
Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2297

ESMP: EXPLORATORY SCALE FOR MALWARE

PERCEPTION THROUGH API CALL SEQUENCE LEARNING

1
G. BALAKRISHNA,

 2
DR. V.RADHA,

3
DR. K.VENU GOPALA RAO

1
Associate Professor, Department of CSE, CVR College of Engineering, JNTUH, Hyderabad, INDIA

2
 Assistant Professor, IDRBT, Hyderabad, INDIA

3
 Professor, Department of CSE, GNITS, JNTUH, Hyderabad, INDIA

E-mail:
1
 govind.krishna83@gmail.com,

ABSTRACT

One of the critical factor of computer aided services and data security is defending malicious executables

known as malwares. Since the zero day activities of malware, it becomes continuous process to sense and

prevent the malicious activities of the vulnerable executables. The contemporary literature evinces the

many of malware detection approaches. The malware detection by dynamic assessment is figured as

significant to explore the behavioral information of the malicious executables. The recent malware analysis

is concluding that the act of obfuscating the malicious executables is boosting the complexity of defending

such attacks. This practice strongly demanding the more accurate malware defending approaches, hence

this manuscript contributed an exploratory scale to analyze API call sequence in order to estimate the scope

of malicious act by an executable. The proposed model called Exploratory Scale for Malware Perception

(ESMP) is a machine learning strategy that acquires knowledge from the defined executables that labeled

as either malicious or benevolent. Further this knowledge is used to define the exploratory scale proposed.

ESMP even capable of identifying zero day exploiting of malware. The experimental study was carried out

on set of executables labeled as either malicious or benevolent. The 70% of the given executables were

used to train the ESMP to define exploratory scale and rest 30% were unlabeled and given to test the

significance of the ESMP towards malware detection accuracy. The statistical metrics such as accuracy,

sensitivity and specificity were assessed to notify the scalability, robustness and detection accuracy of the

ESMP.

Keywords: Executables, Malwares, Benevolent, Zero day activities, Exploratory.

1. INTRODUCTION

Over 20 years since malware first showed its

presence, there has been a huge proliferation in

malware numbers [1] [2] [3]. As world-wide

internet access increased so did the exploitation of

network vulnerabilities by malicious software. The

malware multiplication is so huge that the year

2014 has seen more than 317 million new malware

samples being detected. The different malware

such as new viruses, worms, Trojans and bots are

created by their authors to exploit and control the

target network/system for explicit gains or with

malicious intentions. The prime reason for the

spread of a number of malware is the malware

authors creating newer variations of the original

malware using syntax code different from the

existing malicious code. The newer malware are

created with structural transformation that

introduces variations of the existing static features

such as mnemonic frequencies, data constants,

control flow graphs, etc. However most of static

analysis based malware detection systems are

dependent on matching the signature of a newly

identified malware with the signatures available of

the existing database of malware [4] [5] [6] and

this limitation is successfully exploited by the

newer malware that have transformed code and go

undetected. So the approach of using simple static

analysis is inefficient in handling the threats posed

by newer variants emerging every day. The

traditional signature based anti-malware scanners

can only detect known variants of malware and

cannot protect against Zero day attacks and unseen

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2298

malware which is answered in this proposed

research work.

The remainder of this paper is organized as

follows: Section 2 provides the related work of the

subject of the paper. Section 3 discusses the

sequence alignment subject along with a problem

description in implementing this for malware

detection and analysis. In Section 4 we present our

devised similarity calculation system for detecting

variations in the malware and give a detailed

explanation of the modules of the proposed

framework. Section 5 demonstrates the results of

the experiments that show the prospects of

detecting variations in malware using variant

samples along with other assessment results. In

Section 6 a summary of our performed research is

given discussing the proposed methodologies

advantages and deficiencies and covers the future

research work currently undertaken and its

characteristics.

2. RELATED WORK

The research for malware detection has many

methods devised and most of them describe

malicious behaviors using features of Application

Programming Interface (API) where the behavior

of the program is captured at API level. The API

calls approach assures detection of malware

variants and these methods also have self-defined

techniques for performing code comparison of the

different variants of malware.

The ensemble based techniques have been a

popular approach in machine learning where the

algorithms are used with boosting or bagging

techniques to enhance the accuracy and stability

performances. The method devised by Natani et al.

