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ABSTRACT 

 
Resource allocation in cloud computing systems is getting more complex and demanding due to the 
increasing requirements for cloud-based services. Scheduling services using a limited number of resources 
is problem that has been under study since the evolution of cloud computing. However, there are several 
open areas for improvements due to the large number of optimization variables. In this work, we intend to 
presents an algorithm to solve the fundamental problem of multiple tasks resource allocation that are to be 
scheduled on available services. Several resources will be considered where the cost of available services 
will depend the computational complexity needed for every service. The proposed algorithm can be applied 
without constraints on cost or execution time vectors as opposed to most practical and recent existing 
algorithms. The proposed algorithm is illustrated on two different examples. In addition, the algorithm as 
implemented and simulated in order to validate its correctness. The experimental results conducting using 
the proposed method proofs that the algorithm runs in linear time vs. different design parameters. The main 
limitation of the proposed algorithm is that it is only applicable to the scheduling problem of multiple tasks 
that has one price vector and one execution time vector.  However, providing optimum solution for this 
particular case, can be helpful in designing heuristic based methods for cloud services are actually run with 
multiple users with multiple tasks, which requires initial solutions that are usually obtained based on guess 
or generated randomly.   
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1. INTRODUCTION  

 
The area of cloud computing [1] is indented to 

provide computing services for customers over a 
network using a priced leased method. This 
paradigm may provide users with the ability of 
scaling their services requirements. In addition, this 
emerging concept allowed service providers to 
share and optimize the usage of distributed 
resources and services that may belong to the same 
or different providers. This also allow providers to 
balance the availability and demand on resources 
and hence, reduce the cost associated with the 
increase on available resources. However, since this 
issue imposed that cloud computing use distributed 
resources in open networks, several challenges were 
raised related to optimizing available distributed 
resources for various cloud computing applications. 

While several service scheduling problems have 
been studied in the literature for cloud systems, the 
problem of resource allocation includes several 
optimization factors, and therefore it is considered a 
difficult one. Most proposed approaches must state 
a set of assumptions about the available services, 
number of tasks and their subtasks, and finally 
communication between these services. 

In this work, we intend to propose a method to 
find optimum solution for resource allocation in 
available distributed cloud service providers. The 
problem of resource allocation with multiple users 
with tasks that has variable execution times on 
given multiple available resources is considered 
problem NP-Complete scheduling problem. 
Therefore, only heuristic based solutions that did 
not guarantee an optimum solution were provided 
in the literature. In previous work in [2], an 
algorithm based on utility function is provided to 
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handle this problem. Even through experimental 
results have shown improvement over existing 
methods, it is believed that the design and choice of 
the selection function can be further improved. This 
however, requires looking at the basic problem of 
allocating subtasks using a given number of 
resources. Finding optimal solution for this basic 
problem will help building better selection function 
for the general problem of multiple users with 
multiple subtasks of variable costs. Therefore, the 
algorithm proposed in this paper directed towards 
answering the question about the finding the 
optimum schedule that cloud system may use in 
order allocate multiple subtasks with different 
execution time and weight on a given number of 
available resources with different capabilities. 

The rest of this paper is organized as follows: 
Section 2 presents related work. Section 3 describes 
the problem description. Section 4 presents the 
proposed method with an example to illustrate its 
execution. The experimental results are illustrated 
in Section 5. Finally Section 6 concludes the paper 
with future work hints. 

2. RELOATED WORK 

There are several detailed reviews about this 
subject can be found in surveys such as [3], [4], [5], 
[6], and [7]. However, it is important to present 
some related work and discuss improvements over 
existing methods. 

 
Methods that are based on evolutionary genetic 

algorithms to solve scheduling problem in cloud 
computing were presented in several works. The 
work in [8] presented a genetic algorithm method 
for task level scheduling in Hadoop MapReduce, 
while the work can help finding local optimum 
solution, the execution of the load-balancing 
algorithm can take long time to make a decision for 
task assignments.  The authors in [9] addressed the 
independent batch scheduling in computational grid 
by presenting a genetic based algorithm in order to 
solve the global minimization problem in grid based 
energy consumption. The main disadvantage of this 
work, is that it is based only on two criteria, while 
fixing several other parameters. A genetic based 
scheduling algorithm was presented by [10] in order 
to reduce the waiting time of tasks to be scheduled 
in a cloud environment. There certain applications 
where the waiting time can be critical, however, in 
general, the main issue in this work is that 
optimizing scheduling for waiting time will have 
big impact on system utilization, which might not 
be favorable for several cloud applications. While 

the use of evolutionary based algorithms can help 
solving very large scale problems, it cannot 
guarantee obtaining the absolute optimum solutions, 
therefore it can be useful in certain cloud 
applications, and however, it cannot be used to 
provide baseline solutions for scheduling problems. 
In fact, evolutionary algorithms may make use of 
methods that provide absolute optimum solution for 
small scale problems in order to build on these. 

