
Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2290

HSLA: HETEROGENEOUS STORAGE-TIER LOG

ANALYZER OVER HADOOP

1
NAWAB MUHAMMAD FASEEH QURESHI,

2*
DONG RYEOL SHIN,

 3
ISMA FARAH

SIDDIQUI,
4
ASAD ABBAS

1,2
 Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea

3,4
 Department of Computer Science and Engineering, Hanyang University ERICA, Ansan, South Korea

*
Corresponding Author

E-mail:
1
faseeh@skku.edu,

2*
drshin@skku.edu

ABSTRACT

Hadoop ecosystem processes extremely large datasets in a parallel computing environment. The Hadoop

Distributed File System (HDFS) manages operational aspects of processed, unprocessed and log archives.

Recently, HDFS has adopted heterogeneous environment, that enables file system to cope with storage-tier

data processing. This increases the functional utilization of storage devices and distributes node capacity to

storage-tier unevenly. Thus, a job having high priority is affected with delay latency and storage devices i.e.

Disk, SSD and RAM consumes individual time overhead to release a non-priority job data. To analyze the

complexity of storage-tier, we present Heterogeneous Storage-tier Log Analyzer (HSLA) strategy, that

collects control and data flow events to a central repository and performs an analysis over log datasets. The

analytics metrics consists of pre-emptive measures observed through events traces. The experimental

results depict that, HSLA presents a broad aspect of storage-tier contingency problem and proposes a node

computing capacity share strategy to balance functional processing of HDFS blocks over storage-tier.

Keywords: Hadoop, HDFS, Log analysis, Storage-tier, heterogeneous node.

1. INTRODUCTION

The concept of Big Data has resolved the

complexity of processing extremely large datasets

in a distributed environment [1]. Among many data

processing systems, we find Apache Hadoop [2],

MapR [3] and Cloudera [4] to be the most popular

and stable ecosystems. Hadoop is an open-source

ecosystem, which processes huge datasets using

generic four components i.e. Hadoop commons,

YARN, HDFS and MapReduce. YARN is

considered as the central controller of Hadoop,

which allocates resources and schedules tasks over

the cluster [5]. Hadoop commons represent a

functional library, which supports environment

processing. MapReduce is a programming module

that processes large-scale datasets in distributed

environment [7]. The Hadoop Distributed File

System (HDFS) is a core backbone of ecosystem,

which manages processed, unprocessed and logs

over the cluster [6].

The architecture of HDFS consists of three

main components i.e. client, Namenode and

Datanode. The client submits a request to perform a

task over Namenode. The Namenode allocates data

blocks for the task and provides access over a

Datanode. The Datanode processes the task through

local resources and generates an output over

storage-tier of HDFS [8] [9] as seen from Figure-1.

Figure 1: HDFS Architecture

 Recently, Hadoop is equipped with

heterogeneous storage-tier functionality, which

provides a facility to store datasets over store media

i.e. DISK, SSD and RAM [10] [11]. To observe a

detailed view, storage-tier communicates through

control and data flow event traces [12] [13].

Therefore, when data block placement occurs,

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2291

control flow event trace is received over Datanode

having data flow event trace [14] [16] [17]. The log

traces are stored over repository and a reference

index is kept into log container [15] as seen from

Figure-2.

Figure 2: HDFS storage-tier Log Repository

 By default, a Datanode places data blocks

to a single storage device at a time [18]. Therefore,

when a low-priority job placement occurs, it

consumes node capacity till completion of the task.

This affects the concept of parallel processing in

cluster and high-priority jobs observes storage-tier

delay latency and individual device produces time

overhead till release of low-priority data job [19]

[20] [21]. Thus, a cluster places data blocks below

to its installed configurations.

 To streamline the discussed problem, we

present Heterogeneous Storage-tier Log Analyzer

(HSLA), which addresses priority job block

placement. The proposed approach collects control

and data flow event traces and analyze device-to-

data placement priority. Moreover, it recommends

processing optimal data blocks to suitable storage-

tier device to reduce individual time overhead and

balance parallel computing among storage-tier

devices.