[7] for malware detection and analysis uses API

frequencies along with ensemble based classifiers

where in place of a single classifier the approach

uses multiple classifiers. In the experiments

performed malicious behaviors of 100 malware

samples are analyzed and 24 APIs that are more

frequently used in the malware are selected. A

sandbox tool is used to measure the API’s

frequencies with APIs frequency defined as the

ratio between the number of invocations of specific

APIs and the total invocations of APIs. The authors

perform analysis by applying these frequencies

using ensemble based classifiers and in the end

measure the accurateness of the implemented

analysis.

Wagener et al. [8] proposed a malware detection

method based on the API invocation information

used to call system functions by the malware. In

this approach binary code is defined for every API

and this binary code is used to record malware

patterns of API invocation. The authors then

compared the API invocation information using an

edit distance matrix and their own formulas and

finally measured among the malware variants the

prevalent similarities.

Xu et al. [9] devised a Windows systems based

malware detection method using a custom built PE

binary parser tool instead of third-party

disassemblers as it extracts useless malware

features degrading the analysis systems

performance. This PE binary parser tool is used to

analyze the PE binary code and generate API call

sequences and in case they are known malware

these sequences are recorded in signature database

system. A comparison of these sequences with

unidentified malware API call sequences and the

similarities are calculated between the two types of

sequences finally to find new malware.

Liu Wu et al. [10] devised Malware Behavior

Feature (MBF) approach that uses Boolean

expressions to extract malware features based on

the invocation patterns of malicious API. A

malware detection algorithm is devised based on

the MBF approach and this approach is

implemented with a malware detection system

based on Malware Behavior Feature. The model

achieves in tests results a high rate of accuracy and

also detects malware that are not known before.

Martin Apel et al. [11] for identifying polymorphic

malware experimented with various distance

measures and their beneficial properties. The study

evaluates and compares different distance metrics

for detecting malware behavior features and uses a

suitable distance measure to find behavior

similarities that are used to group the malware

samples.

Mamoun Alazab et al. [12] devised approach

analyzes the usage of the features of API

invocation for malicious intents. The method

automatically extracts features of API invocation in

binary executable files and performs automatic

analysis of these features and their classified

behaviors for unknown malicious intents in the

maliciously bundled files. The authors use a four-

step procedure based fully automatic system to

group the features into six important classes in

terms of their suspicious behavior features in the

invocation of API.

The above discussed model uses features of API

invocation for detecting malicious behavior. The

constraint of this model is it gives more emphasis

on the way to describe the malicious behavior and

not the multifaceted approaches required to

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2299

compare and produce results of similarities existing

in the malwares with greater accuracy. In API

features comparison it is highly challenging to

apply complicated algorithms. In order to enhance

the efficiency of a malware detection system, it is

obvious to invite advanced techniques for

calculating the similarities in malware variants.

In regard to surpass the issues elevated in malware

attack detection, our contribution adapted dynamic

analysis to diagnose the malware [13] [14]. The

proposed malware attack detection strategy uses

API call sequences to notify the behavioral act of

malware, which is since the APIs are the core

interfaces to perform operating system level

malevolent activities. The exploratory scale that

proposed here in this manuscript is hence

considering the n-gram call sequences as features.

Unlike the traditional strategy of sequence

comparison to identify the malware, the proposed

ESMP identifies the impact of the n-gram

sequences based on the proposed scale, since the

call sequence similarity comparison is approximate

and often fails due to slight noise in call sequence.

The call sequence similarity comparison prefers n-

gram sequences to compare, in contrast to that our

proposed scale prefers 2 gram sequences as

features in order to withhold the impact of call

sequence noise. Therefore, our proposed method

can identify malevolent sequences under noise

impact.

3. EXPLORATORY SCALE FOR

MALWARE PERCEPTION

Our proposed ESMP devises exploratory scale to

malevolent scope and exploratory scale to

benevolent scope. In order to this, 2 gram

sequences of the given malevolent and benevolent

call sequences are extracted as respective features.

Further optimal features respective to malevolent

and benevolent call sequences given will be

tracked, which is done by sequential floating

forward search [15]. Then the impact of each

feature and each call sequence of given malevolent

and benevolent call sequences given as training set,

which will be assessed using bipartite graph

strategy. Then these respective impacts of features

and call sequences will be used to define

exploratory scale to malevolent scope and

exploratory scale to benevolent scope.