Game theory based approaches has also been 
proposed in [11]. This work considers several 
criteria in the optimization, such as dynamic 
allocation, variable resources distribution, different 
requirement of cloud users and their common 
information. The main issue with this approach is 
the requirements of strong assumptions about 
certain system parameters in order to have Nash 
equilibrium for the game. A similar approach was 
proposed in [12] to solve the problem of resource 
allocation in cognitive networks in order to increase 
resource utilization efficiency. The main drawback 
of this approach is that it requires dividing the 
payoff equally between all users of the cognitive 
network in order to work. The work in [13] used 
game theory in order to optimize the usage of 
resources across a cloud-based network based on 
the cost of computational services and the amount 
of computation. The proposed method can be 
applied on multiple users problem with subtasks, 
however, in order to apply game theoretic method 
optimally and find a Nash equilibrium, the 
execution time must be given in ascending order, 
and the price in descending.  

The use of fuzzy pattern recognition to solve 
similar problems were also proposed by [14], who 
presented a dynamically hierarchical resource-
allocation method that can be used within multiple 
cloud nodes. The algorithm requires 
intercommunication between nodes and prior 
knowledge about several task parameters. The work 
in [15] used fuzzy clustering for a workflow task 
scheduling. The major objective of scheduling is to 
minimize makespan of the precedence constrained 
applications. The method can only be applied on 
resource allocation problems that can be modeled as 
directed acyclic graphs. The work in [16] addressed 
the problem of finding an adequate tradeoff 
between two conflicting goals in dynamic resource 
(re)-allocation for virtual machines in cloud 
computing to guarantee application performance 
and to reduce operating costs. This work can be 
useful in certain applications that have restrictions 
on specific parameters, such as execution time, or 
cost, in order to find solutions under these 
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constraints. However, it can be applied in order to 
optimize the schedule under both parameters 
simultaneously.  Overall, the main problem with 
fuzzy logic approaches is with the requirement and 
restrictions imposed on the input space so that the 
algorithm can provide optimum solution. 

Auction mechanisms were also used by [17] for 
cloud resource allocation. The method works well 
under certain requirement including a specific value 
for the bandwidth between the use and the cloud 
server. Clients are allocated to cloud servers by an 
auction mechanism when the remaining bandwidth 
of a cloud server is greater than specific value. The 
major issue with this approach is that it did not 
consider the cost of executing specific tasks on the 
available servers, but only considered bandwidth 
which is only one factor of the cost.  Another 
auction method were proposed by [18] in order to 
help cloud providers to decide when and how they 
will allocate their resources and to which users. 
While the method can be useful in real time 
resource allocation, and it can give an effective 
solution where a certain task is to be scheduled 
instantly. It is not practical when the resources and 
tasks are known ahead and are required to be 
scheduled to optimize utilization of the system. 

Other approaches that can be considered related, 
but addressed problem with different context 
include profit and pricing based methods, such as 
the work by Walker et al. [19], Karthik et al. [20], 
Buyya et al. [21], and Xiao et al. [22]. User 
preferences based scheduling for enhancing QOs 
was also proposed by Ergu et al. [23], Mohan and  
Satyanarayana [24] and finally by Senthilnathan 
and Kalaiarasan [25].  

These type of methods can be useful in the search 
for cost-effective solutions for certain QoS 
requirement. However, solving QoS problem given 
the number of parameters is multitask scheduling is 
NP complete problem, therefore to find the absolute 
optimal schedule in terms of QoS measures is not 
practical. In order to help in this regard, it is 
required to solve scheduling problem at small scale 
first, and find optimum strategy, and then use this 
strategy to design heuristic based algorithms that 
can enhance existing scheduling methods. 

