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ABSTRACT 

 

One of the critical factor of computer aided services and data security is defending malicious executables 

known as malwares. Since the zero day activities of malware, it becomes continuous process to sense and 

prevent the malicious activities of the vulnerable executables. The contemporary literature evinces the 

many of malware detection approaches. The malware detection by dynamic assessment is figured as 

significant to explore the behavioral information of the malicious executables. The recent malware analysis 

is concluding that the act of obfuscating the malicious executables is boosting the complexity of defending 

such attacks. This practice strongly demanding the more accurate malware defending approaches, hence 

this manuscript contributed an exploratory scale to analyze API call sequence in order to estimate the scope 

of malicious act by an executable. The proposed model called Exploratory Scale for Malware Perception 

(ESMP) is a machine learning strategy that acquires knowledge from the defined executables that labeled 

as either malicious or benevolent. Further this knowledge is used to define the exploratory scale proposed. 

ESMP even capable of identifying zero day exploiting of malware. The experimental study was carried out 

on set of executables labeled as either malicious or benevolent. The 70% of the given executables were 

used to train the ESMP to define exploratory scale and rest 30% were unlabeled and given to test the 

significance of the ESMP towards malware detection accuracy. The statistical metrics such as accuracy, 

sensitivity and specificity were assessed to notify the scalability, robustness and detection accuracy of the 

ESMP. 

 

Keywords: Executables, Malwares, Benevolent, Zero day activities, Exploratory. 

 

 

1. INTRODUCTION  

 

Over 20 years since malware first showed its 

presence, there has been a huge proliferation in 

malware numbers [1] [2] [3]. As world-wide 

internet access increased so did the exploitation of 

network vulnerabilities by malicious software. The 

malware multiplication is so huge that the year 

2014 has seen more than 317 million new malware 

samples being detected. The different malware 

such as new viruses, worms, Trojans and bots are 

created by their authors to exploit and control the 

target network/system for explicit gains or with 

malicious intentions. The prime reason for the 

spread of a number of malware is the malware 

authors creating newer variations of the original 

malware using syntax code different from the 

existing malicious code. The newer malware are 

created with structural transformation that 

introduces variations of the existing static features 

such as mnemonic frequencies, data constants, 

control flow graphs, etc. However most of static 

analysis based malware detection systems are 

dependent on matching the signature of a newly 

identified malware with the signatures available of 

the existing database of malware [4] [5] [6] and 

this limitation is successfully exploited by the 

newer malware that have transformed code and go 

undetected. So the approach of using simple static 

analysis is inefficient in handling the threats posed 

by newer variants emerging every day. The 

traditional signature based anti-malware scanners 

can only detect known variants of malware and 

cannot protect against Zero day attacks and unseen 
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malware which is answered in this  proposed 

research work.    

The remainder of this paper is organized as 

follows: Section 2 provides the related work of the 

subject of the paper. Section 3 discusses the 

sequence alignment subject along with a problem 

description in implementing this for malware 

detection and analysis. In Section 4 we present our 

devised similarity calculation system for detecting 

variations in the malware and give a detailed 

explanation of the modules of the proposed 

framework. Section 5 demonstrates the results of 

the experiments that show the prospects of 

detecting variations in malware using variant 

samples along with other assessment results. In 

Section 6 a summary of our performed research is 

given discussing the proposed methodologies 

advantages and deficiencies and covers the future 

research work currently undertaken and its 

characteristics. 

2. RELATED WORK 

 
The research for malware detection has many 

methods devised and most of them describe 

malicious behaviors using features of Application 

Programming Interface (API) where the behavior 

of the program is captured at API level. The API 

calls approach assures detection of malware 

variants and these methods also have self-defined 

techniques for performing code comparison of the 

different variants of malware. 

The ensemble based techniques have been a 

popular approach in machine learning where the 

algorithms are used with boosting or bagging 

techniques to enhance the accuracy and stability 

performances. The method devised by Natani et al. 

