
Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

283

A NOVEL SOFTWARE QUALITY PREDICTION SYSTEM

BASED ON INCORPORATING ISO 9126 WITH MACHINE

LEARNING

1
OSAMA ALSHAREET*,

2
AWNI ITRADAT,

3
IYAD ABU DOUSH,

4
AHMAD QUTTOUM

1
ICET, Hashemite University, Jordan, corresponding author.

2
Associate Professor, Department of Computer Engineering, Hashemite University, Jordan.

3
Associate Professor, Department of Computer Sciences, Yarmouk University, Jordan.

4
 Assistant Professor, Department of Computer Engineering, Hashemite University, Jordan.

Email:
1,*

bf99qo@student.sunderland.ac.uk,
 2
 itradat@hu.edu.jo,

3
iyad.doush@yu.edu.jo,

4

quttoum.ahmad@courrier.uqam.ca

ABSTRACT

To begin with, this research defines Software Quality Prediction System (SQPS) as a system composed of a

Classification Algorithm (CA) and a Software Quality Measurement Model (SQMM). Machine Learning

applications in software quality measurement are expanding as research intensifies in two directions, the

first direction focuses on improving the performance of CAs while the other direction concentrates on

improving SQMMs. Despite of the increasing attention in this area, some well-designed SQPSs showed

considerable false predictions, which could be explained by faults in the design of the CA, the SQMM, or

the SQPS as a whole. In this context, there is a debate on which CA is better for measuring software

quality, as well as there is a debate on which SQMM to follow. To start with, the research studied an

original dataset of 7311 software projects. Then, the research derived quality measurements from the ISO

9126 Quality Model and developed the SQMM accordingly. Next, the research compared statistical

measures of performance of four CAs, using WEKA and SPSS. Our experimental results showed that ISO

9126 is general, but flexible enough to act as a SQMM. Despite of their convergent performance, our

experiments showed that Multilayer Perceptron Network (MLPN) have more balanced predictions than

Naïve Bayes does. Following a rarely researched approach, the SQPS predicted five levels of software

quality instead of making a binary prediction, limited with defect or non-defect software.

Keywords: Software Quality Prediction System (SQPS), ISO 9126 Software Quality Model, Multilayer

Perceptron Network (MLPN), Classification Algorithm (CA), Software Quality Measurement

Model (SQMM), Machine Learning.

1. INTRODUCTION

The demand on computer software applications

is expanding in wide variety of application areas.

Moreover, software quality is critical for software

industry [1]. Indeed, developing and engineering

high quality software application, which meets user

requirements, is therefore of high importance.

Interpreting user definition to software quality is a

decisive factor in ensuring competitive software

products [2]. In fact, software engineers achieve

this goal by forming consistent quality

measurements, based on the requirements and

objectives of the software product [3]. Hence, it is

critical to use adequate quality metrics to measure

software quality characteristics accurately [4].

Avoiding diverse definitions in literature, this

research defines SQPS as a system composed of a

CA and a SQMM. To illustrate, CAs are machine

learning algorithms used for processing system

input. For instance, Naïve Bayes and J48 tree are

examples of CAs. Apart from the design of the CA,

a SQMM represents the theoretical design of input,

output, and the casual relation between them. For

example, a good SQMM provides measurable input

variables, measurable output variables, and a strong

casual relation between them. Of course,

integrating it with an optimized CA results an

optimized SQPS.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

284

In this context, the researchers compared four

different classification algorithms, which are:

Multilayer Perceptron (MLPN), K-nearest

neighbors, Naïve Bayes, and J48 tree. On the other

hand, they selected ISO 9126 as a base for

developing the software quality model. One of this

research main assumptions is that ISO 9126

extensively defines the factors behind software

development process and provides a rich

framework for modeling software development

process. The next section provides further details

on the bases for this assumption.

1.1 ISO 9126 as a SQMM

SQMMs are frameworks utilized for analyzing

and describing the quality factors of various types

of software products (e.g., commercial off-the-shelf

software, a web service, Windows application) [5].

Moreover, SQMMs provide the ability to evaluate

software quality factors accurately [6]. Software

engineers utilize SQMMs and their measurements

in various domains; for instance, during the

software development phase or during test phase.

There are many frameworks for defining and

representing software quality factors [7, 8]. In this

research context, the researchers utilized ISO 9126

quality model [9] as a base for defining the

attributes of the software quality model.

