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ABSTRACT 

 

To begin with, this research defines Software Quality Prediction System (SQPS) as a system composed of a 

Classification Algorithm (CA) and a Software Quality Measurement Model (SQMM).  Machine Learning 

applications in software quality measurement are expanding as research intensifies in two directions, the 

first direction focuses on improving the performance of CAs while the other direction concentrates on 

improving SQMMs. Despite of the increasing attention in this area, some well-designed SQPSs showed 

considerable false predictions, which could be explained by faults in the design of the CA, the SQMM, or 

the SQPS as a whole. In this context, there is a debate on which CA is better for measuring software 

quality, as well as there is a debate on which SQMM to follow. To start with, the research studied an 

original dataset of 7311 software projects. Then, the research derived quality measurements from the ISO 

9126 Quality Model and developed the SQMM accordingly. Next, the research compared statistical 

measures of performance of four CAs, using WEKA and SPSS. Our experimental results showed that ISO 

9126 is general, but flexible enough to act as a SQMM. Despite of their convergent performance, our 

experiments showed that Multilayer Perceptron Network (MLPN) have more balanced predictions than 

Naïve Bayes does. Following a rarely researched approach, the SQPS predicted five levels of software 

quality instead of making a binary prediction, limited with defect or non-defect software.  

 

Keywords: Software Quality Prediction System (SQPS), ISO 9126 Software Quality Model, Multilayer 

Perceptron Network (MLPN), Classification Algorithm (CA), Software Quality Measurement 

Model (SQMM), Machine Learning. 

 

1.  INTRODUCTION 

The demand on computer software applications 

is expanding in  wide variety of application areas. 

Moreover, software quality is critical for software 

industry [1]. Indeed, developing and engineering 

high quality software application, which meets user 

requirements, is therefore of high importance. 

Interpreting user definition to software quality is a 

decisive factor in ensuring competitive software 

products [2]. In fact, software engineers achieve 

this goal by forming consistent quality 

measurements, based on the requirements and 

objectives of the software product [3]. Hence, it is 

critical to use adequate quality metrics to measure 

software quality characteristics accurately [4].  

Avoiding diverse definitions in literature, this 

research defines SQPS as a system composed of a 

CA and a SQMM. To illustrate, CAs are machine 

learning algorithms used for processing system 

input. For instance, Naïve Bayes and J48 tree  are 

examples of CAs. Apart from the design of the CA, 

a SQMM represents the theoretical design of input, 

output, and the casual relation between them. For 

example, a good SQMM provides measurable input 

variables, measurable output variables, and a strong 

casual relation between them. Of course, 

integrating it with an optimized CA results an 

optimized SQPS.    
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In this context, the researchers compared four 

different classification algorithms, which are: 

Multilayer Perceptron (MLPN), K-nearest 

neighbors, Naïve Bayes, and J48 tree. On the other 

hand, they selected ISO 9126 as a base for 

developing the software quality model. One of this 

research main assumptions is that ISO 9126 

extensively defines the factors behind software 

development process and provides a rich 

framework for modeling software development 

process. The next section provides further details 

on the bases for this assumption.   

1.1  ISO 9126 as a SQMM 

SQMMs are frameworks utilized for analyzing 

and describing the quality factors of various types 

of software products (e.g., commercial off-the-shelf 

software, a web service, Windows application) [5]. 

Moreover, SQMMs provide the ability to evaluate 

software quality factors accurately [6]. Software 

engineers utilize SQMMs and their measurements 

in various domains; for instance, during the 

software development phase or during test phase. 

There are many frameworks for defining and 

representing software quality factors [7, 8]. In this 

research context, the researchers utilized ISO 9126 

quality model [9] as a base for defining the 

attributes of the software quality model. 

