual properties (1) - (5) seems to be

supported. The obscure view can hinder the user

ability to draw conclusion about the true structure

of the graph. In figure 7 (b), we show the results of

our approach on a view selection of the 37

communities at the leaf level of the hierarchy tree.

Clearly, there is hardly any intersection between

communities and highly connected communities are

positioned close to each other. Figure 7 (c) shows

the results of a view selection that consists of 3

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2506

communities (out of 4) at the second level of the

hierarchy tree and 12 leaf communities that are the

children of the fourth communities from the higher

level. The view represents an example of

overview+details capabilities through which users

can interactively explore the view investigating and

seeking interesting patterns in the data.

7. CONCLUSION

We have incorporated refinements to the

visual layout of graph community structure in order

to satisfy desirable visual properties that aim at

enhancing the perception of communities and

support the investigation of their common features.

The proposed approach has been tested on real

datasets of medium sizes and has shown to

effectively support separation of community

regions and reduction of view clutter. Furthermore,

the refinement in force calculation has been shown

to improve the overall performance of the system.

REFRENCES:

[1] Newman ME. The structure of scientific

collaboration networks. Proceedings of the

National Academy of Sciences

2001;98(2):404–9.

[2] Ravasz E, Somera AL, Mongru DA, Oltvai

ZN, Barab´asi AL. Hierarchical organization

of modularity in metabolic networks.

Science 2002;297(5586):1551–5.

[3] Jeong H, Tombor B, Albert R, Oltvai ZN,

Barabasi AL. The large-scale organization of

metabolic networks. Nature

2000;407(6804):651–4.

[4] Arenas A, Danon L, Diaz-Guilera A, Gleiser

PM, Guimera R. Community analysis in

social networks. The European Physical

Journal B 2004;38(2):373–80.

[5] Schaeffer SE. Survey: Graph clustering.

Comput Sci Rev 2007;1(1):27– 64.

[6] Newman MEJ, Girvan M. Finding and

evaluating community structure in networks.

Phys Rev E 2004;69(2):026113.

[7] Herman I, Melanc¸on G, Marshall MS.

Graph visualization and navigation in

information visualization: A survey. IEEE

Transactions on Visualization and Computer

Graphics 2000;6(1):24–43.

[8] Hu Y, Shi L. Visualizing large graphs. Wiley

Interdisciplinary Reviews: Computational

Statistics 2015;7(2):115–36.

(a)

(b)

(c)

Figure 7: Results Of Power Grid Dataset [36]. (A)

Results Using Traditional Graph Drawing (B) Results

Using Our Approach On A View Selection Of 37 Leaf

Communities (C) View Selection Of 2 Levels That

Comprise 15 Communities.

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2507

[9] Eades P, Feng QW. Multilevel visualization

of clustered graphs. In: International

Symposium on Graph Drawing. Springer;

1996, p. 101–12.

[10] Heer J, Boyd D. Vizster: Visualizing online

social networks. In: Information

Visualization, 2005. INFOVIS 2005. IEEE

Symposium on. IEEE;2005, p. 32–9.

[11] Di Giacomo E, Didimo W, Grilli L, Liotta G.

Graph visualization techniques for web

clustering engines. IEEE Transactions on

Visualization and Computer Graphics

2007;13(2).

[12] Quigley A, Eades P. Fade: Graph drawing,

clustering, and visual abstraction. In:

Proceedings of the 8th International

Symposium on Graph Drawing. GD ’00;

London, UK, UK: Springer-Verlag; 2001, p.

197–210.

[13] Shi L, Cao N, Liu S, Qian W, Tan L, Wang

G, et al. Himap: Adaptive visualization of

large-scale online social networks. In:

Proceedings of the 2009 IEEE Pacific

Visualization Symposium. PACIFICVIS ’09;

Washington, DC, USA: IEEE Computer

Society; 2009, p. 41–8.