[7] for malware detection and analysis uses API 

frequencies along with ensemble based classifiers 

where in place of a single classifier the approach 

uses multiple classifiers. In the experiments 

performed malicious behaviors of 100 malware 

samples are analyzed and 24 APIs that are more 

frequently used in the malware are selected. A 

sandbox tool is used to measure the API’s 

frequencies with APIs frequency defined as the 

ratio between the number of invocations of specific 

APIs and the total invocations of APIs. The authors 

perform analysis by applying these frequencies 

using ensemble based classifiers and in the end 

measure the accurateness of the implemented 

analysis.  

Wagener et al. [8] proposed a malware detection 

method based on the API invocation information 

used to call system functions by the malware. In 

this approach binary code is defined for every API 

and this binary code is used to record malware 

patterns of API invocation. The authors then 

compared the API invocation information using an 

edit distance matrix and their own formulas and 

finally measured among the malware variants the 

prevalent similarities. 

Xu et al. [9] devised a Windows systems based 

malware detection method using a custom built PE 

binary parser tool instead of third-party 

disassemblers as it extracts useless malware 

features degrading the analysis systems 

performance. This PE binary parser tool is used to 

analyze the PE binary code and generate API call 

sequences and in case they are known malware 

these sequences are recorded in signature database 

system. A comparison of these sequences with 

unidentified malware API call sequences and the 

similarities are calculated between the two types of 

sequences finally to find new malware. 

Liu Wu et al. [10] devised Malware Behavior 

Feature (MBF) approach that uses Boolean 

expressions to extract malware features based on 

the invocation patterns of malicious API. A 

malware detection algorithm is devised based on 

the MBF approach and this approach is 

implemented with a malware detection system 

based on Malware Behavior Feature. The model 

achieves in tests results a high rate of accuracy and 

also detects malware that are not known before. 

Martin Apel et al. [11] for identifying polymorphic 

malware experimented with various distance 

measures and their beneficial properties. The study 

evaluates and compares different distance metrics 

for detecting malware behavior features and uses a 

suitable distance measure to find behavior 

similarities that are used to group the malware 

samples.  

Mamoun Alazab et al. [12] devised approach 

analyzes the usage of the features of API 

invocation for malicious intents. The method 

automatically extracts features of API invocation in 

binary executable files and performs automatic 

analysis of these features and their classified 

behaviors for unknown malicious intents in the 

maliciously bundled files. The authors use a four-

step procedure based fully automatic system to 

group the features into six important classes in 

terms of their suspicious behavior features in the 

invocation of API. 

The above discussed model uses features of API 

invocation for detecting malicious behavior. The 

constraint of this model is it gives more emphasis 

on the way to describe the malicious behavior and 

not the multifaceted approaches required to 
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compare and produce results of similarities existing 

in the malwares with greater accuracy. In API 

features comparison it is highly challenging to 

apply complicated algorithms. In order to enhance 

the efficiency of a malware detection system, it is 

obvious to invite advanced techniques for 

calculating the similarities in malware variants.  

In regard to surpass the issues elevated in malware 

attack detection, our contribution adapted dynamic 

analysis to diagnose the malware [13] [14]. The 

proposed malware attack detection strategy uses 

API call sequences to notify the behavioral act of 

malware, which is since the APIs are the core 

interfaces to perform operating system level 

malevolent activities. The exploratory scale that 

proposed here in this manuscript is hence 

considering the n-gram call sequences as features. 

Unlike the traditional strategy of sequence 

comparison to identify the malware, the proposed 

ESMP identifies the impact of the n-gram 

sequences based on the proposed scale, since the 

call sequence similarity comparison is approximate 

and often fails due to slight noise in call sequence. 

The call sequence similarity comparison prefers n-

gram sequences to compare, in contrast to that our 

proposed scale prefers 2 gram sequences as 

features in order to withhold the impact of call 

sequence noise.  Therefore, our proposed method 

can identify malevolent sequences under noise 

impact. 