The ISO 9126 is considered as one of the most

reliable quality models [9], because it is built on

solid understanding of software developments

aspects. However, there is ambiguity surrounding

the process of developing software quality models

based on ISO 9126 model [10]. Indeed, some of

ISO 9126 concepts are not consistently defined

[11]. The next section discusses the hierarchy of

ISO 9126 characteristics.

1.2 The Hierarchy of ISO 9126 Characteristics

Figure 1. Shows the hierarchy of ISO 9126

characteristics [12], which are explained as

follows:

Figure .1. The Hierarchy Of ISO 9126 Characteristics.

1) Functionality

Functionality is the compliance between

software functions and the stated requirements by

users. Functionality consists of five sub-elements:

Suitability measures the fitness of the application

with the needs of the clients. Accuracy implies that

the application's conduct is right. Interoperability

implies that the application has the capacity to be

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

285

associated with predetermined frameworks.

Compliance implies that the application is

agreeable with norms, traditions or regulations in

laws. Security is the capacity to anticipate

unapproved access, whether it is not intentional or

intentional.

2) Reliability

Reliability refers to the ability of the software

product to sustain its functionality under certain

conditions.

Reliability consists of three sub-elements:

Maturity is the frequency of software faults. Fault

tolerance is the ability of a software to deal with

software faults in interface. Recoverability is the

capability to recover data affected in case of a

failure. Recoverability is measured by the time and

effort required to achieve it. Maturity is the

recurrence of programming deficiencies. Fault

tolerance is the capacity of software to manage

programming issues or consistency between

business code and interface.

3) Usability

Usability refers to software product ability to be

understood and used effectively by the users.

Usability consists of three sub-elements:

Understandability portrays the required effort for

perceiving the logical flow of an application and

the appropriateness of that application. Learn

ability is the required effort for perceiving the

application illustration. Operability represents the

client efforts to manage operations.

4) Efficiency

Efficiency refers to the compliance between

software product performance and the amount of

used resources. Efficiency consists of two sub-

elements: the time based efficiency depicts

throughput rates and processing time. On the other

hand, resource based efficiency means the measure

of utilized resources and utilization period.

5) Maintainability

Maintainability refers to the ability of the

software product to accept modifications. Indeed,

software products must be able to adopt with

variable requirements. Maintainability consists of

four sub-elements: Analyzability, the required

effort for the analysis of inadequacies and for the

recognizable proof of inadequate components.

Changeability is the ability of the software system

to accept important modifications. Stability is the

resistance of the application towards unforeseen

developments. Testability is the required effort for

accepting change.

6) Portability

Portability refers to the ability of the software

product to operate in different environments,

whether it is hardware or software environment.

Portability consists of four sub-elements:

Adaptability is adjusting the application to adopt

with diverse situations. Install ability is the

required effort for setting up the product on

operation environment. Conformance implies the

conformance of an application to unpredictable

situations. Replace ability is the ability to substitute

an application with another one.

2. RELATED WORK

Reviewing literature, the majority of research in

SQPSs focus on determining whether the software

is defected or non-defected (13-16). In supervised

learning context, SQPSs work by learning from

thousands of training examples, which are used to

construct a prediction model. Then, this model is

used to predict the outcome of unseen data.

Researchers widely use categorical prediction in

predicting software quality as this method include

many classifiers, including MLP, J48, Bayesian

Networks, and other CAs. Moreover, some

researchers believe that CAs are context–specific

while others believe that there are considerable

adaptive classifiers [17].

Chidamber and Kemerer (CK) [18]

demonstrated the impact of OO design and

metrics over software quality while other studies

showed in consistent results [19,20].

Khoshgoftaar and Gao [21] developed quality

estimation models with complexity metrics using

zero-inflated Poisson and Poisson regression.

McCabe's [22] developed cyclomatic complexity

measurement to measure software quality using the

value of independent paths in software source code.

Fenton and Neil [23] studied various SQMMs

and concluded with criticizing these models

because of the lack of precision and problems in

their applications. Arguably, Fenton and Neil [23]

claimed that the Bayesian method is very effective

in solving the studied problem. Similarly, Menzies

et al. [24] stated that Naïve Bayes provides better

False Positive Rate (FPR) and True Positive Rate

(TPR). Accordingly, this research includes

evaluation of Naïve Bayes algorithm against

other classification algorithms.
Bibi et al. [25] compared a regression algorithm

against other algorithms to predict defects in

software. However, there are some gaps in the

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

286

study, especially in justifying the selected variables

for the classification.