The objective of the ESMP defines scale by the

knowledge gained from the training set. In order to

this the given training set t d s is partitioned into

two by their Boolean labels (true, false or 0, 1).

The records of partition tlr labeled as true are the

call sequence records confirmed as malicious and

the records of partition f l r labeled as false are

call sequence records confirmed as benevolent.

Then these two partitions tlr and f l r are used to

define “Exploratory Scale to Malicious Scope

(esms)” and “Exploratory Scale to Benevolent

Scope (esbs)”. Further these scales are used to

gauge the attack scope of a given call sequence

record. The approach that used in both cases of

defining s d h s and s n h s are the similar that

explained in following sections.

3.1 Exploring Call Sequence set

The dataset D S of call sequence records of size

| |D S will be considered for training towards

defining the both exploratory scales

esms and esbs . Each unique two calls in

sequence of given call sequence records are

considered as features and each two calls in

sequence referred as feature in further description.

The given call sequence set D S partitioned in

to
1 2 | |{ , ,..., }MCSMCS mcs mcs mcs= and

1 2 | |{ , ,..., }BCSBCS bcs bcs bcs= that represents

malicious and benevolent call sequences

respectively. The feature sets Mtcs , Btcs of

respective datasets MCS and BCS contains all

unique two calls in sequence found in respective

call sequence records of datasets MCS and

BCS as features, which are represented as follows

1 2 | |{ , ,... }
MM tcstcs m m m= // two calls in

sequence as features found in call sequence

records of malicious call sequence set MCS

1 2 | |{ , ,... }
BB tcstcs b b b= // two calls in

sequence as features found in call sequence

records of benevolent call sequence set BCS

3.2 Feature Optimization

The feature optimization is done by selecting

features using one of the prominent feature search

technique called sequential floating forward search

[15]. This technique verifies the each feature

optimality on a given criteria in a sequential pattern

and also verifies the shoddiness of the feature

under the given criteria and eliminates shoddier

features. Such that this technique iterates by opting

optimal feature or deleting shoddier features until

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2300

no change found in the optimal feature set. Since

the optimal feature set size increases if new feature

added and decreases if shoddier feature delete, the

technique is referred as sequential floating forward

search.

The context of our contribution verifies the

optimality of feature such that a feature

{ }Mm m tcs∃ ∈ of malicious call sequences

should have high coverage (appears in majority of

the given malicious call sequences) in MCS

should evince least coverage (appears in least

number of benevolent call sequences) in BCS . If

feature contradict to this property then the feature

said to shoddier feature towards malicious call

sequences. Similarly, the optimal features of

Btcs will be found. The property that considered to

select optimal features from Btcs is, a feature

{ }Bb b tcs∃ ∈ of malicious call sequences should

have high coverage (appears in majority of the

given benevolent call sequences) in BCS should

evince least coverage (appears in least number of

malicious call sequences) in MCS . If feature

contradict to this property then the feature said to

shoddier feature towards malicious call sequences.

The feature optimization process discards all

shoddier features from the Mtcs and Btcs

respectively.

3.3 Defining Exploratory Scales from Training

Data

The exploratory scale for respective malicious and

benevolent call sequence detection is described in

this section. In order to this, the correlation

between each pair of features (pair of two calls in

sequence), which is used further to assess the

confidence of each feature (two call in sequence)

towards each call sequence of the respective

MCS and BCS . This feature confidence is used

further to compute the confidence of each call

sequence of respective MCS and BCS . The

feature confidence and call sequence confidence

obtained will be used further to identify the impact

of each feature and call sequence respective to

malicious and benevolent scope. These feature and

call sequence impacts are then used to define the

exploratory scales esms and esbs to detect

malicious and benevolent call sequence

respectively.

