
Journal of Theoretical and Applied Information Technology
 15

th
January 2017. Vol.95. No.1

 © 2005 - 2017 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

31

OPTIMIZING RESOURCE ALLOCATION SCHEDULING IN
CLOUD COMPUTING SERVICES

1
AMJAD GAWANMEH,

2
AHMAD ALOMARI,

3
ALAIN APRIL

1Department of Electrical and Computer Engineering, Khalifa University, Abu Dhabi, UAE

1Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada

23Department of Software Engineering, Universite du Quebec, Ecole de Technologie Superieure, Montreal,

Canada

E-mail: 1amjad.gawanmeh@kustar.ac.ae, 2ahmad.alomari.l@ens.etsmtl.ca, 3alain.april@etsmtl.ca

ABSTRACT

Resource allocation in cloud computing systems is getting more complex and demanding due to the
increasing requirements for cloud-based services. Scheduling services using a limited number of resources
is problem that has been under study since the evolution of cloud computing. However, there are several
open areas for improvements due to the large number of optimization variables. In this work, we intend to
presents an algorithm to solve the fundamental problem of multiple tasks resource allocation that are to be
scheduled on available services. Several resources will be considered where the cost of available services
will depend the computational complexity needed for every service. The proposed algorithm can be applied
without constraints on cost or execution time vectors as opposed to most practical and recent existing
algorithms. The proposed algorithm is illustrated on two different examples. In addition, the algorithm as
implemented and simulated in order to validate its correctness. The experimental results conducting using
the proposed method proofs that the algorithm runs in linear time vs. different design parameters. The main
limitation of the proposed algorithm is that it is only applicable to the scheduling problem of multiple tasks
that has one price vector and one execution time vector. However, providing optimum solution for this
particular case, can be helpful in designing heuristic based methods for cloud services are actually run with
multiple users with multiple tasks, which requires initial solutions that are usually obtained based on guess
or generated randomly.

Keywords: Could services, Cloud Scheduling, Distributed systems, Cloud Computing, Scheduling

1. INTRODUCTION

The area of cloud computing [1] is indented to

provide computing services for customers over a
network using a priced leased method. This
paradigm may provide users with the ability of
scaling their services requirements. In addition, this
emerging concept allowed service providers to
share and optimize the usage of distributed
resources and services that may belong to the same
or different providers. This also allow providers to
balance the availability and demand on resources
and hence, reduce the cost associated with the
increase on available resources. However, since this
issue imposed that cloud computing use distributed
resources in open networks, several challenges were
raised related to optimizing available distributed
resources for various cloud computing applications.

While several service scheduling problems have
been studied in the literature for cloud systems, the
problem of resource allocation includes several
optimization factors, and therefore it is considered a
difficult one. Most proposed approaches must state
a set of assumptions about the available services,
number of tasks and their subtasks, and finally
communication between these services.

In this work, we intend to propose a method to
find optimum solution for resource allocation in
available distributed cloud service providers. The
problem of resource allocation with multiple users
with tasks that has variable execution times on
given multiple available resources is considered
problem NP-Complete scheduling problem.
Therefore, only heuristic based solutions that did
not guarantee an optimum solution were provided
in the literature. In previous work in [2], an
algorithm based on utility function is provided to

Journal of Theoretical and Applied Information Technology
 15

th
January 2017. Vol.95. No.1

 © 2005 - 2017 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

32

handle this problem. Even through experimental
results have shown improvement over existing
methods, it is believed that the design and choice of
the selection function can be further improved. This
however, requires looking at the basic problem of
allocating subtasks using a given number of
resources. Finding optimal solution for this basic
problem will help building better selection function
for the general problem of multiple users with
multiple subtasks of variable costs. Therefore, the
algorithm proposed in this paper directed towards
answering the question about the finding the
optimum schedule that cloud system may use in
order allocate multiple subtasks with different
execution time and weight on a given number of
available resources with different capabilities.