The main contributions of the proposed scheme are:

• An efficient control and data flow event

trace container.

• An effective storage-tier analyzer to

propose n data blocks to m device.

The remaining paper is organized as

follows. Section II discusses related work. Section

III briefly explains proposed approach HSLA.

Section IV depicts experimental environment and

evaluation result for HSLA. Finally, section V

shows conclusion and future research directions.

2. RELATED WORK

Many researchers have presented log analyzing

architectures for Hadoop cluster. The significant

contributions can be divided into three categories

i.e. Network log, Cluster log and node log.

The network log management strategies

include the research work of ELT and IOSIG+. The

Efficient Log-based Troubleshooting (ELT) [25]

strategy collects network log messages and perform

troubleshooting for administrators. It is useful for

network parameter analysis i.e. network congestion

troubleshooting and fault diagnoses of

homogeneous network nodes only. The IOSIG+

[26] is suitable for Hadoop network analysis having

sub-projects i.e. Mahout and Hive. The prime

purpose of this analyzer is to collect and analyze

I/O traces between base Hadoop common and sub-

project. The functional perspective lack

heterogeneous node factors.

The cluster log management methods

include Mochi and Diagnosing Heterogeneous

Hadoop cluster. Mochi [27] is a cluster log analyzer

that logs behavior in space, time and volume. It

collects control and data flow events across the

cluster to analyze performance and debugging

issues. It is a suitable tool to analyze homogeneous

storage activities across the cluster. The Diagnosing

Heterogeneous Hadoop Clusters [28] approach

focuses over heterogeneity-aware log analysis. It

consists of diagnoses and fault analysis over CPU

contention and DISK I/O contention. Therefore,

when we consider heterogeneous storage-tier

portion over DISK I/O, it is equipped to analyze

only single media type i.e. DISK.

The node log management strategies

include SALSA, Ganesha and Visual Log-based

tracing. The SALSA [29] [22] logs control and data

flow event traces of a node and analyses failure

diagnosis of performance through workload

processing. It is a homogeneous strategy that work

over homogeneity-aware storage-tier and consider

CPU contention only. The Ganesha [30] [23] is a

black-box diagnosis strategy and focuses over fault

analysis of Map task execution over a Datanode. It

works over homogeneous storage-tier and consider

OS-level parameters for logging event traces. The

Visual Log-based tracing [37] [24] analyzer

collects core Map and Reduce event traces from a

Datanode and perform analysis over MapReduce

logs. The in-depth MapReduce log analysis

includes client, Namenode and Datanode behavior

analysis for troubleshooting purpose.

 Keeping in view, the above discussed

contributions lack heterogeneous storage-tier log

analysis. Therefore, we propose HSLA that uses

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2292

control and data flow event traces to log storage-

tier logs. Moreover, it reduces individual media

time overhead through resolving the storage media

contention problem.

3. HETEROGENEOUS STORAGE-TIER

LOG ANALYZER (HSLA)

The proposed analyzer works in three

phases i.e. (i) Identification of Control and Data

Flow events, (ii) Event Container and (iii)

Performance analysis.

At first, the analyzer identifies control and

data flow events in HDFS storage-tier logs. The

marked event traces are collected into Event

container through belief propagation method and

storage-tier log analysis is carried out through

performance analysis of extracted metrics and

dataset as seen from Figure-3

Figure 3: Heterogeneous storage-tier Log Analyzer

Workflow

3.1 Identification of Control and Data Flow

events

The HDFS block management receive

control flow event trace of storage-tier processing.

The message includes StorageTID, DeviceID,

BlockID and Timestamp to be processed over the

cluster. Based on the storage-tier log, HSLA derives

functional communication between HDFS and

active storage devices of the Datanode i.e. DISK,

RAM and SSD. Moreover, the control flow events

over HDFS can be collected as,

��� �����		���
���	����
�	 (1)

The Datanode control-flow initiates

BlockPlacement method to respective storage

devices and the collection of control flow events

over a Datanode can be observed as,

��� ����
�����	���
���	����
�	 (2)

The collection control events can be

observed as,

�� �	 ����, ����	 (3)

Where CE represents collection of control-flow

event traces over storage-tier HDFS.