3.3.1 Measuring Feature (two calls in

sequence) pair correlation

In order to define the scale, initially for each

feature set Mtcs and Btcs , the correlation between

each pair of two calls in sequence will be assessed

as follows:
| |

1
{ }

Mtcs

i i M
i

m m tcs
=
∀ ∃ ∈ Begin

| |

1
{ }

Mtcs

j j M
j

m m tcs
=
∀ ∃ ∈ Begin

{ }
| |

1
{ , }

1 () { , }

| |i j

MCS

i j k

k
m m

i j m m mcs

MCS
ρ =

∃ ≠ ∧ ⊆

=
∑

// the number of malicious call sequences

contain both features divides by total

number of malicious call sequences

End

End

Similarly, the feature pair correlation for each pair

of two calls in sequence will be assessed as

follows:
| |

1
{ }

Btcs

i i B
i

b b tcs
=
∀ ∃ ∈ Begin

| |

1
{ }

Btcs

j j B
j

b b tcs
=
∀ ∃ ∈ Begin

{ }
| |

1
{ , }

1 () { , }

| |i j

BCS

i j k

k
b b

i j b b bcs

BCS
ρ =

∃ ≠ ∧ ⊆

=
∑

// the number of benevolent call sequences

contain both features divides by total

number of benevolent call sequences

End

End

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2301

3.3.2 The Measuring feature to call sequence

confidence

Each feature confidence towards respective each

call sequence of MCS and BCS can be

estimated as follows:
| |

1
{ }

MCS

i i
i

mcs mcs MCS
=
∀ ∃ ∈ Begin

| |

1
{ }

Mtcs

j j M i j
j

m m tcs mcs m
=
∀ ∃ ∈ ∧ ∋ Begin

{ }
| |

(,)

1

() () ()

| | 1

M

j k

j i

tcs

m m k M i k

k
m mcs

i

k j m tcs mcs m

mcs

ρ

χ =
⇒

∃ ≠ ∧ ∈ ∧ ∋

=
−

∑

// aggregation of correlation of each pair

of features contain feature
jm divides by

total number of features (two call in

sequence) found in imcs .

 End

End

Similarly, each feature confidence towards each

call sequence of BCS is measured as follows:
| |

1
{ }

BCS

i i
i

bcs bcs BCS
=
∀ ∃ ∈ Begin

| |

1
{ }

Btcs

j j B i j
j

b b tcs bcs b
=
∀ ∃ ∈ ∧ ∋ Begin

{ }
| |

(,)

1

() () ()

| | 1

B

j k

j i

tcs

b b k B i k

k
b bcs

i

k j b tcs bcs b

bcs

ρ

χ =
⇒

∃ ≠ ∧ ∈ ∧ ∋

=
−

∑

// aggregation of correlation of each pair

of features contain feature
jb divides by

total number of features (two call in

sequence) found in ibcs .

 End.

End.

3.3.3 Measuring Call Sequence Confidence

The call sequence confidence of

respective MCS and BCS is measured

further as follows
| |

1
{ }

MCS

i i
i

mcs mcs MCS
=
∀ ∃ ∈ Begin

{ }
| |

1

| | 1

M

j i

i

tcs

m mcs i j

j

mcs

i

mcs m

mcs

χ

χ
⇒

=

∃ ∋

=
−

∑

// aggregation of confidence of all features

towards respective call sequence divides

by total number of features (two call in

sequence) found in imcs .

Similarly, the confidence of each call

sequence of respective BCS is assessed as

follows:
| |

1
{ }

MCS

i i
i

bcs bcs BCS
=
∀ ∃ ∈ Begin

{ }
| |

1

| | 1

B

j i

i

tcs

b bcs i j

j

bcs

i

bcs b

bcs

χ

χ
⇒

=

∃ ∋

=
−

∑

// aggregation of confidence of all features

towards respective call sequence divides

by total number of features (two call in

sequence) found in ibcs .