Even though there are several proposed methods 
to address resource allocation in cloud computing, 

on the subject, there is still room for more improved 
solutions, because the available cloud-based 
services are dependent on several QoS factors [13]. 
The main contributions of this work include 
providing a novel method to find optimum solution 
to allocate resources on given multiple subtasks to 
be scheduled a number of resources with given 
costs, in addition, providing experimental results to 
show that given solution runs in linear time vs. 
different design parameters. The method is 
illustrated on a detailed step by step example that 
shows how the algorithm evolves in order to reach 
required solution. Experimental results are then 
conducted with practical number of subtasks and 
resources. Finally, the proposed method is 
applicable without any restriction on the cost vector 
or execution time for resources. 

3. SCHEDULING MULTIPLE SUBTASKS 

USING MULTIPLE RESOURCES 

We provide here the problem description based 
on previous description in [2] and [8]. It is still 
necessary to introduce preliminary definitions that 
are needed to understand the work presented here. 
Hence, we will first present a formalization for the 
necessary parts of the problem. Given a number of k 
subtasks for a cloud services user that are to be 
scheduled using existing m computational 
resources: {R1,R2, ..., Rm}. Each resource, Rj, costs a 
fixed price pj, hence forming the price vector p = 
{p1,p2, ..., pm}. In addition, each resource Ri require 
specific time, ti, to execute any subtask forming the 
execution time vector t = {t1,t2, ..., tm}. 

It is required to assign the given set of subtasks 
each into a single selected resource Rj in order to 
minimize the total cost. Cost is defined using the 
expense and total execution time for completing all 
given subtasks. The solution for the given 
scheduling problem is a resulting vector v that has 
m elements, each is a non-negative number 
represent the subtasks assigned to that particular 
resource. For instance, vi is element number i in 
vector v represents the number of subtasks allocated 
to m resource Ri. Therefore, the solution vector v 
must satisfy: 
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We define the following two vectors as follows: 
the execution time vector, denoted as and the 
expense or cost vector, denoted as ȇ. The entry ṫi of 
ṫ is the turnaround time it takes for resource Rj to 
complete vj subtasks of the task S. The entry ȇi of 
vector ȇ is the expense S pays for resource Rj to 
complete vj subtasks. These two vectors are defined 
as follows: ṫ = v  · t, and ȇi  = v  · t · p. Based on 
these, two values for schedule v are calculated, the 
first represents the total execution time tmax, and the 
second represents the total expense ev. The 
execution time for task S is the maximum execution 
time of tasks assigned to resources, tmax = max{ ṫi  | 
ṫi  ∈ ṫ} where ṫi  denotes the ith element of the vector 
ṫ. The total expense ev is the summation of all 
expenses paid to all resources, ev = . We 
assign weights for schedule costs as follows, wt for 
execution time weight, and we for expense weight. 
Then we can define a benefit value of the expense 
using the following utility function: 

 

 

The optimum solution is achieved, when u is 
maximized. The following example is shown in 
order to demonstrate the allocation problem. Using 
five available resources (R1 - R5), m=5, and using 
the price vector of p = (1.2, 1.5, 2, 1.0, 1.8), there is 
a task S with k = 3 subtasks. We first obtain the 
execution time vector for each subtask as follows t 
= (4, 3.5, 3.2, 2.8, 2.4). Assume that a schedule v = 
(1, 0, 1, 0, 1) is used, then we can calculate ṫ and ȇ 
as follows:   ṫ = (4, 0, 3.2, 0, 2.4), and ȇ  = (4.8, 0, 
6.4, 0, 4.32), then we can calculate, tv = 4 and ev = 
15.52. Assuming we = wt = 1, then u = 1/(tv + ev)= 
0.0512. On the other hand, the schedule 
v=(1,1,0,1,0) will yield to u = 0.0593. 

There is tradeoff between the execution time and 
the price for every solution. Hence, to further 
improve the utility, a scheduling algorithm must be 
used. The proposed method in this work is intended 
to provide the optimum solution in linear time vs. 
number of subtasks or number of resources. 