The ISO 9126 is considered as one of the most 

reliable quality models [9], because it is built on 

solid understanding of software developments 

aspects. However, there is ambiguity surrounding 

the process of developing software quality models 

based on ISO 9126 model [10]. Indeed, some of 

ISO 9126 concepts are not consistently defined 

[11]. The next section discusses the hierarchy of 

ISO 9126 characteristics. 

1.2 The Hierarchy of ISO 9126 Characteristics  

Figure 1. Shows the hierarchy of ISO 9126 

characteristics [12], which are explained as 

follows: 

Figure .1. The Hierarchy Of ISO 9126 Characteristics. 

1) Functionality 

Functionality is the compliance between 

software functions and the stated requirements by 

users. Functionality consists of five sub-elements: 

Suitability measures the fitness of the application 

with the needs of the clients. Accuracy implies that 

the application's conduct is right. Interoperability 

implies that the application has the capacity to be 
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associated with predetermined frameworks. 

Compliance implies that the application is 

agreeable with norms, traditions or regulations in 

laws. Security is the capacity to anticipate 

unapproved access, whether it is not intentional or 

intentional. 

2) Reliability 

Reliability refers to the ability of the software 

product to sustain its functionality under certain 

conditions.  

Reliability consists of three sub-elements: 

Maturity is the frequency of software faults. Fault 

tolerance is the ability of a software to deal with 

software faults in interface. Recoverability is the 

capability to recover data affected in case of a 

failure. Recoverability is measured by the time and 

effort required to achieve it. Maturity is the 

recurrence of programming deficiencies. Fault 

tolerance is the capacity of software to manage 

programming issues or consistency between 

business code and interface.  

3) Usability 

Usability refers to software product ability to be 

understood and used effectively by the users.  

Usability consists of three sub-elements: 

Understandability portrays the required effort for 

perceiving the logical flow of an application and 

the appropriateness of that application. Learn 

ability is the required effort for perceiving the 

application illustration. Operability represents the 

client efforts to manage operations.  

4) Efficiency 

Efficiency refers to the compliance between 

software product performance and the amount of 

used resources. Efficiency consists of two sub-

elements: the time based efficiency depicts 

throughput rates and processing time. On the other 

hand, resource based efficiency means the measure 

of utilized resources and utilization period. 

5) Maintainability 

Maintainability refers to the ability of the 

software product to accept modifications. Indeed, 

software products must be able to adopt with 

variable requirements. Maintainability consists of 

four sub-elements: Analyzability, the required 

effort for the analysis of inadequacies and for the 

recognizable proof of inadequate components. 

Changeability is the ability of the software system 

to accept important modifications. Stability is the 

resistance of the application towards unforeseen 

developments. Testability is the required effort for 

accepting change. 

6) Portability 

Portability refers to the ability of the software 

product to operate in different environments, 

whether it is hardware or software environment. 

Portability consists of four sub-elements: 

Adaptability is adjusting the application to adopt 

with diverse situations. Install ability is the 

required effort for setting up the product on 

operation environment. Conformance implies the 

conformance of an application to unpredictable 

situations. Replace ability is the ability to substitute 

an application with another one. 

2. RELATED WORK 

Reviewing literature, the majority of research in 

SQPSs focus on determining whether the software 

is defected or non-defected (13-16). In supervised 

learning context, SQPSs work by learning from 

thousands of training examples, which are used to 

construct a prediction model. Then, this model is 

used to predict the outcome of unseen data. 

Researchers widely use categorical prediction in 

predicting software quality as this method include 

many classifiers, including MLP, J48, Bayesian 

Networks, and other CAs.  Moreover, some 

researchers believe that CAs  are context–specific 

while others believe that there are considerable 

adaptive classifiers [17]. 

Chidamber and Kemerer (CK) [18] 

demonstrated the impact of   OO design and 

metrics over software quality while other studies 

showed in consistent results [19,20].  

Khoshgoftaar and   Gao [21] developed quality 

estimation models with complexity metrics using 

zero-inflated Poisson and Poisson regression.  