3. EXPLORATORY SCALE FOR 

MALWARE PERCEPTION 

 
Our proposed ESMP devises exploratory scale to 

malevolent scope and exploratory scale to 

benevolent scope. In order to this, 2 gram 

sequences of the given malevolent and benevolent 

call sequences are extracted as respective features. 

Further optimal features respective to malevolent 

and benevolent call sequences given will be 

tracked, which is done by sequential floating 

forward search [15]. Then the impact of each 

feature and each call sequence of given malevolent 

and benevolent call sequences given as training set, 

which will be assessed using bipartite graph 

strategy. Then these respective impacts of features 

and call sequences will be used to define 

exploratory scale to malevolent scope and 

exploratory scale to benevolent scope.  

The objective of the ESMP defines scale by the 

knowledge gained from the training set. In order to 

this the given training set t d s  is partitioned into 

two by their Boolean labels (true, false or 0, 1). 

The records of partition tlr  labeled as true are the 

call sequence records confirmed as malicious and 

the records of partition f l r   labeled as false are 

call sequence records confirmed as benevolent. 

Then these two partitions tlr  and f l r  are used to 

define “Exploratory Scale to Malicious Scope 

( esms )” and “Exploratory Scale to Benevolent 

Scope ( esbs )”. Further these scales are used to 

gauge the attack scope of a given call sequence 

record. The approach that used in both cases of 

defining s d h s  and s n h s are the similar that 

explained in following sections. 

 

3.1 Exploring Call Sequence set 

 

The dataset D S  of call sequence records of size 

| |D S  will be considered for training towards 

defining the both exploratory scales 

esms and esbs . Each unique two calls in 

sequence of given call sequence records are 

considered as features and each two calls in 

sequence referred as feature in further description.  

The given call sequence set D S  partitioned in 

to
1 2 | |{ , ,..., }MCSMCS mcs mcs mcs= and

1 2 | |{ , ,..., }BCSBCS bcs bcs bcs= that represents 

malicious and benevolent call sequences 

respectively. The feature sets Mtcs , Btcs of 

respective datasets MCS and BCS contains all 

unique two calls in sequence found in respective 

call sequence records of datasets MCS and 

BCS as features, which are represented as follows 

1 2 | |{ , ,... }
MM tcstcs m m m= // two calls in 

sequence as features found in call sequence 

records of malicious call sequence set MCS  

1 2 | |{ , ,... }
BB tcstcs b b b= // two calls in 

sequence as features found in call sequence 

records of benevolent call sequence set BCS  

3.2 Feature Optimization 

 
The feature optimization is done by selecting 

features using one of the prominent feature search 

technique called sequential floating forward search 

[15]. This technique verifies the each feature 

optimality on a given criteria in a sequential pattern 

and also verifies the shoddiness of the feature 

under the given criteria and eliminates shoddier 

features. Such that this technique iterates by opting 

optimal feature or deleting shoddier features until 
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no change found in the optimal feature set. Since 

the optimal feature set size increases if new feature 

added and decreases if shoddier feature delete, the 

technique is referred as sequential floating forward 

search.  

The context of our contribution verifies the 

optimality of feature such that a feature 

{ }Mm m tcs∃ ∈  of malicious call sequences 

should have high coverage (appears in majority of 

the given malicious call sequences) in MCS  

should evince least coverage (appears in least 

number of benevolent call sequences) in BCS . If 

feature contradict to this property then the feature 

said to shoddier feature towards malicious call 

sequences. Similarly, the optimal features of 

Btcs will be found. The property that considered to 

select optimal features from Btcs is, a feature 

{ }Bb b tcs∃ ∈  of malicious call sequences should 

have high coverage (appears in majority of the 

given benevolent call sequences) in BCS  should 

evince least coverage (appears in least number of 

malicious call sequences) in MCS . If feature 

contradict to this property then the feature said to 

shoddier feature towards malicious call sequences.   