 A token represents the start and end of an

activity. There are three type of activities i.e.

StorageType, StorageDevice and BlockPlacement.

Initially, control-flow activate StorageTID, which

generate a table having storage types over the

cluster. Secondly, DeviceID is linked to the storage

type and confirms the availability of the storage

medium. Finally, BlockPID places data block over

given DeviceID with Timestamp. In this way,

HSLA calculates control-flow consumption time

through storage-tier processing log activities as seen

from Table-1.

Table 1: Tokens in HDFS storage-tier for

identifying start and end of states
Activity Start Token End Token

StorageType Launch (StorageTID) Task (StorageTID) completed

StorageDevice Launch (DeviceID) Task (DeviceID) completed

BlockPlacement Launch (BlockPID) Task (BlockPID) completed

 The HDFS block management calculates

data-flow event traces through transferring data

blocks from HDFS to storage device of Datanode.

The transfer of data blocks can be observed through

ReadBlock and WriteBlock states. Therefore, when

a control-flow event completes the cycle, read/write

block event trace is generated. In this way, a

Datanode comes to know that a data block

placement is completed as observed from Table-2.

Table 2: Tokens in Datanode for identifying end of

states
Activity End Token

ReadBlock Process BlockPID to storage device

WriteBlock Process BlockPID from storage device

The collection data-flow events can be

observed as,

��� � 	���
� � ����	����
�	 (4)

Where DDn represents collection of data-

flow event traces over storage-tier HDFS.

3.2 Event Container

HSLA collects control and data flow event

traces through Belief Propagation method [32],

which stores log messages to destination

component. To perform inference, we use Message

Propagation Model [33], which states that, a log

message m of a variable component i having value

ϰi with a belief bi (ϰi) is stored over component i

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2293

having likeliness of random variable Xi where ϰi ϵ

Xi by, �������	� 	→"#ϰ"% (5)

The control-flow event trace log message can be

passed towards event container as, �������	�&'→�&'�ϰ�&'� (6)

Similarly, the data-flow event trace log message

can be passed towards event container as, �������	��'→�&'�ϰ�&'� (7)

The event container receives component

messages and belief of EC component can be

calculated as, ("�ϰ�&'� 	∝ 	 * �#&',�'%	→	�&'�ϰ�&'�#&',�'%	∈,#�&'%
 (8)

To simplify equation (7), we use contact Z and the

belief can be obtained as,

("�ϰ�&'� 1.
� / * �#&',�'%	→	�&'�ϰ�&'�#&',�'%	∈,#�&'%

0

(9)

Figure 4: Belief of component EC

After applying factor FA to EC container, we

receive a close-form solution as, �#&',�'%→1#21%���3#43% * �#&',�'%→1#21%#&',�'%∈,#1%

(10)

Where �#&',�'%→1#21% represents collection of

control and data flow event traces in Event

Container to factor FA at respective control and data

flow events.

3.3 EC Analyzer

The EC analyzer reviews container datasets

and proposes non-preemptive data block processing

over heterogeneous storage-tier. It is categorized

into three phases i.e. (i) Control and Data filter, (ii)

Node capacity estimator and (iii) Job priority over

analyzer.

The Control and Data filter extracts Timestamp

of selecting StorageTID, assigning DeviceID and

processing BlockPID statistics. Moreover, the filter

extracts following concurrent time-series events:

a) Node capacity at the time of DISK job

processing (50% Core).

b) Node capacity at the time of SSD job

processing (30% Core).

c) Node capacity at the time of RAM job

processing (20% Core).

Keeping in view, the storage devices generates

ReadBlock and WriteBlock timestamps according to

assigned core capacity. Therefore, we observe a

shared block job processing over a Datanode as,

	5����6 � 7		� 310 , �:	; 12 , =>?15A
(11)

 The SharedP node capacity is a metrics

parameter to assign data block job processing over a

node. Therefore, it reduces the frequency of high-

priority and low-priority data block processing and

balances the cluster performance.