4. OPTIMIZING SINGLE USER 

SCHEDULING 

For a problem with k subtasks and m resources, 
the optimum solution for the optimization problem 
described above is achieved by finding the 
allocation vector v the maximizes the utility u(v). 
The problem is solved by first defining a variable 
tmax uninitialized to 0. A selection function called δ 

with m elements is defined as follows: δ = 
(δ1,δ2,...,δm), and then initialized as indicated below:  

 

The allocation of the given k subtasks is archived 
through procedure, where in every step, one subtask 
is assigned into one resource. In every step, we 
chose allocation resource m that satisfies the 
following set of conditions: (1) 1 ≤ m ≤ n, and (1) 

∀m ⋅ 1 ≤ m ≤ n ⇒ δm ≤ δi. This means that we 
chose δm which is minimum in δ. The current 
subtask is hence assigned into resource Rm. The 
schedule v by incrementing vm is updated 
accordingly, a new ṫm, δm, and tmax are then obtained 
based on the new vector. This step is repeated until 
all subtasks are scheduled. 
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This algorithm has a complexity of worst case 
O(nk). It can be done by sorting δ, and then 
whenever, δi is calculated, it will be inserted into δ 
while sorted. Applying the above algorithm on the 
example explained above will result in v = (0, 0, 0, 
2, 1), with utility u =0.0644, which is the optimum 
solution. 

4.1 Illustrative Examples 

Let us consider two examples in order to 
demonstrate the algorithm above to find an 
optimum allocation vector. In the first, we assume 
the price vector is given as p = (1, 1.2, 1.5, 1.8, 2), 
the number of resources M =5, number of subtasks 
is k =4, the execution time vector for each subtask 
using the given resources is given as t = (4, 3.5, 3.2, 
2.8, 2.4). We start calculating initial values of the 
selection function using the algorithm above, that 
leads to δ = (8, 7.7, 8, 7.84, 7.2). In addition, we 
initiate the allocation vector and tmax as follows: v = 
(0, 0, 0, 0, 0), tmax =0. Then we chose m, such that 
δm is minimum, in this case, δm =5, hence, the first 
subtask will be scheduled to service R5. This is 
illustrated in the initial step indicated as λ0 in Table 
1, where the numbers in bold represent the active 
ones. Based on this, we update the allocation 
vector, v, the selection function δ, k, and tmax in the 
next step λ1 as follows: v = (0, 0, 0, 0, 1), δ = (8, 
7.7, 8, 7.84, 14.4), k =3, and tmax =2.4. The 
algorithm proceeds until all subtasks are processed. 
Table 1 below shows the steps for executing the 
algorithm on this example. The final allocation 
vectors becomes v = (1, 1, 1, 0, 1) with uv =0.459, 
for wt =1.0 and we =1.0, which is the optimum 
solution. 

In the second example, we will use different 
parameters as follows: the number of resources M = 
10, number of subtasks is k = 15, p = (4, 8, 11, 10, 
9, 7, 13, 16, 6, 12), and t = (12, 11, 5, 7, 5, 8, 6, 8, 
11, 5). Executing the algorithm, as shown in the 
table 2, leads into the schedule v = (2, 1, 2, 1, 3, 1, 
1, 1, 2, 1), with u =0.00104 for wt =1.0 and we 
=1.0, which is the optimum solution. In the next 
Section we present performance evaluation for the 
algorithm.  

The examples above show that the algorithm is 
simple to implement and at the same time efficient. 
In fact, when a more complex problem is 
considered, such as multiple users with tasks with 
different price vectors, the problem of finding the 
optimal solution becomes NP complete. However, 
using a simple and efficient method to find the 
optimum schedule for the single user case will solve 
the fundamental step in several heuristic based 

methods, such as evolutionary ones, that require 
initial solutions to the problem as a starting point. 

5. PERFORMANCE EVALUATION  

In this section we study the performance of the 
given algorithm for different parameters in the 
problem. We first show the effect of number of 
subtasks on the execution time of the algorithm. We 
did an implementation for the algorithm and 
executed the scheduling process for variable 
number of subtasks. In order to conduct 
experimental results, we first provided an 
implementation for the algorithm in C++. The 
implementation model of the algorithm is achieved 
by setting up the selection function with initial 
values based on input vectors. Then tasks are 
processed in an iterative process, where every task 
is allocated for the best available resource provided 
by the selection function. The selection function is 
then modified based on this. Next task is scheduled 
similarly, until all tasks are processed.  