The feature optimization process discards all 

shoddier features from the Mtcs  and Btcs  

respectively.   

 

3.3 Defining Exploratory Scales from Training 

Data  

 
The exploratory scale for respective malicious and 

benevolent call sequence detection is described in 

this section. In order to this, the correlation 

between each pair of features (pair of two calls in 

sequence), which is used further to assess the 

confidence of each feature (two call in sequence) 

towards each call sequence of the respective 

MCS and BCS . This feature confidence is used 

further to compute the confidence of each call 

sequence of respective MCS  and BCS . The 

feature confidence and call sequence confidence 

obtained will be used further to identify the impact 

of each feature and call sequence respective to 

malicious and benevolent scope. These feature and 

call sequence impacts are then used to define the 

exploratory scales esms and esbs to detect 

malicious and benevolent call sequence 

respectively.   

3.3.1 Measuring Feature (two calls in 

sequence) pair correlation 

 
In order to define the scale, initially for each 

feature set Mtcs and Btcs , the correlation between 

each pair of two calls in sequence will be assessed 

as follows: 
| |

1
{ }

Mtcs

i i M
i

m m tcs
=
∀ ∃ ∈  Begin 

| |

1
{ }

Mtcs

j j M
j

m m tcs
=
∀ ∃ ∈ Begin 

{ }
| |

1
{ , }

1 ( ) { , }

| |i j

MCS

i j k

k
m m

i j m m mcs

MCS
ρ =

∃ ≠ ∧ ⊆

=
∑

 

// the number of malicious call sequences 

contain both features divides by total 

number of malicious call sequences 

 

End 

End 

Similarly, the feature pair correlation for each pair 

of two calls in sequence will be assessed as 

follows: 
| |

1
{ }

Btcs

i i B
i

b b tcs
=
∀ ∃ ∈  Begin 

| |

1
{ }

Btcs

j j B
j

b b tcs
=
∀ ∃ ∈ Begin 

{ }
| |

1
{ , }

1 ( ) { , }

| |i j

BCS

i j k

k
b b

i j b b bcs

BCS
ρ =

∃ ≠ ∧ ⊆

=
∑

 

// the number of benevolent call sequences 

contain both features divides by total 

number of benevolent call sequences 

 

End 

End 
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3.3.2 The Measuring feature to call sequence 

confidence 

 
Each feature confidence towards respective each 

call sequence of MCS  and BCS can be 

estimated as follows: 
| |

1
{ }

MCS

i i
i

mcs mcs MCS
=
∀ ∃ ∈  Begin 

| |

1
{ }

Mtcs

j j M i j
j

m m tcs mcs m
=
∀ ∃ ∈ ∧ ∋  Begin 

{ }
| |

( , )

1

( ) ( ) ( )

| | 1

M

j k

j i

tcs

m m k M i k

k
m mcs

i

k j m tcs mcs m

mcs

ρ

χ =
⇒

∃ ≠ ∧ ∈ ∧ ∋

=
−

∑

 

// aggregation of correlation of each pair 

of features contain feature 
jm  divides by 

total number of features (two call in 

sequence) found in imcs . 

    End 

 

End 

Similarly, each feature confidence towards each 

call sequence of BCS  is measured as follows: 
| |

1
{ }

BCS

i i
i

bcs bcs BCS
=
∀ ∃ ∈  Begin 

| |

1
{ }

Btcs

j j B i j
j

b b tcs bcs b
=
∀ ∃ ∈ ∧ ∋  Begin 

{ }
| |

( , )

1

( ) ( ) ( )

| | 1

B

j k

j i

tcs

b b k B i k

k
b bcs

i

k j b tcs bcs b

bcs

ρ

χ =
⇒

∃ ≠ ∧ ∈ ∧ ∋

=
−

∑

 

// aggregation of correlation of each pair 

of features contain feature 
jb  divides by 

total number of features (two call in 

sequence) found in ibcs . 

     End. 

End.  