The rest of this paper is organized as follows:
Section 2 presents related work. Section 3 describes
the problem description. Section 4 presents the
proposed method with an example to illustrate its
execution. The experimental results are illustrated
in Section 5. Finally Section 6 concludes the paper
with future work hints.

2. RELOATED WORK

There are several detailed reviews about this
subject can be found in surveys such as [3], [4], [5],
[6], and [7]. However, it is important to present
some related work and discuss improvements over
existing methods.

Methods that are based on evolutionary genetic

algorithms to solve scheduling problem in cloud
computing were presented in several works. The
work in [8] presented a genetic algorithm method
for task level scheduling in Hadoop MapReduce,
while the work can help finding local optimum
solution, the execution of the load-balancing
algorithm can take long time to make a decision for
task assignments. The authors in [9] addressed the
independent batch scheduling in computational grid
by presenting a genetic based algorithm in order to
solve the global minimization problem in grid based
energy consumption. The main disadvantage of this
work, is that it is based only on two criteria, while
fixing several other parameters. A genetic based
scheduling algorithm was presented by [10] in order
to reduce the waiting time of tasks to be scheduled
in a cloud environment. There certain applications
where the waiting time can be critical, however, in
general, the main issue in this work is that
optimizing scheduling for waiting time will have
big impact on system utilization, which might not
be favorable for several cloud applications. While

the use of evolutionary based algorithms can help
solving very large scale problems, it cannot
guarantee obtaining the absolute optimum solutions,
therefore it can be useful in certain cloud
applications, and however, it cannot be used to
provide baseline solutions for scheduling problems.
In fact, evolutionary algorithms may make use of
methods that provide absolute optimum solution for
small scale problems in order to build on these.

Game theory based approaches has also been
proposed in [11]. This work considers several
criteria in the optimization, such as dynamic
allocation, variable resources distribution, different
requirement of cloud users and their common
information. The main issue with this approach is
the requirements of strong assumptions about
certain system parameters in order to have Nash
equilibrium for the game. A similar approach was
proposed in [12] to solve the problem of resource
allocation in cognitive networks in order to increase
resource utilization efficiency. The main drawback
of this approach is that it requires dividing the
payoff equally between all users of the cognitive
network in order to work. The work in [13] used
game theory in order to optimize the usage of
resources across a cloud-based network based on
the cost of computational services and the amount
of computation. The proposed method can be
applied on multiple users problem with subtasks,
however, in order to apply game theoretic method
optimally and find a Nash equilibrium, the
execution time must be given in ascending order,
and the price in descending.

The use of fuzzy pattern recognition to solve
similar problems were also proposed by [14], who
presented a dynamically hierarchical resource-
allocation method that can be used within multiple
cloud nodes. The algorithm requires
intercommunication between nodes and prior
knowledge about several task parameters. The work
in [15] used fuzzy clustering for a workflow task
scheduling. The major objective of scheduling is to
minimize makespan of the precedence constrained
applications. The method can only be applied on
resource allocation problems that can be modeled as
directed acyclic graphs. The work in [16] addressed
the problem of finding an adequate tradeoff
between two conflicting goals in dynamic resource
(re)-allocation for virtual machines in cloud
computing to guarantee application performance
and to reduce operating costs. This work can be
useful in certain applications that have restrictions
on specific parameters, such as execution time, or
cost, in order to find solutions under these

Journal of Theoretical and Applied Information Technology
 15

th
January 2017. Vol.95. No.1

 © 2005 - 2017 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

33

constraints. However, it can be applied in order to
optimize the schedule under both parameters
simultaneously. Overall, the main problem with
fuzzy logic approaches is with the requirement and
restrictions imposed on the input space so that the
algorithm can provide optimum solution.