4. EXPERIMENTAL EVALUATION

In this section, we evaluate HSLA scheme

over Hadoop configuration as seen from Table-3.

Table 3: Hadoop Cluster.

4.1 Environment

The cluster consists of Intel Xeon with 8

CPUs, 32GB memory and storage devices i.e. 1TB

Hard disk drive and 128GB Samsung SSD.

Moreover, we use Intel core i5 with 4 Core, 16GB

memory and storage devices i.e. 1TB Hard disk

drive and 128 GB Samsung SSD. We have created

5 virtualbox 5.0.16 virtual machines on discussed

cluster configurations as seen from Table- 4.

Table 4: Hadoop Cluster Virtual Machines

Configuration.

Node CPU Memory Disk Configuration

Master

Node
6 16 GB RAM, DISK & SSD Intel Xeon

Slave1 2 4GB RAM, DISK & SSD Intel Xeon

Slave2 2 4GB RAM, DISK & SSD Intel Core i5

Slave3 2 4GB RAM, DISK & SSD Intel Core i5

Slave4 2 4GB RAM, DISK & SSD Intel Core i5

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2294

4.2 Experimental Dataset

The dataset used to process experimental

work includes: (i) 10 SSD wordcount data blocks of

64MB (10GB size), (ii) 10 DISK wordcount data

blocks (10GB size), (iii) 10 RAM wordcount data

blocks (10GB size) [31].

4.3 Experimental Results

The experiments performed to evaluate

HSLA strategy are: (i) Control and Data flow

events, (ii) Node Capacity percentile and (iii)

Processing Percentile.

4.3.1 Control and Data flow events

As we know that control and data flow

event traces are inter-connected to each other. At

first, HSLA trigger ‘7’ StorageTID events to return

DeviceID INFO message. We observe that

Datanode respond back with INFO event traces

having availability of storage devices. Moreover,

the approach extends triggering ‘7+n’ DeviceID

events to obtain suitable volume space for block job

processing. Finally, data block placement occurs

over ‘7+n+m’ BlockPID events traces.

After receiving control-flow successfully,

Datanode perform block placement operation and

returns data event traces i.e. ReadBlock and

WriteBlock. Keeping in view, that event ReadBlock

returns data block read operation INFO message

and timestamp, whereas, WriteBlock generates

write operation INFO message to another Datanode

or cluster. Therefore, we observe that a timestamp

of ‘55’ and ‘86’ seconds of return time as seen from

Figure-6.

Figure 6: Control and Data flow event traces over

Datanode

4.3.2 Node Capacity utilization

The proposed scheme HSLA transforms

data block placement to parallel processing. After

filter event traces through EC, we obtain data block

processing timestamp and divide node capacity to

SharedP parameters for parallel block job

processing. We observe that, SharedP node

configuration permits ‘3+n’ block job processing to

respective storage media. Moreover, the device

capacity strengthens I/O operations over SharedP

and balances block job processing as seen from

Figure-7.

Figure 7: SharedP based Data Block Processing

4.3.3 Storage-tier Block Job Performance

The presented approach HSLA reduces the

factor of high and low priority jobs by sharing

computing resource between storage-tier devices.

Therefore, we evaluated that 30 storage-tier block

jobs having SharedP configuration returns

consumption of 43.7% of high priority block jobs

with 39.3% of low priority block jobs over a

Datanode as seen from Figure-8.

Figure 8: Storage-tier Block Job Performance

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2295

5. CONCLUSION

This paper proposes a novel

Heterogeneous Storage-tier Log Analyzer (HSLA),

which addresses parallel block job placement issue.

The proposed approach identifies control and data

flow event traces through tokens of start and end

processing. Moreover, Event Container (EC)

significantly collects the token identifiers and

passes through EC Analyzer. The analyzer builds a

hierarchy of control and data flow events and

assigns node capacity for block job parallel

processing. Finally, the job priority issue is

resolved through sharing node capacity for parallel

heterogeneous storage-tier data block processing.