[14] Abello J, van Ham F, Krishnan N. Ask-

graphview: A large scale graph visualization

system. IEEE Transactions on Visualization

and Computer Graphics 2006;12(5):669–76.

[15] Jonker D, Langevin S, Giesbrecht D, Crouch

M, Kronenfeld N. Graph mapping: Multi-

scale community visualization of massive

graph data. Information Visualization

2016;:1473871616661195.

[16] Blondel VD, Guillaume JL, Lambiotte R,

Lefebvre E. Fast unfolding of communities

in large networks. Journal of Statistical

Mechanics: Theory and Experiment

2008;2008(10):P10008.

[17] Shneiderman B. Tree visualization with tree-

maps: 2-d space-filling approach. ACM

Trans Graph 1992;11(1):92–9.

[18] Muelder C, Ma KL. Rapid graph layout

using space filling curves. IEEE

Transactions on Visualization and Computer

Graphics 2008;14(6).

[19] Holten D. Hierarchical edge bundles:

Visualization of adjacency relations in

hierarchical data. IEEE Transactions on

Visualization and Computer Graphics

2006;12(5):741–8.

[20] Holten D, VanWijk JJ. Force-directed edge

bundling for graph visualization. In:

Computer graphics forum; vol. 28. Wiley

Online Library; 2009, p. 983–90.

[21] Muelder C, Ma KL. A treemap based

method for rapid layout of large graphs. In:

Visualization Symposium, 2008.

PacificVIS’08. IEEE Pacific. IEEE; 2008, p.

231–8.

[22] Fekete J, Wang D, Dang N, Aris A, Plaisant

C. Interactive poster: Overlaying graph links

on treemaps. In: In Proceedings of the IEEE

Symposium on Information Visualization

Conference Compendium. 2003,.

[23] Newman ME. Fast algorithm for detecting

community structure in networks. Physical

review E 2004;69(6):066133.

[24] Newman ME. Modularity and community

structure in networks. Proceedings of the

national academy of sciences

2006;103(23):8577–82.

[25] Newman MEJ. Finding community structure

in networks using the eigenvectors of

matrices. Phys Rev E 2006;74:036104.

[26] Duch J, Arenas A. Community detection in

complex networks using extremal

optimization. Physical review E

2005;72(2):027104.

[27] Brandes U, Delling D, Gaertler M, Goerke

R, Hoefer M, Nikoloski Z, et al. Maximizing

modularity is hard. 2006.

[28] Fruchterman TMJ, Reingold EM. Graph

drawing by force-directed placement. Softw

Pract Exper 1991;21(11):1129–64.

[29] Bender EA, Canfield E. The asymptotic

number of labeled graphs with given degree

sequences. Journal of Combinatorial Theory,

Series A 1978;24(3):296–307.

[30] Molloy M, Reed B. A critical point for

random graphs with a given degree

sequence. Random Struct Algorithms

1995;6(2/3):161–79.

[31] Zachary W. An information flow model for

conflict and fission in small groups. Journal

of Anthropological Research 1977;33:452–

73.

[32] Bruls M, Huizing K, van Wijk J. Squarified

treemaps. In: Proc. of Joint Eurographics and

IEEE TCVG Symp. on Visualization (TCVG

2000). IEEE Press; 2000, p. 33–42.

[33] Johnson SC. Hierarchical clustering

schemes. Psychometrika 1967;3(3):241–54.

Journal of Theoretical and Applied Information Technology
15th June 2017. Vol.95. No 11

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2508

[34] Girvan M, Newman ME. Community

structure in social and biological networks.

Proceedings of the national academy of

sciences 2002;99(12):7821–6.

[35] Shneiderman B, Wattenberg M. Ordered

treemap layouts. In: Proceedings of the IEEE

Symposium on Information Visualization

2001 (INFOVIS’ 01). INFOVIS

’01;Washington, DC, USA: IEEE Computer

Society; 2001, p. 73–.

[36] Watts DJ, Strogatz SH. Collective dynamics

of small-worldnetworks. Nature

1998;393(6684):440–2.