Gayathri M, Sudha [26] used MLP to predict

defects within NASA Metrics Data Program

Dataset. Moreover, they compared MLP method

with CART algorithm and logistic regression,

concluding with MLP superiority over the tested

classification methods.

Likewise, Katiyar and Singh [27] analyzed a

dataset from Ada Military data using MLP model.

Comparing to other classifications methods, MLP

results showed smaller error values.

Singh and Salaria [28] Incorporated MLP and

Levenberg-Marquardt (LM) algorithm to develop

a tool for detecting defects in software. The tool

used PROMISE repository dataset as a base for

algorithm training. Comparing to other function-

based neural network classifications algorithms,

results showed that MLP have higher accuracy rate.

First, one of this research objectives is to expand

the current research efforts through highlighting the

significance of adopting a SQMM based on ISO

9126 quality model. Secondly, the research aims to

compare the performance of diverse CAs in terms

of software prediction, particularly MLP and Naïve

Bayes. Final, the researchers train the CAs using an

entirely new dataset with thousands of instances.

Reviewing literature, the research objectives were

barely scratched by some of the researchers [13-29]

with diverse conclusions. Additionally, the

software quality models [13-29] focus on

predicting defects or non-defects in software while

this research contributes to this area through

developing a SQPS that predicts the level of

software quality. The following sections explain

research methodology.

3. METHODOLOGY

The research methodology is divided into three

subsections. The first subsection introduces the

process of deriving measurements from the ISO

9126 Quality Model. After that, the second sub-

section defines the process of forming the research

dataset. Finally, yet most importantly, the research

describes MLPN as it is mainly utilized to develop

the CA.

3.1 Deriving Measurements from the ISO 9126

Quality Model

Zeiss et al.(30) Applied ISO 9126 to generate

measurements for the Testing and Test Control

Notation (TTCN-3). Moreover, Zeiss et al. [30]

believed that ISO 9126 can be utilized successfully

to measure software quality. This research

converted ISO 9126 general specifications into

measurements based on Zeiss et al. [30] research.

To illustrate, the following represent examples of

converting ISO 9126 general specifications into

measurable variables:

Concerning Suitability sub-characteristic of

Functionality, the number of test objectives

achieved by the software test is compared against

the number of test objectives required in the

software project. Formula (1) shows how to

calculate this measurement.

����	�����	�
���	 �

�����	��	����	����������	��������	��	� !"

�����	��	�##	��$�����	����	����������

………..(1)

With regard to accuracy sub-characteristic of

Functionality, this sub-characteristic is measured

by comparing the number of paths tested correctly

in a test case to all number of paths in a test case.

Formula (2) shows how to calculate accuracy.
����	%&&�'�&� �
	
�����	��	(����	�����
���
)	�������#�	�
	 !* 	����	����	

���	
�����	��	�##	(����	�
	���	����	����
(2)

On the subject of changeability sub-

characteristic of Maintainability, for a given SQPS

case, this sub-characteristic is measured by

comparing the number of duplicated lines in source

code to the number of all lines of code. Formula

(3) demonstrates how to calculate this

measurement.
����	&+�,-.�	�
��� �

1 0

�����	��	��(#������	#�
��	�
	������	����

�����	��	�##	������	����	#�
��
…..(3)

Touching Maturity sub-characteristic of

Reliability, for a given SQPS case, this sub-

characteristic is measured by comparing the

number of errors and warnings in source code to

the total number of statements in source code.

Formula (4) demonstrates how to calculate this

measurement.

1���'��� � 1 0	
	
�����	��	������	�
�	2��
�
)�	�
	������	����

���	����#	
�����	��	�������
��	�
	������	����

…………(4)

3.2 Research DATASET

Never been studied before and considered as one

of the research main contributions, the research

Dataset is extracted from documentation of

software projects from Information,

Communication, and E-learning Technology

Centre (ICET). ICET is an IT research and

development facility at Hashemite University of

Jordan. Moreover, ICET contains a specialized

software development division for developing

software applications from scratch to all divisions

within Hashemite University and to parties outside

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

287

it. With thousands of comprehensively documented

software projects, ICET is a rich source for

studying software applications academically.