In the future, we focus to work over multihoming

event traces over Hadoop cluster.

ACKNOWLEDGEMENT

This work was supported by Institute for

Information & communications Technology

Promotion(IITP) grant funded by the Korea

government(MSIP) (No. R0113-15-0002,

Automotive ICT based e-Call standardization and

after-market device development)

REFRENCES:

[1] LaValle, Steve, et al. "Big data, analytics and

the path from insights to value." MIT sloan

management review 52.2, 2011, pp. 21.

[2] "Welcome to Apache™ Hadoop®!" 2014.

[Online]. Available: http://hadoop.apache.org/.

Accessed: Mar. 13, 2017.

[3] M. Technologies, "Featured customers", 2016.

[Online]. Available: https://www.mapr.com/.

Accessed: Mar. 13, 2017.

[4] Cloudera, "The modern platform for data

management and analytics," Cloudera, 2016.

[Online]. Available: http://www.cloudera.com/.

Accessed: Mar. 13, 2017.

[5] "Apache Hadoop 2.7.2 – Apache Hadoop

YARN," 2016. [Online]. Available:

https://hadoop.apache.org/docs/r2.7.2/hadoop-

yarn/hadoop-yarn-site/YARN.html. Accessed:

Mar. 13, 2017.

[6] "Apache Hadoop 2.7.2 – MapReduce Tutorial,"

2016. [Online]. Available:

https://hadoop.apache.org/docs/stable/hadoop-

mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html. Accessed: Mar.

13, 2017.

[7] "Apache Hadoop 2.7.2 – HDFS users guide,"

2016. [Online]. Available:

https://hadoop.apache.org/docs/stable/hadoop-

project-dist/hadoop-hdfs/HdfsUserGuide.html.

Accessed: Mar. 13, 2017.

[8] A. Kala Karun and K. Chitharanjan, "A review

on Hadoop — HDFS infrastructure extensions,"

2013 IEEE CONFERENCE ON

INFORMATION AND COMMUNICATION

TECHNOLOGIES, Apr. 2013.

[9] Abbas, A., Wu, Z., Siddiqui, I. F., & Lee, S. U.

J. (2016). An approach for optimized feature

selection in software product lines using union-

find and Genetic Algorithms. Indian Journal of

Science and Technology, 9(17)

[10] "Apache Hadoop 2.7.2 – HDFS storage-tier,"

2016. [Online]. Available:

https://hadoop.apache.org/docs/r2.7.3/hadoop-

project-dist/hadoop-hdfs/ArchivalStorage.html

Accessed: Mar. 13, 2017.

[11] Abbas, A., Siddiqui, I. F., & Lee, S. U. J.

(2016). Multi-Objective Optimization of

Feature Model in Software Product Line:

Perspectives and Challenges. Indian Journal of

Science and Technology, 9(45).

[12] Y. Tsuruoka, "Cloud computing - current status

and future directions," Journal of Information

Processing, vol. 24, no. 2, 2016, pp. 183–194.

[13] ABBAS, A., SIDDIQUI, I. F., & LEE, S. U. J.

(2017). CONTEXTUAL VARIABILITY

MANAGEMENT OF IOT APPLICATION

WITH XML-BASED FEATURE

MODELLING. Journal of Theoretical &

Applied Information Technology, 95(6).

[14] C. Rodríguez-Quintana, A. F. Díaz, J. Ortega,

R. H. Palacios, and A. Ortiz, "A new Scalable

approach for distributed Metadata in HPC," in

Algorithms and Architectures for Parallel

Processing. Springer Nature, 2016, pp. 106-117.

[15] T. White, Hadoop: The definitive guide,

"O'Reilly Media, Inc.", 2012.

[16] Abbas, A., Siddiqui, I. F., & Lee, S. U. J.

(2016). GOAL-BASED MODELING FOR

REQUIREMENT TRACEABILITY OF

SOFTWARE PRODUCT LINE. Journal of

Theoretical and Applied Information

Technology, 94(2), 327.