McCabe's [22] developed cyclomatic complexity 

measurement to measure software quality using the 

value of independent paths in software source code. 

Fenton and Neil [23] studied various SQMMs 

and concluded with criticizing these models 

because of the lack of precision and problems in 

their applications. Arguably, Fenton and Neil [23] 

claimed that the  Bayesian method is very effective 

in solving the studied problem. Similarly, Menzies 

et al. [24] stated that Naïve Bayes provides better 

False Positive Rate (FPR) and True Positive Rate 

(TPR). Accordingly, this research includes 

evaluation of Naïve Bayes algorithm against 

other classification algorithms. 
Bibi et al. [25] compared a regression algorithm 

against other algorithms to predict defects in 

software. However, there are some gaps in the 
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study, especially in justifying the selected variables 

for the classification. 

Gayathri M, Sudha [26] used MLP to predict 

defects within NASA Metrics Data Program 

Dataset. Moreover, they compared MLP method 

with CART algorithm and logistic regression, 

concluding with MLP superiority over the tested 

classification methods.  

Likewise, Katiyar and Singh [27] analyzed a 

dataset from Ada Military data using MLP model. 

Comparing to other classifications methods, MLP 

results showed smaller error values. 

Singh and Salaria [28] Incorporated MLP and 

Levenberg-Marquardt (LM) algorithm  to develop 

a tool for detecting defects in software. The tool 

used PROMISE repository dataset as a base for 

algorithm training.  Comparing to other function-

based neural network classifications algorithms, 

results showed that MLP have higher accuracy rate.  

First, one of this research objectives is to expand 

the current research efforts through highlighting the 

significance of adopting a SQMM based on ISO 

9126 quality model. Secondly, the research aims to 

compare the performance of diverse CAs in terms 

of software prediction, particularly MLP and Naïve 

Bayes. Final, the researchers train the CAs using an 

entirely new dataset with thousands of instances. 

Reviewing literature, the research objectives were 

barely scratched by some of the researchers [13-29] 

with diverse conclusions. Additionally, the 

software quality models [13-29] focus on 

predicting defects or non-defects in software while 

this research contributes to this area through 

developing a SQPS that predicts  the level of 

software quality. The following sections explain 

research methodology. 

3. METHODOLOGY 

The research methodology is divided into three 

subsections. The first subsection introduces the 

process of deriving measurements  from the ISO 

9126 Quality Model. After that, the second sub-

section defines the process of forming the research 

dataset. Finally, yet most importantly, the research 

describes MLPN as it is mainly utilized to develop 

the CA. 

3.1 Deriving Measurements  from the ISO 9126 

Quality Model  

Zeiss et al.(30)  Applied ISO 9126 to  generate 

measurements for the  Testing and Test Control 

Notation (TTCN-3). Moreover, Zeiss et al. [30] 

believed that ISO 9126 can be utilized successfully 

to measure software quality. This research 

converted ISO 9126 general specifications into 

measurements based on Zeiss et al. [30] research.  

To illustrate, the following represent examples of 

converting ISO 9126 general specifications into 

measurable variables:  

Concerning Suitability sub-characteristic of 

Functionality, the number of test objectives 

achieved by the software test is compared against 

the number of test objectives required in the 

software project.    Formula (1) shows how to 

calculate this measurement. 

����	�����	�
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………..(1) 

With regard to accuracy sub-characteristic of 

Functionality, this sub-characteristic is measured 

by   comparing the number of paths tested correctly 

in a test case to all number of paths in a test case. 

Formula (2) shows how to calculate accuracy. 
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On the subject of changeability sub-

characteristic of Maintainability, for a given SQPS 

case, this sub-characteristic is measured by 

comparing the number of duplicated lines in source 

code to the number of all lines of code.  Formula 

(3) demonstrates how to calculate this 

measurement. 
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Touching Maturity sub-characteristic of 

Reliability, for a given SQPS case, this sub-

characteristic is measured by comparing the 

number of errors and warnings in source code to 

the total number of statements in source code.  