Auction mechanisms were also used by [17] for
cloud resource allocation. The method works well
under certain requirement including a specific value
for the bandwidth between the use and the cloud
server. Clients are allocated to cloud servers by an
auction mechanism when the remaining bandwidth
of a cloud server is greater than specific value. The
major issue with this approach is that it did not
consider the cost of executing specific tasks on the
available servers, but only considered bandwidth
which is only one factor of the cost. Another
auction method were proposed by [18] in order to
help cloud providers to decide when and how they
will allocate their resources and to which users.
While the method can be useful in real time
resource allocation, and it can give an effective
solution where a certain task is to be scheduled
instantly. It is not practical when the resources and
tasks are known ahead and are required to be
scheduled to optimize utilization of the system.

Other approaches that can be considered related,
but addressed problem with different context
include profit and pricing based methods, such as
the work by Walker et al. [19], Karthik et al. [20],
Buyya et al. [21], and Xiao et al. [22]. User
preferences based scheduling for enhancing QOs
was also proposed by Ergu et al. [23], Mohan and
Satyanarayana [24] and finally by Senthilnathan
and Kalaiarasan [25].

These type of methods can be useful in the search
for cost-effective solutions for certain QoS
requirement. However, solving QoS problem given
the number of parameters is multitask scheduling is
NP complete problem, therefore to find the absolute
optimal schedule in terms of QoS measures is not
practical. In order to help in this regard, it is
required to solve scheduling problem at small scale
first, and find optimum strategy, and then use this
strategy to design heuristic based algorithms that
can enhance existing scheduling methods.

Even though there are several proposed methods
to address resource allocation in cloud computing,

on the subject, there is still room for more improved
solutions, because the available cloud-based
services are dependent on several QoS factors [13].
The main contributions of this work include
providing a novel method to find optimum solution
to allocate resources on given multiple subtasks to
be scheduled a number of resources with given
costs, in addition, providing experimental results to
show that given solution runs in linear time vs.
different design parameters. The method is
illustrated on a detailed step by step example that
shows how the algorithm evolves in order to reach
required solution. Experimental results are then
conducted with practical number of subtasks and
resources. Finally, the proposed method is
applicable without any restriction on the cost vector
or execution time for resources.

3. SCHEDULING MULTIPLE SUBTASKS

USING MULTIPLE RESOURCES

We provide here the problem description based
on previous description in [2] and [8]. It is still
necessary to introduce preliminary definitions that
are needed to understand the work presented here.
Hence, we will first present a formalization for the
necessary parts of the problem. Given a number of k
subtasks for a cloud services user that are to be
scheduled using existing m computational
resources: {R1,R2, ..., Rm}. Each resource, Rj, costs a
fixed price pj, hence forming the price vector p =
{p1,p2, ..., pm}. In addition, each resource Ri require
specific time, ti, to execute any subtask forming the
execution time vector t = {t1,t2, ..., tm}.

It is required to assign the given set of subtasks
each into a single selected resource Rj in order to
minimize the total cost. Cost is defined using the
expense and total execution time for completing all
given subtasks. The solution for the given
scheduling problem is a resulting vector v that has
m elements, each is a non-negative number
represent the subtasks assigned to that particular
resource. For instance, vi is element number i in
vector v represents the number of subtasks allocated
to m resource Ri. Therefore, the solution vector v
must satisfy:

Journal of Theoretical and Applied Information Technology
 15

th
January 2017. Vol.95. No.1

 © 2005 - 2017 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

34

We define the following two vectors as follows:
the execution time vector, denoted as and the
expense or cost vector, denoted as ȇ. The entry ṫi of
ṫ is the turnaround time it takes for resource Rj to
complete vj subtasks of the task S. The entry ȇi of
vector ȇ is the expense S pays for resource Rj to
complete vj subtasks. These two vectors are defined
as follows: ṫ = v · t, and ȇi = v · t · p. Based on
these, two values for schedule v are calculated, the
first represents the total execution time tmax, and the
second represents the total expense ev. The
execution time for task S is the maximum execution
time of tasks assigned to resources, tmax = max{ ṫi |
ṫi ∈ ṫ} where ṫi denotes the ith element of the vector
ṫ. The total expense ev is the summation of all
expenses paid to all resources, ev = . We
assign weights for schedule costs as follows, wt for
execution time weight, and we for expense weight.
Then we can define a benefit value of the expense
using the following utility function:

The optimum solution is achieved, when u is
maximized. The following example is shown in
order to demonstrate the allocation problem. Using
five available resources (R1 - R5), m=5, and using
the price vector of p = (1.2, 1.5, 2, 1.0, 1.8), there is
a task S with k = 3 subtasks. We first obtain the
execution time vector for each subtask as follows t
= (4, 3.5, 3.2, 2.8, 2.4). Assume that a schedule v =
(1, 0, 1, 0, 1) is used, then we can calculate ṫ and ȇ
as follows: ṫ = (4, 0, 3.2, 0, 2.4), and ȇ = (4.8, 0,
6.4, 0, 4.32), then we can calculate, tv = 4 and ev =
15.52. Assuming we = wt = 1, then u = 1/(tv + ev)=
0.0512. On the other hand, the schedule
v=(1,1,0,1,0) will yield to u = 0.0593.

There is tradeoff between the execution time and
the price for every solution. Hence, to further
improve the utility, a scheduling algorithm must be
used. The proposed method in this work is intended
to provide the optimum solution in linear time vs.
number of subtasks or number of resources.

4. OPTIMIZING SINGLE USER

SCHEDULING

For a problem with k subtasks and m resources,
the optimum solution for the optimization problem
described above is achieved by finding the
allocation vector v the maximizes the utility u(v).
The problem is solved by first defining a variable
tmax uninitialized to 0. A selection function called δ

with m elements is defined as follows: δ =
(δ1,δ2,...,δm), and then initialized as indicated below:

The allocation of the given k subtasks is archived
through procedure, where in every step, one subtask
is assigned into one resource. In every step, we
chose allocation resource m that satisfies the
following set of conditions: (1) 1 ≤ m ≤ n, and (1)

∀m ⋅ 1 ≤ m ≤ n ⇒ δm ≤ δi. This means that we
chose δm which is minimum in δ. The current
subtask is hence assigned into resource Rm. The
schedule v by incrementing vm is updated
accordingly, a new ṫm, δm, and tmax are then obtained
based on the new vector. This step is repeated until
all subtasks are scheduled.

Journal of Theoretical and Applied Information Technology
 15

th
January 2017. Vol.95. No.1

 © 2005 - 2017 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

35

This algorithm has a complexity of worst case
O(nk). It can be done by sorting δ, and then
whenever, δi is calculated, it will be inserted into δ
while sorted. Applying the above algorithm on the
example explained above will result in v = (0, 0, 0,
2, 1), with utility u =0.0644, which is the optimum
solution.

4.1 Illustrative Examples

Let us consider two examples in order to
demonstrate the algorithm above to find an
optimum allocation vector. In the first, we assume
the price vector is given as p = (1, 1.2, 1.5, 1.8, 2),
the number of resources M =5, number of subtasks
is k =4, the execution time vector for each subtask
using the given resources is given as t = (4, 3.5, 3.2,
2.8, 2.4). We start calculating initial values of the
selection function using the algorithm above, that
leads to δ = (8, 7.7, 8, 7.84, 7.2). In addition, we
initiate the allocation vector and tmax as follows: v =
(0, 0, 0, 0, 0), tmax =0. Then we chose m, such that
δm is minimum, in this case, δm =5, hence, the first
subtask will be scheduled to service R5. This is
illustrated in the initial step indicated as λ0 in Table
1, where the numbers in bold represent the active
ones. Based on this, we update the allocation
vector, v, the selection function δ, k, and tmax in the
next step λ1 as follows: v = (0, 0, 0, 0, 1), δ = (8,
7.7, 8, 7.84, 14.4), k =3, and tmax =2.4. The
algorithm proceeds until all subtasks are processed.
Table 1 below shows the steps for executing the
algorithm on this example. The final allocation
vectors becomes v = (1, 1, 1, 0, 1) with uv =0.459,
for wt =1.0 and we =1.0, which is the optimum
solution.