[17] Abbas, A., Siddqui, I. F., Lee, S. U. J., &

Bashir, A. K. (2017). Binary Pattern for Nested

Cardinality Constraints for Software Product

Line of IoT-based Feature Models. IEEE

Access.

Journal of Theoretical and Applied Information Technology
31st May 2017. Vol.95. No 10

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2296

[18] N.M.F Qureshi, et al. "KEY EXCHANGE

AUTHENTICATION PROTOCOL FOR NFS

ENABLED HDFS CLIENT", Journal of

Theoretical and Applied Information

Technology, vol. 95, no. 7, pp. 1353-1361,

2017.

[19] I.F Siddiqui, et al. "Comparative Analysis of

Centralized Vs. Distributed Locality-based

Repository over IoT-Enabled Big Data in Smart

Grid Environment", Proceedings of the Korean

Society of Computer Information Conference,

vol. 25, pp. 75-79, 2017.

[20] I.F. Siddiqui, et al. "A HIDDEN MARKOV

MODEL TO PREDICT HOT SOCKET ISSUE

IN SMART GRID", Journal of Theoretical and

Applied Information Technology, vol. 94, no. 2,

pp. 408-415, 2016.

[21] I.F. Siddiqui, et al. "A Comparative Study of

Multithreading APIs for Software of ICT

Equipment," J. Indian Journal of Science and

Technology, vol. 9, no. 48, pp. 1-5, Dec. 2016.

[22] I.F. Siddiqui, et al. "A Framework for Verifying

Consistency of SQL-DB Ontology using

Alloy," In Proc. 16th Korea Computer

Congress, 2014, pp.497-499.

[23] I.F. Siddiqui, et al. "Access Control as a Service

for Information Protection in Semantic Web

based Smart Environment," J. Journal of Korean

Society for Internet Information, vol. 17, no. 5,

pp. 9-16, Oct. 2016.

[24] I.F. Siddiqui, et al. "Privacy-Aware Smart

Learning: Providing XACML as a Service in

Semantic Web based Smart Environment," In

Proc. 7th International Conference on Internet

Symp., 2015, pp.97-101.

[25] Kc, Kamal, and Xiaohui Gu. "ELT: Efficient

log-based troubleshooting system for cloud

computing infrastructures." Reliable Distributed

Systems (SRDS), 2011 30th IEEE Symposium

on. IEEE, 2011.

[26] Feng, Bo, et al. "IOSIG+: on the Role of I/O

Tracing and Analysis for Hadoop

Systems." Cluster Computing (CLUSTER),

2015 IEEE International Conference on. IEEE,

2015.

[27] Tan, Jiaqi, et al. "Mochi: Visual Log-Analysis

Based Tools for Debugging

Hadoop." HotCloud. 2009.

[28] Gupta, Shekhar, et al. "Diagnosing

heterogeneous hadoop clusters." Workshop on

Principles of Diagnosis. 2012.

[29] Tan, Jiaqi, et al. "SALSA: Analyzing Logs as

StAte Machines." WASL 8 (2008): 6-6.

[30] Pan, Xinghao, et al. "Ganesha: blackBox

diagnosis of MapReduce systems." ACM

SIGMETRICS Performance Evaluation

Review 37.3 (2010): 8-13.

[31] N. M. F. Qureshi, and D. R. Shin, "RDP: A

storage-tier-aware Robust Data Placement

strategy for Hadoop in a Cloud-based

Heterogeneous Environment", KSII

Transactions on Internet and Information

Systems, vol. 10, no. 9, 2016, pp. 4063-4086.

[32] J. S. Yedidia, “Message-passing algorithms for

inference and optimization,” Journal of

Statistical Physics, vol. 145, no. 4, pp. 860-890,

2011

[33] M. Khosla, “Message Passing Algorithms,”

PHD thesis, 9 , 2009

[37] Tan, Jiaqi, et al. "Visual, log-based causal

tracing for performance debugging of

mapreduce systems." Distributed Computing

Systems (ICDCS), 2010 IEEE 30th

International Conference on. IEEE, 2010.

