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ABSTRACT 

 

Hadoop ecosystem processes extremely large datasets in a parallel computing environment. The Hadoop 

Distributed File System (HDFS) manages operational aspects of processed, unprocessed and log archives. 

Recently, HDFS has adopted heterogeneous environment, that enables file system to cope with storage-tier 

data processing. This increases the functional utilization of storage devices and distributes node capacity to 

storage-tier unevenly. Thus, a job having high priority is affected with delay latency and storage devices i.e. 

Disk, SSD and RAM consumes individual time overhead to release a non-priority job data. To analyze the 

complexity of storage-tier, we present Heterogeneous Storage-tier Log Analyzer (HSLA) strategy, that 

collects control and data flow events to a central repository and performs an analysis over log datasets. The 

analytics metrics consists of pre-emptive measures observed through events traces. The experimental 

results depict that, HSLA presents a broad aspect of storage-tier contingency problem and proposes a node 

computing capacity share strategy to balance functional processing of HDFS blocks over storage-tier.             

         

Keywords: Hadoop, HDFS, Log analysis, Storage-tier, heterogeneous node. 

 

1. INTRODUCTION 

The concept of Big Data has resolved the 

complexity of processing extremely large datasets 

in a distributed environment [1]. Among many data 

processing systems, we find Apache Hadoop [2], 

MapR [3] and Cloudera [4] to be the most popular 

and stable ecosystems. Hadoop is an open-source 

ecosystem, which processes huge datasets using 

generic four components i.e. Hadoop commons, 

YARN, HDFS and MapReduce. YARN is 

considered as the central controller of Hadoop, 

which allocates resources and schedules tasks over 

the cluster [5]. Hadoop commons represent a 

functional library, which supports environment 

processing. MapReduce is a programming module 

that processes large-scale datasets in distributed 

environment [7]. The Hadoop Distributed File 

System (HDFS) is a core backbone of ecosystem, 

which manages processed, unprocessed and logs 

over the cluster [6]. 

The architecture of HDFS consists of three 

main components i.e. client, Namenode and 

Datanode. The client submits a request to perform a 

task over Namenode. The Namenode allocates data 

blocks for the task and provides access over a 

Datanode. The Datanode processes the task through 

local resources and generates an output over 

storage-tier of HDFS [8] [9] as seen from Figure-1.  

 
Figure 1: HDFS Architecture 

 

 Recently, Hadoop is equipped with 

heterogeneous storage-tier functionality, which 

provides a facility to store datasets over store media 

i.e. DISK, SSD and RAM [10] [11]. To observe a 

detailed view, storage-tier communicates through 

control and data flow event traces [12] [13]. 

Therefore, when data block placement occurs, 
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control flow event trace is received over Datanode 

having data flow event trace [14] [16] [17]. The log 

traces are stored over repository and a reference 

index is kept into log container [15] as seen from 

Figure-2. 

 
Figure 2: HDFS storage-tier Log Repository 

  

 By default, a Datanode places data blocks 

to a single storage device at a time [18]. Therefore, 

when a low-priority job placement occurs, it 

consumes node capacity till completion of the task. 

This affects the concept of parallel processing in 

cluster and high-priority jobs observes storage-tier 

delay latency and individual device produces time 

overhead till release of low-priority data job [19] 

[20] [21]. Thus, a cluster places data blocks below 

to its installed configurations.  

 To streamline the discussed problem, we 

present Heterogeneous Storage-tier Log Analyzer 

(HSLA), which addresses priority job block 

placement. The proposed approach collects control 

and data flow event traces and analyze device-to-

data placement priority. Moreover, it recommends 

processing optimal data blocks to suitable storage-

tier device to reduce individual time overhead and 

balance parallel computing among storage-tier 

devices.               

 

The main contributions of the proposed scheme are: 

• An efficient control and data flow event 

trace container. 

• An effective storage-tier analyzer to 

propose n data blocks to m device. 

  

The remaining paper is organized as 

follows. Section II discusses related work. Section 

III briefly explains proposed approach HSLA. 

Section IV depicts experimental environment and 

evaluation result for HSLA. Finally, section V 

shows conclusion and future research directions. 