3.3.3 Measuring Call Sequence Confidence 

  

The call sequence confidence of 

respective MCS  and BCS is measured 

further as follows 
| |

1
{ }

MCS

i i
i

mcs mcs MCS
=
∀ ∃ ∈  Begin 

{ }
| |

1

| | 1

M

j i

i

tcs

m mcs i j

j

mcs

i

mcs m

mcs

χ

χ
⇒

=

∃ ∋

=
−

∑
 

// aggregation of confidence of all features 

towards respective call sequence divides 

by total number of features (two call in 

sequence) found in imcs . 

Similarly, the confidence of each call 

sequence of respective BCS  is assessed as 

follows: 
| |

1
{ }

MCS

i i
i

bcs bcs BCS
=
∀ ∃ ∈  Begin 

{ }
| |

1

| | 1

B

j i

i

tcs

b bcs i j

j

bcs

i

bcs b

bcs

χ

χ
⇒

=

∃ ∋

=
−

∑
 

// aggregation of confidence of all features 

towards respective call sequence divides 

by total number of features (two call in 

sequence) found in ibcs . 

3.3.4 Measuring feature impact 

 
The next level of scale definition, the feature 

impact respective to MCS and BCS  are 

assessed as follows 
| |

1
{ }

Mtcs

i i M
i

m m tcs
=
∀ ∃ ∈ Begin 

{ }
| |

1

| |

1

k

i

l

MCS

mcs k i

k
m MCS

mcs

l

mcs mχ

ι

χ

=

=

∃ ∋

=
∑

∑
 

// aggregation of the confidence of call 

sequences those contains respective 

feature divides by the aggregation of 

confidence of all call sequences found in 

MCS  

End 

Similarly, the feature impacts of the respective 

BCS  is measured as follows: 
| |

1
{ }

Btcs

i i B
i

b b tcs
=
∀ ∃ ∈ Begin 
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{ }
| |

1

| |

1

k

i

l

BCS

bcs k i

k
b BCS

bcs

l

bcs bχ

ι

χ

=

=

∃ ∋

=
∑

∑
 

// aggregation of the confidence of call 

sequences those contains respective 

feature divides by the aggregation of 

confidence of all call sequences found in 

BCS  

End 

 

3.3.5 Measuring Call Sequence Impact 

 

Assessing respective call sequence impact 

towards malicious or benevolent scope is the 

next in hierarchy of exploratory scale 

definition. The call sequence impact of each 

call sequence in MCS  is assessed as follows 

{ }
| |

1

MCS

i i
i

mcs mcs MCS
=
∀ ∃ ∈  Begin 

{ }

{ }

| |

1

| |

1

M

j

i M

k

tcs

m i j

j

mcs tcs

m

k

mcs mι

ι

ι

=

=

∃ ∋

=

∑

∑
 

// aggregation of the impact of the all 

features exists in respective call sequence 

divides by the aggregation of impact of all 

features found in Mtcs  

End 

Similarly, the respective call sequence impact of all 

call sequence of BCS  can be found as follows 

{ }
| |

1

BCS

i i
i

bcs bcs BCS
=
∀ ∃ ∈  Begin 

{ }

{ }

| |

1

| |

1

B

j

i B

k

tcs

b i j

j

bcs tcs

b

k

bcs bι

ι

ι

=

=

∃ ∋

=

∑

∑
 

// aggregation of the impact of the all 

features exists in respective call sequence 

divides by the aggregation of impact of all 

features found in Btcs  

End 

 

3.3.6 Exploratory Scale to Malicious and 

Benevolent Scope  

 
Further the impact of the respective call sequences 

of MCS  and BCS are used further to define 

exploratory scales esms  and esbs  respectively, 

which is as follows: 
| |

1

{ }

| |

i

MCS

mcs i

i

mcs MCS

esms
MCS

ι
=

∃ ∈

=
∑

 