In the second example, we will use different
parameters as follows: the number of resources M =
10, number of subtasks is k = 15, p = (4, 8, 11, 10,
9, 7, 13, 16, 6, 12), and t = (12, 11, 5, 7, 5, 8, 6, 8,
11, 5). Executing the algorithm, as shown in the
table 2, leads into the schedule v = (2, 1, 2, 1, 3, 1,
1, 1, 2, 1), with u =0.00104 for wt =1.0 and we
=1.0, which is the optimum solution. In the next
Section we present performance evaluation for the
algorithm.

The examples above show that the algorithm is
simple to implement and at the same time efficient.
In fact, when a more complex problem is
considered, such as multiple users with tasks with
different price vectors, the problem of finding the
optimal solution becomes NP complete. However,
using a simple and efficient method to find the
optimum schedule for the single user case will solve
the fundamental step in several heuristic based

methods, such as evolutionary ones, that require
initial solutions to the problem as a starting point.

5. PERFORMANCE EVALUATION

In this section we study the performance of the
given algorithm for different parameters in the
problem. We first show the effect of number of
subtasks on the execution time of the algorithm. We
did an implementation for the algorithm and
executed the scheduling process for variable
number of subtasks. In order to conduct
experimental results, we first provided an
implementation for the algorithm in C++. The
implementation model of the algorithm is achieved
by setting up the selection function with initial
values based on input vectors. Then tasks are
processed in an iterative process, where every task
is allocated for the best available resource provided
by the selection function. The selection function is
then modified based on this. Next task is scheduled
similarly, until all tasks are processed.

In order to study the efficiency of the algorithms,
we conducted simulations by generating resources
with different costs and commotional power, as
well as tasks to be scheduled on these resources. In
the first experiment, we set the number of resources
to a fixed number of 104. Then, we tested the
execution time for algorithm for different the
following values of the number of sub-tasks k = i ×
104, where i = {1, 2,..., 100}. For every experiment,
we initiated p and t with random values. The choice
of the price value were done randomly as follows:

t[j] = LO+static_cast <float> (rand())
/(static_cast <float>(RAND_MAX/(HI-LO)));

p[j] = LO+static cast <float> (rand())
/(static cast <float>(RAND MAX/(HI-LO)));

where the variable LO and HI represents the ranges
for the execution time and the price, and were set to
LO =1.0, HI = 15.0 for the time, and LO =1.0, HI
= 20.0 for the price. These values were selected
based constipation of variance of computational
power between different practical cloud resources,
and these values and ranges will have no effect on
the actual complexity of the algorithm as described
above. All simulations are run on Windows 7 64

− bit system with 8.00 GB of RAM, and
Intel(R) Core(TM)i7−4770 CPU @3.40

GHz. Figure 1 illustrates the execution time in
seconds vs. the number of subtasks, and it shows
linear increment.

Journal of Theoretical and Applied Information Technology
 15

th
January 2017. Vol.95. No.1

 © 2005 - 2017 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

36

Figure 1: Execution time vs. number of subtasks k

Figure 2: Execution time vs. number of resources N

Next, we executed the scheduling process for
variable number of resources, while fixing the
number of subtasks to k = 104 subtasks. We
initiated p and t with random values similar to
above, and then tested the execution time for
algorithm for different the following values of
subtasks N = {4000, 8000, ..., 60000}. Figure 2
illustrates the execution time in seconds vs. the
number of resources, and it shows linear increment.
Finally, Figure 3 shows the execution time in
seconds vs. number of subtasks k, and the number
of resources simultaneously, which shows linear
increment vs. each for different values, i.e., the
execution time is linear vs. k × n, which is
consistent with the complexity of O(kn). Finally, in
order to test the performance of the algorithm under
both number of resources and number of subtasks
simultaneously, we repeated the experiment while
changing number of subtasks from 1k up to 20k,
with an increment of 1k, and the number of
resources from 1k to 15k, and calculated the
execution time of the algorithm. Figure 2 shows the
archived results illustrated as linear behavior.