3.3.4 Measuring feature impact

The next level of scale definition, the feature

impact respective to MCS and BCS are

assessed as follows
| |

1
{ }

Mtcs

i i M
i

m m tcs
=
∀ ∃ ∈ Begin

{ }
| |

1

| |

1

k

i

l

MCS

mcs k i

k
m MCS

mcs

l

mcs mχ

ι

χ

=

=

∃ ∋

=
∑

∑

// aggregation of the confidence of call

sequences those contains respective

feature divides by the aggregation of

confidence of all call sequences found in

MCS

End

Similarly, the feature impacts of the respective

BCS is measured as follows:
| |

1
{ }

Btcs

i i B
i

b b tcs
=
∀ ∃ ∈ Begin

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2302

{ }
| |

1

| |

1

k

i

l

BCS

bcs k i

k
b BCS

bcs

l

bcs bχ

ι

χ

=

=

∃ ∋

=
∑

∑

// aggregation of the confidence of call

sequences those contains respective

feature divides by the aggregation of

confidence of all call sequences found in

BCS

End

3.3.5 Measuring Call Sequence Impact

Assessing respective call sequence impact

towards malicious or benevolent scope is the

next in hierarchy of exploratory scale

definition. The call sequence impact of each

call sequence in MCS is assessed as follows

{ }
| |

1

MCS

i i
i

mcs mcs MCS
=
∀ ∃ ∈ Begin

{ }

{ }

| |

1

| |

1

M

j

i M

k

tcs

m i j

j

mcs tcs

m

k

mcs mι

ι

ι

=

=

∃ ∋

=

∑

∑

// aggregation of the impact of the all

features exists in respective call sequence

divides by the aggregation of impact of all

features found in Mtcs

End

Similarly, the respective call sequence impact of all

call sequence of BCS can be found as follows

{ }
| |

1

BCS

i i
i

bcs bcs BCS
=
∀ ∃ ∈ Begin

{ }

{ }

| |

1

| |

1

B

j

i B

k

tcs

b i j

j

bcs tcs

b

k

bcs bι

ι

ι

=

=

∃ ∋

=

∑

∑

// aggregation of the impact of the all

features exists in respective call sequence

divides by the aggregation of impact of all

features found in Btcs

End

3.3.6 Exploratory Scale to Malicious and

Benevolent Scope

Further the impact of the respective call sequences

of MCS and BCS are used further to define

exploratory scales esms and esbs respectively,

which is as follows:
| |

1

{ }

| |

i

MCS

mcs i

i

mcs MCS

esms
MCS

ι
=

∃ ∈

=
∑

Further the lower bound and upper bound of the

esms is estimated by differentiating the mean

absolute distance [17] of the impact of all call

sequence in MCS , which is as follows:
| |

2

1

()

| |

i

MCS

mcs

i
mad

esms

esms
MCS

ι
=

−

=
∑

// Mean absolute distance of esms

l madesms esms esms= − // lower bound of the

esms

u madesms esms esms= + // upper bound of the

esms

Similarly, the exploratory scale to benevolent

scope (esbs) and its lower and upper bounds for

respective call sequences of BCS can be

measured as follows:
| |

1

{ }

| |

i

BCS

bcs i

i

bcs BCS

esbs
BCS

ι
=

∃ ∈

=
∑

| |
2

1

()

| |

i

BCS

bcs

i
mad

esbs

esbs
BCS

ι
=

−

=
∑

// Mean absolute distance of esbs

l madesbs esbs esbs= − // lower bound of the

esbs

u madesbs esbs esbs= + // upper bound of the

esbs

3.4 Scaling Call sequence Record

The Exploratory Scale to Malicious

Scope ()esms , Exploratory Scale to Benevolent

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2303

Scope ()esbs and their respective lower and upper

bounds devised (see section 3.4) will be used

further to assess the state reflected by a given call

sequence record as follows

Let cs be the given call sequence, the impact of

cs towards malicious scope can be assessed as

follows.

{ }

{ }

| |

1

| |

1

M

i

M

tcs

m i M i

i
cs MCS tcs

j j

j

m tcs cs m

m m

ι

ι =
⇒

=

∃ ∈ ∧ ∋

=

∃

∑

∑

// the aggregate of each feature impact of

that exists in Mtcs and cs divides by the

aggregate of all features exists in Mtcs

Further the impact of cs towards benevolent

scope is assessed as follows:

{ }

{ }

| |

1

| |

1

B

i

B

j

tcs

b i B i

i
cs BCS tcs

b j B

j

b tcs cs b

b tcs

ι

ι

ι

=
⇒

=

∃ ∈ ∧ ∋

=

∃ ∈

∑

∑

// the aggregate of each feature impact of that exists

in Btcs and cs divides by the aggregate of all

features exists in Btcs

//The average of influence weights of all features

towards normal scope, which are belongs to given

record p r

 Then these malicious impact scope

cs MCSι ⇒ and benevolent impact scope cs BCSι ⇒ of

cs are used to estimate the given call

sequence cs is attack prone or normal, which is as

follows.

()

()
cs MCS u

cs MCS cs BCS

esms

esms esbs

ι

ι ι

⇒

⇒ ⇒

≥ ∨

≥ ∧ ≤

//Call sequence cs is scaled as

malicious

()cs BCS lesbsι ⇒ ≤

//Call sequence cs is scaled to

attack prone (possibly zero day

attack)

()
()

cs BCS u

cs BCS cs MCS l

esbs

esbs esms

ι

ι ι

⇒

⇒ ⇒

≥ ∨

≥ ∧ ≤

//Call sequence cs to be

benevolent

Rest of all cases said to be suspicious and it is

advised to recommend safe zone access

4 EXPERIMENTAL STUDY

The experimental study was done on the call

sequence dataset called CSDMC2010_API [16].