Further the lower bound and upper bound of the 

esms  is estimated by differentiating the mean 

absolute distance [17] of the impact of all call 

sequence in MCS , which is as follows: 
| |

2

1

( )

| |

i

MCS

mcs

i
mad

esms

esms
MCS

ι
=

−

=
∑

 

// Mean absolute distance of esms  

l madesms esms esms= − // lower bound of the 

esms  

u madesms esms esms= + // upper bound of the 

esms  

Similarly, the exploratory scale to benevolent 

scope ( esbs ) and its lower and upper bounds for 

respective call sequences of BCS  can be 

measured as follows: 
| |

1

{ }

| |

i

BCS

bcs i

i

bcs BCS

esbs
BCS

ι
=

∃ ∈

=
∑

 

| |
2

1

( )

| |

i

BCS

bcs

i
mad

esbs

esbs
BCS

ι
=

−

=
∑

 

// Mean absolute distance of esbs  

l madesbs esbs esbs= − // lower bound of the 

esbs  

u madesbs esbs esbs= + // upper bound of the 

esbs  
 

3.4 Scaling Call sequence Record  

 
The Exploratory Scale to Malicious 

Scope ( )esms , Exploratory Scale to Benevolent 



Journal of Theoretical and Applied Information Technology 
31st May 2017. Vol.95. No 10 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
2303 

 

Scope ( )esbs and their respective lower and upper 

bounds devised (see section 3.4) will be used 

further to assess the state reflected by a given call 

sequence record as follows 

Let cs be the given call sequence, the impact of 

cs  towards malicious scope can be assessed as 

follows. 

{ }

{ }

| |

1

| |

1

M

i

M

tcs

m i M i

i
cs MCS tcs

j j

j

m tcs cs m

m m

ι

ι =
⇒

=

∃ ∈ ∧ ∋

=

∃

∑

∑
 

// the aggregate of each feature impact of 

that exists in Mtcs  and cs divides by the 

aggregate of all features exists in Mtcs  

 

Further the impact of cs  towards benevolent 

scope is assessed as follows: 

{ }

{ }

| |

1

| |

1

B

i

B

j

tcs

b i B i

i
cs BCS tcs

b j B

j

b tcs cs b

b tcs

ι

ι

ι

=
⇒

=

∃ ∈ ∧ ∋

=

∃ ∈

∑

∑
 

// the aggregate of each feature impact of that exists 

in Btcs  and cs divides by the aggregate of all 

features exists in Btcs  

//The average of influence weights of all features 

towards normal scope, which are belongs to given 

record p r  

 Then these malicious impact scope 

cs MCSι ⇒  and benevolent impact scope cs BCSι ⇒ of 

cs  are used to estimate the given call 

sequence cs is attack prone or normal, which is as 

follows. 

( )

( )
cs MCS u

cs MCS cs BCS

esms

esms esbs

ι

ι ι

⇒

⇒ ⇒

≥ ∨

≥ ∧ ≤
 

//Call sequence cs  is scaled as 

malicious 

( )cs BCS lesbsι ⇒ ≤  

//Call sequence cs  is scaled to 

attack prone (possibly zero day 

attack) 

( )
( )

cs BCS u

cs BCS cs MCS l

esbs

esbs esms

ι

ι ι

⇒

⇒ ⇒

≥ ∨

≥ ∧ ≤
 

//Call sequence cs  to be 

benevolent 

 

Rest of all cases said to be suspicious and it is 

advised to recommend safe zone access 

4 EXPERIMENTAL STUDY 

 
The experimental study was done on the call 

sequence dataset called CSDMC2010_API [16]. 

This dataset contains 388 call sequences those 

labeled as 1 (malicious call sequence) and 0 

(benevolent call sequence). In order to estimate the 

explorative scale, 75% of malicious and benevolent 

call sequences of the chosen dataset were used. The 

rest 25% call sequences were unlabeled and used to 

test the significance of the proposal towards 

malware detection accuracy. The results obtained 

from experimental study were listed in table 1, 

which are evincing the significance of the ESMP 

towards malware detection. The detailed prediction 

statistics were explored in table 2. 