Formula (4) demonstrates how to calculate this 

measurement. 
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…………(4) 

3.2 Research DATASET 

Never been studied before and considered as one 

of the research main contributions, the research 

Dataset is extracted from documentation of 

software projects from Information, 

Communication, and E-learning Technology 

Centre (ICET). ICET is an IT research and 

development facility at Hashemite University of 

Jordan.  Moreover, ICET contains a specialized 

software development division for developing 

software applications from scratch to all divisions 

within Hashemite University and to parties outside 



Journal of Theoretical and Applied Information Technology 
 31

st
 December 2016. Vol.94. No.2 

 © 2005 - 2016 JATIT & LLS. All rights reserved.   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
287 

 

it. With thousands of comprehensively documented 

software projects, ICET is a rich source for 

studying software applications academically. 

Figure 2 explains the process of extracting the 

research dataset. Using developed software tools, 

researchers extracted the information of 7311 

software projects from ICET projects database as 

these software projects were developed in either 

ASP.NET or Oracle. After preliminary 

examination for the dataset, 885 of software 

projects were excluded because of missing data. 

Consequently, the dataset were filtered to hold only 

6426 software projects. Table 1 shows the dataset 

processing summary with the resulted twenty one 

fields.  Since the dataset fields were basically 

ratios, the data type of the data fields is real 

number.

 

Figure 2. The Process Of Extracting Research Dataset. 

 

 

Table 1. Dataset Processing Summary. 
 Frequency Percent Valid Percent Cumulative Percent 

Valid 1 378 5.9 5.9 5.9 

2 2142 33.3 33.3 39.2 

3 2961 46.1 46.1 85.3 

4 756 11.8 11.8 97.1 

5 189 2.9 2.9 100.0 

Total 6426 100.0 100.0  

 

With respect to statistical tools, the researcher 

utilized WEKA machine learning software 

available at 

(http://www.cs.waikato.ac.nz/ml/weka/) and IBM 

SPSS software available at 

(www.ibm.com/software/analytics/spss/) to 

implement t-test and statistical experiments. It is 

essential to note that the prediction procedures 

examined in this paper are restricted only by 

WEKA and IBM SPSS mechanisms.  

3.3 Multilayer Perceptron Neural Networks 

(MLPNs) 

Looking at figure 3, MLPN is a feed-forward 

simulated neural system that aligns system input 

with its appropriate output [31, 32]. A MLPN 

consists of different layers or hidden Neurons in a 
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coordinated graph, with every layer completely 

joined with the following one. With the exception 

of the input nodes, every node is called a neuron 

with a nonlinear initiation mechanism [33]. MLPN 

uses an administered learning method called back 

propagation for programming the neural network 

[34]. 

Developers train MLPNs to figure out how to 

transform data input to a required output, and fit 

the model to a specified prediction context [35,32]. 

MLPN also acts as managed learning simulated 

neural network that is utilized broadly for 

analyzing and solving various logical problems, 

including classification, systems simulation, and 

pattern recognition [36]. Back-propagation forms 

error functions through comparing the values of the 

actual output with the values of the desired output. 

The MLPN algorithm modifies the weights of 

every connection to diminish the value of errors in 

the network output.  If these actions lead to error 

reduction, then the MLPN has learned a specified 

target function. 

4. RESULTS AND DISCUSSION 

This section discusses the research main results, 

which were processed using SPSS and WEKA tool.                      

The researchers conducted three experiments, 

which are as follow:  

4.1 Experiment 1, testing the performance of 

different classification algoritms 

The first experiment aims to test different CAs in 

terms of correctly classified instances, incorrectly 

classified instances, mean absolute error, root mean 

squared error, relative absolute error, and root 

relative squared error. Error values are used to 

measure how close model predictions are to real 

output. 