Figure 2 explains the process of extracting the

research dataset. Using developed software tools,

researchers extracted the information of 7311

software projects from ICET projects database as

these software projects were developed in either

ASP.NET or Oracle. After preliminary

examination for the dataset, 885 of software

projects were excluded because of missing data.

Consequently, the dataset were filtered to hold only

6426 software projects. Table 1 shows the dataset

processing summary with the resulted twenty one

fields. Since the dataset fields were basically

ratios, the data type of the data fields is real

number.

Figure 2. The Process Of Extracting Research Dataset.

Table 1. Dataset Processing Summary.
 Frequency Percent Valid Percent Cumulative Percent

Valid 1 378 5.9 5.9 5.9

2 2142 33.3 33.3 39.2

3 2961 46.1 46.1 85.3

4 756 11.8 11.8 97.1

5 189 2.9 2.9 100.0

Total 6426 100.0 100.0

With respect to statistical tools, the researcher

utilized WEKA machine learning software

available at

(http://www.cs.waikato.ac.nz/ml/weka/) and IBM

SPSS software available at

(www.ibm.com/software/analytics/spss/) to

implement t-test and statistical experiments. It is

essential to note that the prediction procedures

examined in this paper are restricted only by

WEKA and IBM SPSS mechanisms.

3.3 Multilayer Perceptron Neural Networks

(MLPNs)

Looking at figure 3, MLPN is a feed-forward

simulated neural system that aligns system input

with its appropriate output [31, 32]. A MLPN

consists of different layers or hidden Neurons in a

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

288

coordinated graph, with every layer completely

joined with the following one. With the exception

of the input nodes, every node is called a neuron

with a nonlinear initiation mechanism [33]. MLPN

uses an administered learning method called back

propagation for programming the neural network

[34].

Developers train MLPNs to figure out how to

transform data input to a required output, and fit

the model to a specified prediction context [35,32].

MLPN also acts as managed learning simulated

neural network that is utilized broadly for

analyzing and solving various logical problems,

including classification, systems simulation, and

pattern recognition [36]. Back-propagation forms

error functions through comparing the values of the

actual output with the values of the desired output.

The MLPN algorithm modifies the weights of

every connection to diminish the value of errors in

the network output. If these actions lead to error

reduction, then the MLPN has learned a specified

target function.

4. RESULTS AND DISCUSSION

This section discusses the research main results,

which were processed using SPSS and WEKA tool.

The researchers conducted three experiments,

which are as follow:

4.1 Experiment 1, testing the performance of

different classification algoritms

The first experiment aims to test different CAs in

terms of correctly classified instances, incorrectly

classified instances, mean absolute error, root mean

squared error, relative absolute error, and root

relative squared error. Error values are used to

measure how close model predictions are to real

output.

Looking at figure 3, MLPN model took about

1.69 seconds to build. With 21 inputs and 5

outputs, the MLPN covered 90.1961 % of the

dataset cases. Moreover, Table 2 Shows that the

number of correctly classified instances in MLPN

is relatively higher than other CAs. MLPN

predicted 5040 (78.4314 %) correctly classified

instances. Additionally, error values for MLPN are

relatively lower than other algorithms. Naïve Bayes

classification follows MLPN in terms of correctly

classified instances with 4914 (76.4706 %)

instances. Thus, Naïve Bayes error values are

higher than MLPN error values, except for Root

relative squared error. The J 48 model took about

0.02 seconds to build as it covered 94.1176 % of

the dataset cases. However, J48 performance is the

worse with only 4284 correctly classified instances.

Looking at table 3, confusion matrix reveals further

details about the classification mechanisms.

Concerning option “a”, defected, K-nearest

neighbor predicted this outcome correctly with 378

out of 378 instances. Concerning option “b”,

accepted, Naïve Bayes classifier predicted this

output with 1827 out of 2142 instances, which was

the best among the other classifiers. Looking at

output “c”, Good, Naïve Bayes prediction was the

best among other classifier with 2457 out of 2961.

Concerning output “d”, very good, MLPN

predicted 504 out of 756 instances, which was the

best among the other classifiers. in accordance with

the previous results and in the light of research

objectives, the researcher selected MLPN for

developing the SQPS.

Pproviding 5040 (78.4314 %) correctly

classified test cases is a good indication for the

feasibility of developing a SQPS using both MLPN

and ISO 9126 model.