This dataset contains 388 call sequences those

labeled as 1 (malicious call sequence) and 0

(benevolent call sequence). In order to estimate the

explorative scale, 75% of malicious and benevolent

call sequences of the chosen dataset were used. The

rest 25% call sequences were unlabeled and used to

test the significance of the proposal towards

malware detection accuracy. The results obtained

from experimental study were listed in table 1,

which are evincing the significance of the ESMP

towards malware detection. The detailed prediction

statistics were explored in table 2.

Table 1: The Traininginputs And Resultant Exploratory

Scales

Malicious Call

Sequence 240

Benevolent Call

Sequence 51
esms 0.574996

madesms 0.10572

lesms 0.475628

uesms 0.683246

esbs 0.644838

madesbs 0.179485

lesbs 0.47749

uesbs 0.81056

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2304

Table 2: The Testing Inputs And Prediction Statistics Of

The ESMP

Malicious Call

Sequence

80

Benevolent Call

Sequence

17

True Positives 79

True Negatives 15

False Positives 2

False Negative 1

positive predictive

value

0.975308642

Negative Predictive

Value

0.9375

Accuracy 0.969072165

Sensitivity 0.9875

Specificity 0.882352941

Figure 1: Visualization Of Prediction Metrics And Their

Values Observed For ESMP

The 97 call sequences were used to assess the

significance of the proposed ESMP. Among them,

80 call sequences are malicious and 17 are

benevolent call sequences. The ESMP assessed the

given input call sequences such that 79 call

sequences are true positives (true prediction of

malicious call sequences), 2 call sequences are

false positive (false prediction of benevolent call

sequences as malicious), 15 call sequences are true

negatives (true prediction of benevolent call

sequences) and 1 call sequences is false negative

(malicious call sequence predicted as benevolent).

Hence the malicious call sequence prediction value

(also known as precision) is 0.975, benevolent

prediction value is 0.938, the malicious call

sequence detection rate (also known as sensitivity)

is 0.988, the benevolent call sequence detection

rate (also known as specificity) is 0.882 and the

accuracy (which is the ratio between true

prediction of malicious and benevolent call

sequences and all given call sequences) is 0.97.

These statistics indicating that the ESMP is

significant to differentiate the malicious and

benevolent call sequences with 97% accuracy. The

sensitivity of the ESMP is 99%, hence the zero day

malicious call sequences prediction is at its best.

The prediction statistics observed from the

experimental study of the ESMP are visualized in

fig1.

5 CONCLUSION:

An Exploratory Scale for Malware Perception

(ESMP), which is based on heuristics learned from

API call sequence was proposed in this manuscript.

The proposed model delivers an exploratory scale

to estimate a call sequence is malicious or

benevolent. The model proposed is considering the

2 gram call sequences as features of the given

training set of malicious and benevolent call

sequences. Further, selects optimal features by

using sequential floating forward search [15]. Then

the impact of these optimal features and respective

call sequences towards the scope of maliciousness

and benevolence were assessed. Afterwards these

impact ratios observed for respective features and

call sequences were used to devise exploratory

scale of malicious act scope and benevolent act

scope. These scales further can be used to percept

a given call sequence is malicious or benevolent.

The prediction phase extracts all 2 gram call

sequences from the given input call sequence and

estimates the impact of these features. Further uses

these impacts of the respective features to estimate

the impact of the given call sequence towards the

scope of maliciousness and the scope of

benevolence. Then these values are compared to

exploratory scales devised for malicious scope and

benevolent scope to percept the given call sequence

is malevolent or benevolent. The experimental

study evinces the significance (malevolent

detection rate is 99%) and accuracy (malevolent

and benevolent call sequence detection rate is 97%)

of the ESMP to identify a call sequence is

malevolent or benevolent. This work can be

extended to identify the impact of 3 gram and n

gram call sequences ad features and also

considering the correlation of 2, 3 and n gram call

sequences correlation that minimizes the learning

overhead in exploratory scale definition. The other

future research direction would define evolutionary

computation or soft computing strategies those

uses the proposed exploratory scale as cost or

objective function.