2. RELATED WORK 

Many researchers have presented log analyzing 

architectures for Hadoop cluster. The significant 

contributions can be divided into three categories 

i.e. Network log, Cluster log and node log.  

The network log management strategies 

include the research work of ELT and IOSIG+. The 

Efficient Log-based Troubleshooting (ELT) [25] 

strategy collects network log messages and perform 

troubleshooting for administrators. It is useful for 

network parameter analysis i.e. network congestion 

troubleshooting and fault diagnoses of 

homogeneous network nodes only. The IOSIG+ 

[26] is suitable for Hadoop network analysis having 

sub-projects i.e. Mahout and Hive. The prime 

purpose of this analyzer is to collect and analyze 

I/O traces between base Hadoop common and sub-

project. The functional perspective lack 

heterogeneous node factors.  

The cluster log management methods 

include Mochi and Diagnosing Heterogeneous 

Hadoop cluster. Mochi [27] is a cluster log analyzer 

that logs behavior in space, time and volume. It 

collects control and data flow events across the 

cluster to analyze performance and debugging 

issues. It is a suitable tool to analyze homogeneous 

storage activities across the cluster. The Diagnosing 

Heterogeneous Hadoop Clusters [28] approach 

focuses over heterogeneity-aware log analysis. It 

consists of diagnoses and fault analysis over CPU 

contention and DISK I/O contention. Therefore, 

when we consider heterogeneous storage-tier 

portion over DISK I/O, it is equipped to analyze 

only single media type i.e. DISK.  

The node log management strategies 

include SALSA, Ganesha and Visual Log-based 

tracing. The SALSA [29] [22] logs control and data 

flow event traces of a node and analyses failure 

diagnosis of performance through workload 

processing. It is a homogeneous strategy that work 

over homogeneity-aware storage-tier and consider 

CPU contention only. The Ganesha [30] [23] is a 

black-box diagnosis strategy and focuses over fault 

analysis of Map task execution over a Datanode. It 

works over homogeneous storage-tier and consider 

OS-level parameters for logging event traces. The 

Visual Log-based tracing [37] [24] analyzer 

collects core Map and Reduce event traces from a 

Datanode and perform analysis over MapReduce 

logs. The in-depth MapReduce log analysis 

includes client, Namenode and Datanode behavior 

analysis for troubleshooting purpose.   

 Keeping in view, the above discussed 

contributions lack heterogeneous storage-tier log 

analysis. Therefore, we propose HSLA that uses 
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control and data flow event traces to log storage-

tier logs. Moreover, it reduces individual media 

time overhead through resolving the storage media 

contention problem. 

 

3. HETEROGENEOUS STORAGE-TIER 

LOG ANALYZER (HSLA)   

The proposed analyzer works in three 

phases i.e. (i) Identification of Control and Data 

Flow events, (ii) Event Container and (iii) 

Performance analysis. 

At first, the analyzer identifies control and 

data flow events in HDFS storage-tier logs. The 

marked event traces are collected into Event 

container through belief propagation method and 

storage-tier log analysis is carried out through 

performance analysis of extracted metrics and 

dataset as seen from Figure-3  

 

Figure 3: Heterogeneous storage-tier Log Analyzer 

Workflow   

 
3.1 Identification of Control and Data Flow 

events 

The HDFS block management receive 

control flow event trace of storage-tier processing. 

The message includes StorageTID, DeviceID, 

BlockID and Timestamp to be processed over the 

cluster. Based on the storage-tier log, HSLA derives 

functional communication between HDFS and 

active storage devices of the Datanode i.e. DISK, 

RAM and SSD. Moreover, the control flow events 

over HDFS can be collected as, 

��� �����		���
���	����
�	 (1) 

The Datanode control-flow initiates 

BlockPlacement method to respective storage 

devices and the collection of control flow events 

over a Datanode can be observed as, 

��� ����
�����	���
���	����
�	 (2) 

The collection control events can be 

observed as, 

�� �	 ����, ����	 (3) 

Where CE represents collection of control-flow 

event traces over storage-tier HDFS. 

 A token represents the start and end of an 

activity. There are three type of activities i.e. 

StorageType, StorageDevice and BlockPlacement. 