The results achieved in this work solve the
intended problem and provide an algorithm with
linear execution time. In addition, this work is
fundamental in order to provide an efficient method
to define selection function which can be used in
finding heuristic based solutions for the NP
complete problem of scheduling multiple tasks for
multiple users. In fact, the problem of allocating
multiple users, each with multiple tasks, on given
number of resources is an open one. Several
methods have been proposed to provide solutions,
however, the presented methods can still be further
enhanced if proper optimizing algorithms can be
used. In particular, ones that can present optimum
solutions for special cases, such as the one peened
here. Hence, this algorithm is intended to define a
selection function that can serve as heuristic for
scheduling multiple users’ problem.

6. CONCLUSION AND FUTURE WORK

Cloud computing systems are getting more
complex and demanding due to the increasing
demand and requirements for cloud based services.
On the other hand, providing optimized solutions
for scheduling services using a limited number of
resources is problem that has gained attention due
its impact on cloud computing services. In this
work an algorithm is proposed without constraints
on cost or execution time vectors as opposed to
most practical and recent existing algorithms. The
methods is illustrated on practical example that
shows its simplicity of execution. On the other
hand, the algorithm was tested for variable number
of subtasks and available resources. Experimental
results show that the algorithm runs in linear time
vs. these design parameters.

The method presented in this paper can be used
for scheduling problems without imposing
constraints on the vectors that represent the
execution time and price, as opposed to game
theoretic methods that can reach Nash equilibrium
only if this condition is satisfied. In addition, the
proposed method outputs schedule with best utility
as opposed to evolutionary algorithms that does not
guarantee the best strategy. As future work, we
intend to use the proposed method here and extend
it to handle the scheduling problem of multiple
users with variable computation time vector for
subtasks of different users using a selection
function that is designed using the algorithm
proposed in this paper.

The main limitation of the proposed algorithm is
that it is only applicable to the scheduling problem

Journal of Theoretical and Applied Information Technology
 15

th
January 2017. Vol.95. No.1

 © 2005 - 2017 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

37

of multiple tasks that has one price vector and one
execution time vector. However, when scheduling
multiple users, each with subtasks that have their
own price and execution time vector, then the
problem becomes NP complete and this method
cannot be used. Hence, while the algorithm
presented in this work leads into optimum solution,
it might not have prominent applications as is, since
practical cloud services are actually run with
multiple users with multiple tasks, which is
considered NP complete problem. However,
providing optimum solution for this particular case,
can be helpful in designing heuristic based methods
that requires initial solutions that are usually
obtained based on guess or generated randomly, and
then the heuristic method is designed to find better
solutions for the multiple users' problem.

REFRENCES:

[1] B. Furht and A. Escalante. Handbook of Cloud
Computing. Springer, 2010.

[2] A. Gawanmeh and A. April. A novel algorithm
for optimizing multiple services resource
allocation. International Journal of Advanced
Computer Science and Applications, 7(6):

428−434, 2016.

[3] M.S. Sagar, B. Singh, and W. Ahmad. Study on
cloud computing resource allocation strategies.
International Journal of Advance Research and
Innovation, 1(3):107−114, 2013.

[4] S. Khan. A survey on scheduling based resource
allocation in cloud computing. International
Journal for Technological Research in
Engineering, 1(1), 2013.

[5] V. Anuradha and D Sumathi. A survey on
resource allocation strategies in cloud
computing. In Information Communication and
Embedded Systems (ICICES), International
Conference on, pages 1−7. IEEE, 2014.

[6] V. Vinothina, R. Sridaran, and P. Ganapathi. A
survey on resource allocation strategies in cloud
computing. International Journal of Advanced
Computer Science and Applications, 3(6):
97−104, 2012.

[7] S.S. Manvi and G.K. Shyam. Resource
management for infrastructure as a service
(IaaS) in cloud computing: A survey. Journal of
Network and Computer Applications,

41:424−440, 2014.