In order to study the efficiency of the algorithms, 
we conducted simulations by generating resources 
with different costs and commotional power, as 
well as tasks to be scheduled on these resources. In 
the first experiment, we set the number of resources 
to a fixed number of 104. Then, we tested the 
execution time for algorithm for different the 
following values of the number of sub-tasks k = i × 
104, where i = {1, 2,..., 100}. For every experiment, 
we initiated p and t with random values. The choice 
of the price value were done randomly as follows: 

t[j] = LO+static_cast <float> (rand())     
/(static_cast <float>(RAND_MAX/(HI-LO))); 

p[j] = LO+static cast <float> (rand())     
/(static cast <float>(RAND MAX/(HI-LO))); 

where the variable LO and HI represents the ranges 
for the execution time and the price, and were set to 
LO =1.0, HI = 15.0 for the time, and LO =1.0, HI 
= 20.0 for the price. These values were selected 
based constipation of variance of computational 
power between different practical cloud resources, 
and these values and ranges will have no effect on 
the actual complexity of the algorithm as described 
above. All simulations are run on Windows 7 64 

− bit system with 8.00 GB of RAM, and 
Intel(R) Core(TM)i7−4770 CPU @3.40 

GHz. Figure 1 illustrates the execution time in 
seconds vs. the number of subtasks, and it shows 
linear increment. 
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Figure 1: Execution time vs. number of subtasks k  

 

 
 

Figure 2: Execution time vs. number of resources N  

 

Next, we executed the scheduling process for 
variable number of resources, while fixing the 
number of subtasks to k = 104 subtasks. We 
initiated p and t with random values similar to 
above, and then tested the execution time for 
algorithm for different the following values of 
subtasks N = {4000, 8000, ..., 60000}. Figure 2 
illustrates the execution time in seconds vs. the 
number of resources, and it shows linear increment. 
Finally, Figure 3 shows the execution time in 
seconds vs. number of subtasks k, and the number 
of resources simultaneously, which shows linear 
increment vs. each for different values, i.e., the 
execution time is linear vs. k × n, which is 
consistent with the complexity of O(kn). Finally, in 
order to test the performance of the algorithm under 
both number of resources and number of subtasks 
simultaneously, we repeated the experiment while 
changing number of subtasks from 1k up to 20k, 
with an increment of 1k, and the number of 
resources from 1k to 15k, and calculated the 
execution time of the algorithm. Figure 2 shows the 
archived results illustrated as linear behavior.  

 
 

The results achieved in this work solve the 
intended problem and provide an algorithm with 
linear execution time. In addition, this work is 
fundamental in order to provide an efficient method 
to define selection function which can be used in 
finding heuristic based solutions for the NP 
complete problem of scheduling multiple tasks for 
multiple users. In fact, the problem of allocating 
multiple users, each with multiple tasks, on given 
number of resources is an open one. Several 
methods have been proposed to provide solutions, 
however, the presented methods can still be further 
enhanced if proper optimizing algorithms can be 
used. In particular, ones that can present optimum 
solutions for special cases, such as the one peened 
here. Hence, this algorithm is intended to define a 
selection function that can serve as heuristic for 
scheduling multiple users’ problem. 

 
6. CONCLUSION AND FUTURE WORK  

Cloud computing systems are getting more 
complex and demanding due to the increasing 
demand and requirements for cloud based services. 
On the other hand, providing optimized solutions 
for scheduling services using a limited number of 
resources is problem that has gained attention due 
its impact on cloud computing services. In this 
work an algorithm is proposed without constraints 
on cost or execution time vectors as opposed to 
most practical and recent existing algorithms. The 
methods is illustrated on practical example that 
shows its simplicity of execution. On the other 
hand, the algorithm was tested for variable number 
of subtasks and available resources. Experimental 
results show that the algorithm runs in linear time 
vs. these design parameters. 

The method presented in this paper can be used 
for scheduling problems without imposing 
constraints on the vectors that represent the 
execution time and price, as opposed to game 
theoretic methods that can reach Nash equilibrium 
only if this condition is satisfied. In addition, the 
proposed method outputs schedule with best utility 
as opposed to evolutionary algorithms that does not 
guarantee the best strategy. As future work, we 
intend to use the proposed method here and extend 
it to handle the scheduling problem of multiple 
users with variable computation time vector for  
subtasks of different users using a selection 
function that is designed using the algorithm 
proposed in this paper. 