Initially, control-flow activate StorageTID, which 

generate a table having storage types over the 

cluster. Secondly, DeviceID is linked to the storage 

type and confirms the availability of the storage 

medium. Finally, BlockPID places data block over 

given DeviceID with Timestamp. In this way, 

HSLA calculates control-flow consumption time 

through storage-tier processing log activities as seen 

from Table-1. 

Table 1: Tokens in HDFS storage-tier for 

identifying start and end of states 
Activity Start Token End Token 

StorageType Launch (StorageTID) Task (StorageTID) completed 

StorageDevice Launch (DeviceID) Task (DeviceID) completed 

BlockPlacement Launch (BlockPID) Task (BlockPID) completed 

 The HDFS block management calculates 

data-flow event traces through transferring data 

blocks from HDFS to storage device of Datanode. 

The transfer of data blocks can be observed through 

ReadBlock and WriteBlock states. Therefore, when 

a control-flow event completes the cycle, read/write 

block event trace is generated. In this way, a 

Datanode comes to know that a data block 

placement is completed as observed from Table-2.  

Table 2: Tokens in Datanode for identifying end of 

states 
Activity End Token 

ReadBlock Process BlockPID to storage device 

WriteBlock Process BlockPID from storage device 

The collection data-flow events can be 

observed as, 

��� � 	���
� � ����	����
�	 (4) 

Where DDn represents collection of data-

flow event traces over storage-tier HDFS.  

 

3.2 Event Container 

HSLA collects control and data flow event 

traces through Belief Propagation method [32], 

which stores log messages to destination 

component. To perform inference, we use Message 

Propagation Model [33], which states that, a log 

message m of a variable component i having value 

ϰi with a belief bi (ϰi) is stored over component i 
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having likeliness of random variable Xi where ϰi ϵ 

Xi by, �������	� 	→"#ϰ"% (5) 

The control-flow event trace log message can be 

passed towards event container as,  �������	�&'→�&'�ϰ�&'� (6) 

Similarly, the data-flow event trace log message 

can be passed towards event container as,  �������	��'→�&'�ϰ�&'� (7) 

The event container receives component 

messages and belief of EC component can be 

calculated as, ("�ϰ�&'� 	∝ 	 * �#&',�'%	→	�&'�ϰ�&'�#&',�'%	∈,#�&'%
 (8) 

To simplify equation (7), we use contact Z and the 

belief can be obtained as, 

("�ϰ�&'� 1.
� / * �#&',�'%	→	�&'�ϰ�&'�#&',�'%	∈,#�&'%

0 

(9) 

 

 

 

 
Figure 4: Belief of component EC   

After applying factor FA to EC container, we 

receive a close-form solution as, �#&',�'%→1#21%���3#43% * �#&',�'%→1#21%#&',�'%∈,#1%
 

   

(10) 

 

Where �#&',�'%→1#21% represents collection of 

control and data flow event traces in Event 

Container to factor FA at respective control and data 

flow events. 

  

3.3 EC Analyzer 

The EC analyzer reviews container datasets 

and proposes non-preemptive data block processing 

over heterogeneous storage-tier. It is categorized 

into three phases i.e. (i) Control and Data filter, (ii) 

Node capacity estimator and (iii) Job priority over 

analyzer. 

The Control and Data filter extracts Timestamp 

of selecting StorageTID, assigning DeviceID and 

processing BlockPID statistics. Moreover, the filter 

extracts following concurrent time-series events: 

a) Node capacity at the time of DISK job 

processing (50% Core). 

b) Node capacity at the time of SSD job 

processing (30% Core). 

c) Node capacity at the time of RAM job 

processing (20% Core). 

Keeping in view, the storage devices generates 

ReadBlock and WriteBlock timestamps according to 

assigned core capacity. Therefore, we observe a 

shared block job processing over a Datanode as, 

	5����6 � 7		� 310 , �:	; 12 , =>?15A 
(11) 

 The SharedP node capacity is a metrics 

parameter to assign data block job processing over a 

node. Therefore, it reduces the frequency of high-

priority and low-priority data block processing and 

balances the cluster performance. 

4. EXPERIMENTAL EVALUATION 

In this section, we evaluate HSLA scheme 

over Hadoop configuration as seen from Table-3. 