Looking at figure 3, MLPN model took about 

1.69 seconds to build. With 21 inputs and 5 

outputs, the MLPN covered 90.1961 % of the 

dataset cases. Moreover, Table 2 Shows that the 

number of correctly classified instances in MLPN 

is relatively higher than other CAs. MLPN 

predicted 5040 (78.4314 %) correctly classified 

instances. Additionally, error values for MLPN are 

relatively lower than other algorithms. Naïve Bayes 

classification follows MLPN in terms of correctly 

classified instances with 4914 (76.4706 %) 

instances. Thus, Naïve Bayes error values are 

higher than MLPN error values, except for Root 

relative squared error. The J 48 model took about 

0.02 seconds to build as it covered 94.1176 % of 

the dataset cases. However, J48 performance is the 

worse with only 4284 correctly classified instances.  

Looking at table 3, confusion matrix reveals further 

details about the classification mechanisms.  

Concerning option “a”, defected, K-nearest 

neighbor predicted this outcome correctly with 378 

out of 378 instances. Concerning option “b”, 

accepted, Naïve Bayes classifier predicted this 

output with 1827 out of 2142 instances, which was 

the best among the other classifiers. Looking at 

output “c”, Good, Naïve Bayes prediction was the 

best among other classifier with 2457 out of 2961.  

Concerning output “d”, very good, MLPN 

predicted 504 out of 756 instances, which was the 

best among the other classifiers. in accordance with 

the previous results and in the light of research 

objectives, the researcher selected MLPN for 

developing the SQPS.  

Pproviding 5040 (78.4314 %) correctly 

classified test cases is a good indication for the 

feasibility of developing a SQPS using both MLPN 

and ISO 9126 model.  

In summary, MLPN preceded other models in 

terms of correctly classified instances with 

considerably lower error values. However, since 

the performance of MLP and Naïve Bayes is 

convergent, the researchers decided to focus on 

both CAs with further two experiments.  
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Figure. 3. Using WEKA Tool, A Visualization Of The Generated Multilayer Perceptron Neural Network (MLPN) 

Model. 

 

 

Table 2. Comparing Different Machine Learning Algorithms. 
Comparison feature Multilayer 

Perceptron(MLPN) 

K-nearest neighbours  Naïve Bayes J48 tree 

Correctly Classified Instances 5040 (78.4314 %) 4599 (71.5686 %) 4914 (76.4706 %) 4284 (66.6667 %) 

Incorrectly Classified Instances 1386 (21.5686 %) 1827 (28.4314 %) 1512 (23.5294 %) 2142 (33.3333 %) 

Mean absolute error 0.0904 0.1304 0.132 0.1507 

Root mean squared error 0.264 0.2998 0.2542 0.3131 

Relative absolute error 33.9128 % 48.9078 % 49.4774 % 56.4896 % 

Root relative squared error 72.5942 % 82.4504 % 69.8988 % 86.0958 % 

Table 3. Confusion Matrices For The Experimented Cas. 
a) Confusion Matrix for  Multilayer Perceptron  b) Confusion  Matrix for  Naïve Bayes 

  a       b        c       d         e   <-- classified as 

  252 126      0       0        0 |  a = Defected 
  63   1764  315     0        0 |  b = Accepted 

  0     441   2331  189      0 |  c = Good 

  0      0       252   504      0 |  d = Very  good 
  0      0        0        0    189 |  e = Excellent 

 

  a        b        c        d        e   <-- classified as 

  63     315     0        0       0 |  a = Defected 
  0       1827  315     0       0 |  b = Accepted 

  0       441    2457   63     0 |  c = Good 

  0         0        6      189    0  | d = Very  good 
  0         0        0       0    189 | e = Excellent 

 

c) Confusion Matrix for  J48 tree d)Confusion Matrix for K-nearest neighbours 

  a       b          c       d     e   <-- classified as 

  315   63        0       0     0   |  a = Defected 
  63    1323   756     0     0   |  b = Accepted 

  0       504    2142  315  0   |  c = Good 
  0       0          441  315  0   |  d = Very  good 

  0       0          0       0   189 |  e = Excellent 

 

 a          b        c      d       e   <-- classified as 

378       0        0      0       0 |  a = Defected 
126    1575   441    0       0 |  b = Accepted 

  0        756   2142  63     0 |  c = Good 
  0         0      441   315    0 |  d = Very  good 

  0         0        0      0    189|  e = Excellent 

 

*The Results Represent The Output Of WEKA Classifiers. 