The main limitation of the proposed algorithm is 
that it is only applicable to the scheduling problem 
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of multiple tasks that has one price vector and one 
execution time vector. However, when scheduling 
multiple users, each with subtasks that have their 
own price and execution time vector, then the 
problem becomes NP complete and this method 
cannot be used. Hence, while the algorithm 
presented in this work leads into optimum solution, 
it might not have prominent applications as is, since 
practical cloud services are actually run with 
multiple users with multiple tasks, which is 
considered NP complete problem. However, 
providing optimum solution for this particular case, 
can be helpful in designing heuristic based methods 
that requires initial solutions that are usually 
obtained based on guess or generated randomly, and 
then the heuristic method is designed to find better 
solutions for the multiple users' problem. 
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Table 1: Execution of the algorithm on the first example above 

λ v δ tmax k m 

λ0 0, 0, 0, 0, 0 (8.0, 7.7, 8.0, 7.84, 7.2) 0.0 4 5 

λ1 0, 0, 0, 0, 1 (8.0, 7.7, 8.0, 7.84, 14.4) 2.4 3 2 

λ2 0, 1, 0, 0, 1 (8.0, 15.4,  8.3, 8.54, 14.4) 2.5 2 1 

λ3 1, 1, 0, 0, 1 (16.0, 15.4,  8.8, 9.04, 14.4) 4.0 1 3 

λ4 1, 1, 1, 0, 1 (16.0, 15.4, 16.0, 9.04, 14.4) 4.0 0 4 

Table 2: Execution of the algorithm on the second example above 

λ v δ tmax k m 

λ0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (60, 90, 52, 88, 45, 88, 84, 112, 70, 91) 0 15 5 

λ1 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 (60, 90, 53, 88, 90, 88, 84, 112, 70, 91) 5 14 3 

λ2 0, 0, 1, 0, 1, 0, 0, 0, 0, 0 (60, 90, 104, 88, 90, 88, 84, 112, 70, 91) 5 13 1 

λ3 1, 0, 1, 0, 1, 0, 0, 0, 0, 0 (120, 93, 108, 92, 92, 89, 90, 117, 72, 96) 12 12 9 

λ4 1, 0, 1, 0, 1, 0, 0, 0, 1, 0 (120, 93, 108, 92, 92, 89, 90, 117, 140, 96) 12 11 6 

λ5 1, 0, 1, 0, 1, 1, 0, 0, 1, 0 (120, 93, 108, 92, 92, 176, 90, 117, 140, 96) 12 10 7 

λ6 1, 0, 1, 0, 1, 1, 1, 0, 1, 0 (120, 93, 108, 92, 92, 176, 168, 117, 140, 96) 12 9 4,5 

λ7 1, 0, 1, 1, 1, 1, 1, 0, 1, 0 (120, 93, 108, 176, 92, 176, 168, 117, 140, 96) 12 8 5 

λ8 1, 0, 1, 1, 2, 1, 1, 0, 1, 0 (120, 93, 108, 176, 135, 176, 168, 117, 140, 96) 12 7 2 

λ9 1, 1, 1, 1, 2, 1, 1, 0, 1, 0 (120, 180, 108, 176, 135, 176, 168, 117, 140, 96) 12 6 10 

λ10 1, 1, 1, 1, 2, 1, 1, 0, 1, 1 (120, 180, 108, 176, 135, 176, 168, 117, 140, 182) 12 5 3 

λ11 1, 1, 2, 1, 2, 1, 1, 0, 1, 1 (120, 180, 156, 176, 135, 176, 168, 117, 140, 182) 12 4 8 

λ12 1, 1, 2, 1, 2, 1, 1, 1, 1, 1 (120, 180, 156, 176, 135, 176, 168, 224, 140, 182) 12 3 1 

λ13 2, 1, 2, 1, 2, 1, 1, 1, 1, 1 (180, 186, 168, 184, 144, 178, 180, 234, 144, 192) 24 2 5,9 

λ14 2, 1, 2, 1, 2, 1, 1, 1, 2, 1 180, 186, 168, 184, 144, 178, 180, 234, 210, 192) 24 1 5 

λ15 2, 1, 2, 1, 3, 1, 1, 1, 2, 1 (180, 186, 168, 184, 184, 178, 180, 234, 210, 192) 24 0 3 

 

 
 

Figure 3: Execution time vs. number of subtasks k and number of resources N  