Table 3: Hadoop Cluster. 

 

4.1 Environment 

The cluster consists of Intel Xeon with 8 

CPUs, 32GB memory and storage devices i.e. 1TB 

Hard disk drive and 128GB Samsung SSD. 

Moreover, we use Intel core i5 with 4 Core, 16GB 

memory and storage devices i.e. 1TB Hard disk 

drive and 128 GB Samsung SSD. We have created 

5 virtualbox 5.0.16 virtual machines on discussed 

cluster configurations as seen from Table- 4. 

Table 4: Hadoop Cluster Virtual Machines 

Configuration. 

Node CPU Memory Disk Configuration 

Master 

Node 
6 16 GB RAM, DISK & SSD Intel Xeon 

Slave1 2 4GB RAM, DISK & SSD Intel Xeon 

Slave2 2 4GB RAM, DISK & SSD Intel Core i5 

Slave3 2 4GB RAM, DISK & SSD Intel Core i5 

Slave4 2 4GB RAM, DISK & SSD Intel Core i5 
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4.2 Experimental Dataset 

The dataset used to process experimental 

work includes: (i) 10 SSD wordcount data blocks of 

64MB (10GB size), (ii) 10 DISK wordcount data 

blocks (10GB size), (iii) 10 RAM wordcount data 

blocks (10GB size) [31]. 

4.3 Experimental Results 

The experiments performed to evaluate 

HSLA strategy are: (i) Control and Data flow 

events, (ii) Node Capacity percentile and (iii) 

Processing Percentile. 

4.3.1 Control and Data flow events 

As we know that control and data flow 

event traces are inter-connected to each other. At 

first, HSLA trigger ‘7’ StorageTID events to return 

DeviceID INFO message. We observe that 

Datanode respond back with INFO event traces 

having availability of storage devices. Moreover, 

the approach extends triggering ‘7+n’ DeviceID 

events to obtain suitable volume space for block job 

processing. Finally, data block placement occurs 

over ‘7+n+m’ BlockPID events traces. 

After receiving control-flow successfully, 

Datanode perform block placement operation and 

returns data event traces i.e. ReadBlock and 

WriteBlock. Keeping in view, that event ReadBlock 

returns data block read operation INFO message 

and timestamp, whereas, WriteBlock generates 

write operation INFO message to another Datanode 

or cluster. Therefore, we observe that a timestamp 

of ‘55’ and ‘86’ seconds of return time as seen from 

Figure-6.   

 

Figure 6: Control and Data flow event traces over 

Datanode 

 

4.3.2 Node Capacity utilization 

The proposed scheme HSLA transforms 

data block placement to parallel processing. After 

filter event traces through EC, we obtain data block 

processing timestamp and divide node capacity to 

SharedP parameters for parallel block job 

processing. We observe that, SharedP node 

configuration permits ‘3+n’ block job processing to 

respective storage media. Moreover, the device 

capacity strengthens I/O operations over SharedP 

and balances block job processing as seen from 

Figure-7. 

 

Figure 7: SharedP based Data Block Processing 

4.3.3 Storage-tier Block Job Performance 

The presented approach HSLA reduces the 

factor of high and low priority jobs by sharing 

computing resource between storage-tier devices. 

Therefore, we evaluated that 30 storage-tier block 

jobs having SharedP configuration returns 

consumption of 43.7% of high priority block jobs 

with 39.3% of low priority block jobs over a 

Datanode as seen from Figure-8. 

 
Figure 8: Storage-tier Block Job Performance  
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5. CONCLUSION 

This paper proposes a novel 

Heterogeneous Storage-tier Log Analyzer (HSLA), 

which addresses parallel block job placement issue. 

The proposed approach identifies control and data 

flow event traces through tokens of start and end 

processing. Moreover, Event Container (EC) 

significantly collects the token identifiers and 

passes through EC Analyzer.  The analyzer builds a 

hierarchy of control and data flow events and 

assigns node capacity for block job parallel 

processing. Finally, the job priority issue is 

resolved through sharing node capacity for parallel 

heterogeneous storage-tier data block processing. 

In the future, we focus to work over multihoming 

event traces over Hadoop cluster. 
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