*Bolded Rows Represent Higher Classifications. 
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4.2 Experiment 2, Testing Naïve Bayes And 

MLP In Terms Of Statistical Measures Of 

The Performance. 

Formula (5) presents True Positive Rate (TPR) 

or sensitivity. Looking at tables 4 and 5, as TPR 

demonstrates the proportion of correctly predicted 

positives, the overall TPR value in MLP classes are  

higher than the overall TPR value in Naïve Bayes 

classes. However, there are clear imbalance 

problem in Naïve Bayes. Although there are slight 

advantage for Naïve Bayes in both accepted and 

good classes, Naïve Bayes classification to 

defected class is way behind MLP (0.67) with 

0.167 as TPR, which was also proved in table 2. 

  
3�4 �

5���	*��������65*7

5���	*��������65*789�#��	:�)������69:7
………………………..….(5) 

  

Formula (6) shows False Positive Rate (FPR). 

Looking at tables 4 and 5, as FPR demonstrates the 

proportion of falsely predicted positives, obviously, 

the overall FPR in MLP classes are basically lower 

than the overall FPR in Naïve Bayes classes, which 

proves that MLP is more efficient  than Naïve 

Bayes in worse in predicting  positive cases 

correctly.    

;�4 �
9�#��	*�������69*7

9*85���	:�)������65:7
 

…………………………………………..(6) 

Defined as the proportion of relevant instances, 

Formula (7) demonstrates precision. When 

compared with Naïve Bayes, the weighted average 

of Precision value in MLP is slightly higher and 

more balanced, which means that MLP ability to 

predict negative cases is better. 

Precision=
5*

5*89*
…………………………………….………………

…..(7) 

Representing   harmonic mean of precision and 

recall, F-measure is calculated using  Formula (8). 

Relatively higher in MLP, F-measure shows better 

predication and balance with MLP algorithm. 
; 0<.�=�'.	 � 2 ?

*�������
?5*@

*�������
85*@
…………………………………….(8) 

Looking at tables 4 and 5, the precision-recall 

curve (PRC) or precision to sensitivity provides 

indications for the accuracy of the CA. Reflecting 

better accuracy, PRC values are higher in MLP 

case, table 5. Similarly, Receiver Operating 

Characteristic (ROC) values are relatively higher in 

MLP, which means that the total ability of MLP 

classes to distinguish between a correct level of 

quality and a false level of quality is higher than 

their counterparts in Naïve Bayes.  

Looking holistically at statistical measures of the 

performance in both MLP and Naïve Bayes, MLP 

performance is better in most measure, as well as 

MLP measures shows considerably better balance 

when compared to Naïve Bayes. Accordingly, the 

researchers decided to select MLP as an 

appropriate CA for the SQPS. 

4.3 Experiment 3, testing the developed SQPS 

against real test cases 

After developing the SQPS, the researchers used 

the SQPS to predict quality for already verified and 

tested  619 real software products from ICET.  

Looking at table 6, obviously, testing real 619 

instances provides results that align with 10-fold 

cross validation paired t-test of the training cases. 