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2305

REFERENCES

[1] M. Egele, T. Scholte, E. Kirda, and C.

Kruegel. A survey on automated dynamic

malware-analysis techniques and tools.

ACM Computing Surveys (CSUR),

44(2):6, February 2012.

[2] Y. Qiao, Y. Yang, L. Ji, and J. He.

Analyzing malware by abstracting the

frequent itemsets in api call sequences. In

Proc. of the 12th IEEE International

Conference on Trust, Security and Privacy

in Computing and Communications

(TrustCom’13), Melbourne, VIC, pages

265–270. IEEE, July 2013.

[3] B. Kang, T. Kim, H. Kwon, Y. Choi, and

E. G. Im. Malware classification method

via binary content comparison. In Proc. of

the 1st 2012 ACM Research in Applied

Computation Symposium (RACS’12),

New York, USA, pages 316–321. ACM,

October 2012.

[4] A. H. Sung, J. Xu, P. Chavez, and S.

Mukkamala. Static analyzer of vicious

executables (save). In Proc. of the 20th

Computer Security Applications

Conference (ACSAC’04), Tucson, AZ,

USA, pages 326–334. IEEE, December

2004.

[5] C. Willems, T. Holz, and F. Freiling.

Toward automated dynamic malware

analysis using cwsandbox. ACM

Computing Surveys (CSUR), 5(2):32–39,

March 2007.

[6] G. Hunt and D. Brubacher. Detours:

Binary interception of win32 functions. In

Proc. of 3rd USENIX Windows NT

Symposium (WINSYM’99), Seattle, WA,

USA, pages 135–144. USENIX

Association, July 1999.

[7] P. Natani and D. Vidyarthi. Malware

detection using api function frequency

with ensemble based classifier. In Proc. of

the 1st Security in Computing and

Communications (SSCC’13), Mysore,

India, LNCS, volume 377, pages 378–

388. Springer-Verlag, August 2013.

[8] G. Wagener, A. Dulaunoy, et al. Malware

behaviour analysis. Journal in computer

virology, 4(4):279–287, November 2008.

[9] J.-Y. Xu, A. H. Sung, P. Chavez, and S.

Mukkamala. Polymorphic malicious

executable scanner by api sequence

analysis. In Proc. of the 4th International

Conference on Hybrid Intelligent Systems

(HIS’04), Kitakyushu, Japan, pages 378–

383. IEEE, December 2004.

[10] L. Wu, R. Ping, L. Ke, and D. Hai-xin.

Behavior-based malware analysis and

detection. In Proc. of the 1st International

Workshop on Complexity and Data

Mining (IWCDM’11), Nanjing, Jiangsu,

pages 39–42. IEEE, September 2011.

[11] M. Apel, C. Bockermann, and M. Meier.

Measuring similarity of malware

behavior. In Proc. of the IEEE 34th

Conference on Local Computer Networks

(LCN’09), Zurich, Swiss, pages 891–898.

IEEE, October 2009.

[12] M. Alazab, S. Venkataraman, and P.

Watters. Towards understanding malware

behaviour by the extraction of api calls. In

Proc. of the 2nd Cybercrime and

Trustworthy Computing Workshop

(CTC’10), Ballarat, VIC, pages 52–59.

IEEE, July 2010.

[13] K.-S. Han, I.-K. Kim, and E. G. Im.

Malware classification methods using api

sequence characteristics. In Proc. of the

1st International Conference on IT

Convergence and Security (ICITCS’12),

Suwon, Korea, LNCS, volume 120, pages

613–626. Springer-Verlag, December

2012.

[14] K.-S. Han, I.-K. Kim, and E. G. Im.

Detection methods for malware variant

using api call related graphs. In Proc. of

the 1st International Conference on IT

Convergence and Security (ICITCS’12),

Suwon, Korea, LNCS, volume 120, pages

607–611. Springer-Verlag, December

2012.

[15] Somol, P., Pudil, P., Novovičová, J., &

Paclık, P. (1999). Adaptive floating search

methods in feature selection. Pattern

recognition letters, 20(11), 1157-1163.

[16] http://csmining.org/index.php/malicious-

software-datasets-.html (downloaded on

May 15, 2016)

[17] Carmines, E. G. (1979). Reliability and

validity assessment. Sage publications.