In summary, MLPN preceded other models in

terms of correctly classified instances with

considerably lower error values. However, since

the performance of MLP and Naïve Bayes is

convergent, the researchers decided to focus on

both CAs with further two experiments.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

289

Figure. 3. Using WEKA Tool, A Visualization Of The Generated Multilayer Perceptron Neural Network (MLPN)

Model.

Table 2. Comparing Different Machine Learning Algorithms.
Comparison feature Multilayer

Perceptron(MLPN)

K-nearest neighbours Naïve Bayes J48 tree

Correctly Classified Instances 5040 (78.4314 %) 4599 (71.5686 %) 4914 (76.4706 %) 4284 (66.6667 %)

Incorrectly Classified Instances 1386 (21.5686 %) 1827 (28.4314 %) 1512 (23.5294 %) 2142 (33.3333 %)

Mean absolute error 0.0904 0.1304 0.132 0.1507

Root mean squared error 0.264 0.2998 0.2542 0.3131

Relative absolute error 33.9128 % 48.9078 % 49.4774 % 56.4896 %

Root relative squared error 72.5942 % 82.4504 % 69.8988 % 86.0958 %

Table 3. Confusion Matrices For The Experimented Cas.
a) Confusion Matrix for Multilayer Perceptron b) Confusion Matrix for Naïve Bayes

 a b c d e <-- classified as

 252 126 0 0 0 | a = Defected
 63 1764 315 0 0 | b = Accepted

 0 441 2331 189 0 | c = Good

 0 0 252 504 0 | d = Very good
 0 0 0 0 189 | e = Excellent

 a b c d e <-- classified as

 63 315 0 0 0 | a = Defected
 0 1827 315 0 0 | b = Accepted

 0 441 2457 63 0 | c = Good

 0 0 6 189 0 | d = Very good
 0 0 0 0 189 | e = Excellent

c) Confusion Matrix for J48 tree d)Confusion Matrix for K-nearest neighbours

 a b c d e <-- classified as

 315 63 0 0 0 | a = Defected
 63 1323 756 0 0 | b = Accepted

 0 504 2142 315 0 | c = Good
 0 0 441 315 0 | d = Very good

 0 0 0 0 189 | e = Excellent

 a b c d e <-- classified as

378 0 0 0 0 | a = Defected
126 1575 441 0 0 | b = Accepted

 0 756 2142 63 0 | c = Good
 0 0 441 315 0 | d = Very good

 0 0 0 0 189| e = Excellent

*The Results Represent The Output Of WEKA Classifiers.

*Bolded Rows Represent Higher Classifications.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

290

4.2 Experiment 2, Testing Naïve Bayes And

MLP In Terms Of Statistical Measures Of

The Performance.

Formula (5) presents True Positive Rate (TPR)

or sensitivity. Looking at tables 4 and 5, as TPR

demonstrates the proportion of correctly predicted

positives, the overall TPR value in MLP classes are

higher than the overall TPR value in Naïve Bayes

classes. However, there are clear imbalance

problem in Naïve Bayes. Although there are slight

advantage for Naïve Bayes in both accepted and

good classes, Naïve Bayes classification to

defected class is way behind MLP (0.67) with

0.167 as TPR, which was also proved in table 2.

3�4 �

5���	*��������65*7

5���	*��������65*789�#��	:�)������69:7
………………………..….(5)

Formula (6) shows False Positive Rate (FPR).

Looking at tables 4 and 5, as FPR demonstrates the

proportion of falsely predicted positives, obviously,

the overall FPR in MLP classes are basically lower

than the overall FPR in Naïve Bayes classes, which

proves that MLP is more efficient than Naïve

Bayes in worse in predicting positive cases

correctly.

;�4 �
9�#��	*�������69*7

9*85���	:�)������65:7

…………………………………………..(6)

Defined as the proportion of relevant instances,

Formula (7) demonstrates precision. When

compared with Naïve Bayes, the weighted average

of Precision value in MLP is slightly higher and

more balanced, which means that MLP ability to

predict negative cases is better.

Precision=
5*

5*89*
…………………………………….………………

…..(7)

Representing harmonic mean of precision and

recall, F-measure is calculated using Formula (8).

Relatively higher in MLP, F-measure shows better

predication and balance with MLP algorithm.
; 0<.�=�'.	 � 2 ?