To illustrate, 78.4314% of the cases were classified 

correctly in the training test while 66.559% of the 

cases where classified correctly in the second test 

with 619 instance. Similarly, errors values in both 

tests a and b are consistent with higher error values 

in test b.  Referring to results from other researches 

[4, 13, 16, 17, 19, 23-26, 28] where the 

classification algorithms predict a limited binary 

prediction. Though these results may have higher 

success rate, their SQPSs cannot be directly 

compared to SQPSs where the prediction has five 

different possible outcomes with 20% as success 

rate instead of 50% as a success rate in the binary 

prediction.  Considering less varied instances in 

test b, the results show that the MLPN model fits to 

a considerable amount of test data, which is 

derived from real software development 

environment.  

On the other hand, examining table 6, again, 

confusion matrices for both tests show aligned and 

consistent results as each classification is correctly 

classified in most of its related cases. However, in 

test a, most of the cases are classified as "Good" 

whereas, in test b, most of the cases are classified 

as "Accepted". This observation is explained by the 

fact that the test dataset is not related to the training 

set.   
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Table 4, Accuracy Of The Naïve Bayes CA By Class. 

 

Table 5. Accuracy Of The MLP CA By Class. 

Table 6. Comparing The MLPN Training Data Against Real Test Cases.  

 

Comparison feature 

a)Testing the MLPN  with 10-fold cross validation 

paired t-test of the training cases (102 instance) 

b)Testing the MLPN with real test cases 

(619 instance) 

Correctly Classified Instances 5040 (78.4314 %) 412 (66.559%) 

Incorrectly Classified Instances 1386 (21.5686 %) 207 (33.441) 

Mean absolute error 0.0904 0.1536 

Root mean squared error 0.264 0.3247 

Relative absolute error 33.9128 % 57.2996% 

Root relative squared error 72.5942 % 88.4432 % 

 

Table 7. Comparing The MLPN Training Confusion Matrix Against Real Tested Confusion Matrix. 
a) Confusion Matrix for the MLPN  with 10-fold cross 

validation paired t-test (6426 instance) 

 b) Confusion  the MLPN with real test cases (619 instance) 

  a       b        c       d         e   <-- classified as 

  252 126      0       0        0 |  a = Defected 
  63   1764  315     0        0 |  b = Accepted 

  0     441   2331  189      0 |  c = Good 

  0      0       252   504      0 |  d = Very  good 
  0      0        0        0    189 |  e = Excellent  

  a      b    c    d   e   <-- classified as 

 114  53  11   1   0 |   a = Defected 
  45 207  20   4   1 |   b = Accepted 

  14  40   69   0   1 |   c = Good 

   5    9     3   17  0 |   d = Very  good 
   0    0     0    0   5 |   e = Excellent 

 

 

5. CONCLUSIONS 

In conclusion, the research provided evidence to 

support the feasibility of integrating a CA with ISO 

9126 quality model in order to develop a SQPS. As 

an experimented SQMM, ISO 9126 approved its 

flexibility and comprehensibility, especially in 

covering software development factors adequately. 

Thus, this research highlights the generality of ISO 

9126 model and its implications over integrating 

ISO 9126 with Machine learning. 

With regard to the debate surrounding the 

superiority of Naïve Bayes and MLP algorithm 

over each other [23-24, 26-28], both CAs showed 

convergent values in statistical measures of 

performance, with slight advantage in MLP 

algorithm. However, the statistical measures also 

showed imbalance problems in Naïve Bayes 
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predications whereas MLP showed more balanced 

predictions.  Hence, this research recommends 

using MLP to develop CAs for SQPSs, standing 

with researchers who support the use of MLP in 

software quality classification [26-28].  

Having five different predictions instead of two 

may increase the possibility of predicting 

incorrectly. However, research results are original 

and should be employed to develop software 

quality systems with better performance, which 

could be the subject of future research. 

Using a never studied before dataset enriched the 

research and enabled the researchers to conclude 

originally. 

Of course, developers can integrate the 

developed SQPS within any automated solution for 

supporting quality measurement. Additionally, the 

model can be leveraged into a fully capable 

decision support system for measuring quality.  
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