[8] Y. Ge and G.Wei. GA-based task scheduler for
the cloud computing systems. In Web
Information Systems and Mining (WISM),
International Conference on, volume 2, pages

181−186. IEEE, 2010.

[9] J. Kolodziej, S.U. Khan, L. Wang, and A.Y.
Zomaya. Energy efficient genetic-based
schedulers in computational grids. Concurrency
and Computation: Practice and Experience,

27(4):809−829, 2015.

[10]. S. Saha, S. Pal, and P. K. Pattnaik. A novel
scheduling algorithm for cloud computing
environment. In Computational Intelligence in
Data Mining, Volume 1, pages 387−398.
Springer, 2016.

[11] F. Teng and F. Magoules. A new game
theoretical resource allocation algorithm for
cloud computing. In Advances in Grid and

Pervasive Computing, pages 321−330. Springer,
2010.

[12] A. Velayudham, G. Gohila, B. Hariharan, and
M.R. Selvi. A novel coalition game theory
based resource allocation and selfish attack
avoidance in cognitive radio ad-hoc networks.
Journal of Theoretical of Applied Information
Technology, 64(1), 2014.

[13] G. Wei, A.V. Vasilakos, Y. Zheng, and N.
Xiong. A game-theoretic method of fair
resource allocation for cloud computing
services. The journal of supercomputing,

54(2):252−269, 2010.

[14] Z. Wang and X. Su. Dynamically hierarchical
resource-allocation algorithm in cloud
computing environment. The Journal of
Supercomputing, pages 1−19, 2015.

[15] F. Guo, L. Yu, S. Tian, and J. Yu. A workfow
task scheduling algorithm based on the
resources' fuzzy clustering in cloud computing
environment. International Journal of
Communication Systems, 28(6):1053−1067,
2015.

[16] D. Minarolli and B. Freisleben. Virtual machine
resource allocation in cloud computing via
multi-agent fuzzy control. In International
Conference on Cloud and Green Computing
(CGC), pages 188−194. IEEE, 2013.

[17] H.Y. Chang, H.C. Lu, Y.H. Huang, Y.W. Lin,
and Y.J. Tzang. Novel auction mechanism with
factor distribution rule for cloud resource
allocation. The Computer Journal, bxt008,
2013.

[18] C. Lee, P. Wang, and D. Niyato. A real-time
group auction system for efficient allocation of
cloud internet applications. IEEE Transactions
on Services Computing, 8(2):251−268, 2015.

[19] E. Walker, W. Brisken, and J. Romney. To
lease or not to lease from storage clouds. IEEE
Computer Journal, 43(4):44−50, 2010.

Journal of Theoretical and Applied Information Technology
 15

th
January 2017. Vol.95. No.1

 © 2005 - 2017 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

38

[20] K. Kumar, J. Feng, Y. Nimmagadda, and Y.H.
Lu. Resource allocation for real-time tasks
using cloud computing. In International
Conference on Computer Communications and
Networks (ICCCN), pages 1−7. IEEE, 2011.

[21] R. Buyya, R. Ranjan, and R.N. Calheiros.
Intercloud: Utility-oriented federation of cloud
computing environments for scaling of
application services. In Algorithms and
architectures for parallel processing, pages

13−31. Springer, 2010.

[22] Zhen Xiao, Weijia Song, and Qi Chen.
Dynamic resource allocation using virtual
machines for cloud computing environment.
IEEE Transactions on Parallel and Distributed
Systems, 24(6):1107−1117, 2013.

[23] D. Ergu, G. Kou, Y. Peng, Yong Shi, and Y.
Shi. The analytic hierarchy process: task
scheduling and resource allocation in cloud
computing environment. The Journal of
Supercomputing, 64(3):835−848, 2013.

[24] V.M. Mohan and K. Satyanarayana. Efficient
task scheduling strategy towards QoS aware
optimal resource utilization in cloud computing.
Journal of Theoretical of Applied Information
Technology, 80(1), 2015.