*�������
?5*@

*�������
85*@
…………………………………….(8)

Looking at tables 4 and 5, the precision-recall

curve (PRC) or precision to sensitivity provides

indications for the accuracy of the CA. Reflecting

better accuracy, PRC values are higher in MLP

case, table 5. Similarly, Receiver Operating

Characteristic (ROC) values are relatively higher in

MLP, which means that the total ability of MLP

classes to distinguish between a correct level of

quality and a false level of quality is higher than

their counterparts in Naïve Bayes.

Looking holistically at statistical measures of the

performance in both MLP and Naïve Bayes, MLP

performance is better in most measure, as well as

MLP measures shows considerably better balance

when compared to Naïve Bayes. Accordingly, the

researchers decided to select MLP as an

appropriate CA for the SQPS.

4.3 Experiment 3, testing the developed SQPS

against real test cases

After developing the SQPS, the researchers used

the SQPS to predict quality for already verified and

tested 619 real software products from ICET.

Looking at table 6, obviously, testing real 619

instances provides results that align with 10-fold

cross validation paired t-test of the training cases.

To illustrate, 78.4314% of the cases were classified

correctly in the training test while 66.559% of the

cases where classified correctly in the second test

with 619 instance. Similarly, errors values in both

tests a and b are consistent with higher error values

in test b. Referring to results from other researches

[4, 13, 16, 17, 19, 23-26, 28] where the

classification algorithms predict a limited binary

prediction. Though these results may have higher

success rate, their SQPSs cannot be directly

compared to SQPSs where the prediction has five

different possible outcomes with 20% as success

rate instead of 50% as a success rate in the binary

prediction. Considering less varied instances in

test b, the results show that the MLPN model fits to

a considerable amount of test data, which is

derived from real software development

environment.

On the other hand, examining table 6, again,

confusion matrices for both tests show aligned and

consistent results as each classification is correctly

classified in most of its related cases. However, in

test a, most of the cases are classified as "Good"

whereas, in test b, most of the cases are classified

as "Accepted". This observation is explained by the

fact that the test dataset is not related to the training

set.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

291

Table 4, Accuracy Of The Naïve Bayes CA By Class.

Table 5. Accuracy Of The MLP CA By Class.

Table 6. Comparing The MLPN Training Data Against Real Test Cases.

Comparison feature

a)Testing the MLPN with 10-fold cross validation

paired t-test of the training cases (102 instance)

b)Testing the MLPN with real test cases

(619 instance)

Correctly Classified Instances 5040 (78.4314 %) 412 (66.559%)

Incorrectly Classified Instances 1386 (21.5686 %) 207 (33.441)

Mean absolute error 0.0904 0.1536

Root mean squared error 0.264 0.3247

Relative absolute error 33.9128 % 57.2996%

Root relative squared error 72.5942 % 88.4432 %

Table 7. Comparing The MLPN Training Confusion Matrix Against Real Tested Confusion Matrix.
a) Confusion Matrix for the MLPN with 10-fold cross

validation paired t-test (6426 instance)

 b) Confusion the MLPN with real test cases (619 instance)

 a b c d e <-- classified as

 252 126 0 0 0 | a = Defected
 63 1764 315 0 0 | b = Accepted

 0 441 2331 189 0 | c = Good

 0 0 252 504 0 | d = Very good
 0 0 0 0 189 | e = Excellent

 a b c d e <-- classified as

 114 53 11 1 0 | a = Defected
 45 207 20 4 1 | b = Accepted

 14 40 69 0 1 | c = Good

 5 9 3 17 0 | d = Very good
 0 0 0 0 5 | e = Excellent

5. CONCLUSIONS

In conclusion, the research provided evidence to

support the feasibility of integrating a CA with ISO

9126 quality model in order to develop a SQPS. As

an experimented SQMM, ISO 9126 approved its

flexibility and comprehensibility, especially in

covering software development factors adequately.

Thus, this research highlights the generality of ISO

9126 model and its implications over integrating

ISO 9126 with Machine learning.

With regard to the debate surrounding the

superiority of Naïve Bayes and MLP algorithm

over each other [23-24, 26-28], both CAs showed

convergent values in statistical measures of

performance, with slight advantage in MLP

algorithm. However, the statistical measures also

showed imbalance problems in Naïve Bayes

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

292

predications whereas MLP showed more balanced

predictions. Hence, this research recommends

using MLP to develop CAs for SQPSs, standing

with researchers who support the use of MLP in

software quality classification [26-28].