 
Table 1: The Traininginputs And Resultant Exploratory 

Scales 

Malicious Call 

Sequence 240 

Benevolent Call 

Sequence 51 
esms  0.574996 

madesms  0.10572 

lesms  0.475628 

uesms  0.683246 

esbs  0.644838 

madesbs  0.179485 

lesbs  0.47749 

uesbs  0.81056 
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Table 2: The Testing Inputs And Prediction Statistics Of 

The ESMP 

Malicious Call 

Sequence 

80 

Benevolent Call 

Sequence 

17 

True Positives 79 

True Negatives 15 

False Positives 2 

False Negative 1 

positive predictive 

value 

0.975308642 

Negative Predictive 

Value 

0.9375 

Accuracy 0.969072165 

Sensitivity 0.9875 

Specificity 0.882352941 

 
Figure 1: Visualization Of Prediction Metrics And Their 

Values Observed For ESMP 

The 97 call sequences were used to assess the 

significance of the proposed ESMP. Among them, 

80 call sequences are malicious and 17 are 

benevolent call sequences. The ESMP assessed the 

given input call sequences such that 79 call 

sequences are true positives (true prediction of 

malicious call sequences), 2 call sequences are 

false positive (false prediction of benevolent call 

sequences as malicious), 15 call sequences are true 

negatives (true prediction of benevolent call 

sequences) and 1 call sequences is false negative 

(malicious call sequence predicted as benevolent). 

Hence the malicious call sequence prediction value 

(also known as precision) is 0.975, benevolent 

prediction value is 0.938, the malicious call 

sequence detection rate (also known as sensitivity) 

is 0.988, the benevolent call sequence detection 

rate (also known as specificity) is 0.882 and the 

accuracy (which is the ratio between true 

prediction of malicious and benevolent call 

sequences and all given call sequences) is 0.97. 

These statistics indicating that the ESMP is 

significant to differentiate the malicious and 

benevolent call sequences with 97% accuracy. The 

sensitivity of the ESMP is 99%, hence the zero day 

malicious call sequences prediction is at its best. 

The prediction statistics observed from the 

experimental study of the ESMP are visualized in 

fig1. 

5 CONCLUSION: 

 
An Exploratory Scale for Malware Perception 

(ESMP), which is based on heuristics learned from 

API call sequence was proposed in this manuscript. 

The proposed model delivers an exploratory scale 

to estimate a call sequence is malicious or 

benevolent. The model proposed is considering the 

2 gram call sequences as features of the given 

training set of malicious and benevolent call 

sequences. Further, selects optimal features by 

using sequential floating forward search [15]. Then 

the impact of these optimal features and respective 

call sequences towards the scope of maliciousness 

and benevolence were assessed. Afterwards these 

impact ratios observed for respective features and 

call sequences were used to devise exploratory 

scale of malicious act scope and benevolent act 

scope.  These scales further can be used to percept 

a given call sequence is malicious or benevolent. 

The prediction phase extracts all 2 gram call 

sequences from the given input call sequence and 

estimates the impact of these features. Further uses 

these impacts of the respective features to estimate 

the impact of the given call sequence towards the 

scope of maliciousness and the scope of 

benevolence. Then these values are compared to 

exploratory scales devised for malicious scope and 

benevolent scope to percept the given call sequence 

is malevolent or benevolent. The experimental 

study evinces the significance (malevolent 

detection rate is 99%) and accuracy (malevolent 

and benevolent call sequence detection rate is 97%) 

of the ESMP to identify a call sequence is 

malevolent or benevolent. This work can be 

extended to identify the impact of 3 gram and n 

gram call sequences ad features and also 

considering the correlation of 2, 3 and n gram call 

sequences  correlation that minimizes the learning 

overhead in exploratory scale definition. The other 

future research direction would define evolutionary 

computation or soft computing strategies those 

uses the proposed exploratory scale as cost or 

objective function.  
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