[25] P. Senthilnathan and C. Kalaiarasan. A joint
design of routing and resource allocation using
QoS monitoring agent in mobile ad-hoc
networks. Journal of Theoretical of Applied
Information Technology, 55(2), 2013.

Journal of Theoretical and Applied Information Technology
 15

th
January 2017. Vol.95. No.1

 © 2005 - 2017 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

39

Table 1: Execution of the algorithm on the first example above

λ v δ tmax k m

λ0 0, 0, 0, 0, 0 (8.0, 7.7, 8.0, 7.84, 7.2) 0.0 4 5

λ1 0, 0, 0, 0, 1 (8.0, 7.7, 8.0, 7.84, 14.4) 2.4 3 2

λ2 0, 1, 0, 0, 1 (8.0, 15.4, 8.3, 8.54, 14.4) 2.5 2 1

λ3 1, 1, 0, 0, 1 (16.0, 15.4, 8.8, 9.04, 14.4) 4.0 1 3

λ4 1, 1, 1, 0, 1 (16.0, 15.4, 16.0, 9.04, 14.4) 4.0 0 4

Table 2: Execution of the algorithm on the second example above

λ v δ tmax k m

λ0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (60, 90, 52, 88, 45, 88, 84, 112, 70, 91) 0 15 5

λ1 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 (60, 90, 53, 88, 90, 88, 84, 112, 70, 91) 5 14 3

λ2 0, 0, 1, 0, 1, 0, 0, 0, 0, 0 (60, 90, 104, 88, 90, 88, 84, 112, 70, 91) 5 13 1

λ3 1, 0, 1, 0, 1, 0, 0, 0, 0, 0 (120, 93, 108, 92, 92, 89, 90, 117, 72, 96) 12 12 9

λ4 1, 0, 1, 0, 1, 0, 0, 0, 1, 0 (120, 93, 108, 92, 92, 89, 90, 117, 140, 96) 12 11 6

λ5 1, 0, 1, 0, 1, 1, 0, 0, 1, 0 (120, 93, 108, 92, 92, 176, 90, 117, 140, 96) 12 10 7

λ6 1, 0, 1, 0, 1, 1, 1, 0, 1, 0 (120, 93, 108, 92, 92, 176, 168, 117, 140, 96) 12 9 4,5

λ7 1, 0, 1, 1, 1, 1, 1, 0, 1, 0 (120, 93, 108, 176, 92, 176, 168, 117, 140, 96) 12 8 5

λ8 1, 0, 1, 1, 2, 1, 1, 0, 1, 0 (120, 93, 108, 176, 135, 176, 168, 117, 140, 96) 12 7 2

λ9 1, 1, 1, 1, 2, 1, 1, 0, 1, 0 (120, 180, 108, 176, 135, 176, 168, 117, 140, 96) 12 6 10

λ10 1, 1, 1, 1, 2, 1, 1, 0, 1, 1 (120, 180, 108, 176, 135, 176, 168, 117, 140, 182) 12 5 3

λ11 1, 1, 2, 1, 2, 1, 1, 0, 1, 1 (120, 180, 156, 176, 135, 176, 168, 117, 140, 182) 12 4 8

λ12 1, 1, 2, 1, 2, 1, 1, 1, 1, 1 (120, 180, 156, 176, 135, 176, 168, 224, 140, 182) 12 3 1

λ13 2, 1, 2, 1, 2, 1, 1, 1, 1, 1 (180, 186, 168, 184, 144, 178, 180, 234, 144, 192) 24 2 5,9

λ14 2, 1, 2, 1, 2, 1, 1, 1, 2, 1 180, 186, 168, 184, 144, 178, 180, 234, 210, 192) 24 1 5

λ15 2, 1, 2, 1, 3, 1, 1, 1, 2, 1 (180, 186, 168, 184, 184, 178, 180, 234, 210, 192) 24 0 3

Figure 3: Execution time vs. number of subtasks k and number of resources N