Having five different predictions instead of two

may increase the possibility of predicting

incorrectly. However, research results are original

and should be employed to develop software

quality systems with better performance, which

could be the subject of future research.

Using a never studied before dataset enriched the

research and enabled the researchers to conclude

originally.

Of course, developers can integrate the

developed SQPS within any automated solution for

supporting quality measurement. Additionally, the

model can be leveraged into a fully capable

decision support system for measuring quality.

REFERENCES

[1] C. Rettig, “The trouble with enterprise

software”. MIT Sloan Management Review,

Vol. 49 (2013) No. 1.

[2] K. Mordal, N. Anquetil, J. Laval, A.

Serebrenik, B.Vasilescu, S. Ducasse,

“Software quality metrics aggregation”

,Industry Journal of Software: Evolution and

Process, Vol. 25 (2013) No. 10, 1117-1135.

[3] S. Norbert, M. Rosenmuller, C. Kastner, P.G.

Giarrusso, S. Apel, and S.S. Kolesnikov,

"Scalable prediction of non-functional

properties in software product lines". In

Software Product Line Conference (SPLC)

15th International, IEEE, 2011, 160-169.

[4] 4)C. Shilpee, G. Tenne, and S. Bhatia,

"Analysing Software Metrics for Accurate

Dynamic Defect Prediction Models”. Indian

Journal of Science and Technology , Vol. 8

(2015) No. S4, 96-100.

[5] J. Ghayathri, E. M. Priya, “Software Quality

Models: A Comparative Study”. International

Journal of Advanced Research in Computer

Science and Electronics Engineering

(IJARCSEE), Vol. 2 (2013) No. 1, 42.

[6] L. Ming-Chang, "Software Quality Factors and

Software Quality Metrics to Enhance Software

Quality Assurance." British Journal of Applied

Science & Technology, Vol. 4 (2014) No. 21,

3069.

[7] K. Dejaeger, T. Verbraken, B. Baesens,

"Toward comprehensible software fault

prediction models using bayesian network

classifiers." Software Engineering, IEEE

Transactions on, Vol. 39 (2013) No. 2, 237-

257.

[8] H. Al-Jamimi, M. Ahmed, "Machine learning-

based software quality prediction models: state

of the art". In International Conference of

Information Science and Applications (ICISA),

IEEE, 2013, 1-4.

[9] D. P. Naragani, P. Uniyal,"Comparative

analysis of software quality models."

International Journal of Computer Science and

Management Research, Vol. 2 (2013) No. 3.

[10] T. A. Alrawashdeh, M. Muhairat, A.

Althunibat, "Evaluating the quality of software

in erp systems using the ISO 9126 model."

International Journal of Ambient Systems and

Applications (IJASA), Vol. 1 (2013) No. 1.

[11] S. Mittal, P.K. Bhatia, "Software component

quality models from ISO 9126 perspective: A

review." IJMRS’s International Journal of

Engineering Sciences, Vol. 2 (2013) No. 2.

[12] R.B. Svensson, T. Olsson, B. Regnell, "An

investigation of how quality requirements are

specified in industrial practice." Information

and Software Technology, Vol. 55 (2013) No.

7, 1224-1236.

[13] Prasad, M. C., Florence, L., & Arya, A., A

Study on Software Metrics based Software

Defect Prediction using Data Mining and

Machine Learning Techniques. International.

Journal of Database Theory and Application,

Vol. 8 (2015) No. 3, 179-190.

[14] Moeyersoms, J., de Fortuny, E. J., Dejaeger,

K., Baesens, B., & Martens, D.,

"Comprehensible software fault and effort

prediction: A data mining approach. Journal of

Systems and Software", Vol. 100 (2015), 80-

90.

[15] Yadav, D. C., & Pal, S. (2015). Software Bug

Detection using Data Mining. International

Journal of Computer Applications, 115(15).

[16] Prakash, V. A., Ashoka, D. V., & Aradya, V.

M, Application of Data Mining Techniques for

Defect Detection and Classification. In

Proceedings of the 3rd International

Conference on Frontiers of Intelligent

Computing: Theory and Applications (FICTA)

2014, 387-395, Springer International

Publishing.

[17] T. Zimmermann, N. Nagappan, H. Gall, E.

Giger, and B. Murphy,“Cross-project defect

prediction: A large scale experiment on data

vs. domain vs. process,” in Proc. 7th Joint

Meet. Eur. Softw. Eng.Conf. ACM SIGSOFT

Symp. Found. Softw. Eng., 2009, pp. 91–100.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

293

[18] S.R. Chidamber and C.F. Kemerer, “A metrics

suite for object-oriented design”. IEEE

Transactions on Software Engineering, Vol 20

(1994) No.6, 476-493.

[19] R. Subramanyan and M. S. Krisnan,

“Empirical Analysis of CK Metrics for Object-

Oriented Design Complexity: Implications for

Software Defects”, IEEE Transactions on

Software Engineering, Vol. 29 (2003) No. 4,

297-310.

[20] P. Yu, T. Systa, and H. Muller, “Predicting

Fault-Proneness Using OO Metrics: An

Industrial Case Study”, in Proceedings of Sixth

European Conference on Software

Maintenance and Reengineering, (2002), 99-

107.

[21] T.M. Khoshgoftaar and K. Gao, “Count

Models for Software Quality Estimation”,

IEEE Transactions on Reliability, Vol. 56

(2007) No. 2, 212 – 222.

[22] T.J. McCabe, “A Complexity Measure,” IEEE

Transactions on Software Engineering, Vol.2

(1976) No.4, 308-320.

[23] N.E. Fenton and M. Neil, “A critique of

software defect prediction models”, IEEE

Transactions on Software Engineering, Vol.

(1999) No. 5, 675–689.

[24] T. Menzies, J. Greenwald, A. Frank, Data

mining static code attributes to learn defect

predictors, IEEE Trans. Softw. Eng. Vol. 33

(2007) No. 1, 2–13.

[25] S. Bibi, G. Tsoumakas, I. Stamelos and I.

Vlahavas, “Software defect prediction using

regression via classification”, IEEE

International Conference on Computer

Systems and Applications, (2006), 330-336.

[26] Gayathri M, Sudha A. Software defect

prediction system using multilayer perceptron

neural network with data mining. International

Journal of Recent Technology and Engineering

(IJRTE) ISSN: 2277-3878. Vol. 3 (2014) No.

2, 54-59.

[27] Katiyar, N., and R. Singh. "Prediction of

software development faults using neural

network." VSRD-IJCSIT Vol.1(2011) No. 8,

556-566.

[28] Singh M, Singh Salaria D. Software defect

prediction tool based on neural network. IJCA.

Vol. 70 (2013) No.22, 22–28.

[29] M. Agüero, B. Aires, A.F. MADOU, A. G.

ESPERON, “Improving Software Quality with

Artificial Intelligence”. Ciencia y Tecnologia,

Vol. 11(2011) No. 2.

[30] Zeiss, Benjamin, et al. "Applying the iso 9126

quality model to test specifications." Software

Engineering 15.6 (2007): 231-242.

[31] G. Jozanikohan, Golnaz, G.H. Norouzi, F.

Sahabi, H. Memarian, and B. Moshiri. "The

application of multilayer perceptron neural

network in volume of clay estimation: Case

study of Shurijeh gas reservoir, Northeastern

Iran." Journal of Natural Gas Science and

Engineering, Vol. 22 (2015) January, 119-131.

[32] O. Alshareet, “An Empirical Study to Develop

a Decision Support System (DSS) for

Measuring the Impact of Quality

Measurements over Agile Software

Development (ASD)”. Indian Journal of

Science and Technology, Vol. 8 (2015) No. 15.

[33] G.W. Burr, R.M. Shelby, C. di Nolfo, J.W.

Jang, R.S. Shenoy, P. Narayanan, K. Virwani,

E.U. Giacometti, B. Kurdi, H. Hwang.

"Experimental demonstration and tolerancing

of a large-scale neural network (165,000

synapses), using phase-change memory as the

synaptic weight element." In Electron Devices

Meeting (IEDM), 2014 IEEE International,

IEEE, 2014, 29-5.

[34] S. Bhattacharyya, S. Bhattacharjee, N.K.

Mondal. "A quantum backpropagation

multilayer perceptron (QBMLP) for predicting

iron adsorption capacity of calcareous soil

from aqueous solution." Applied Soft

Computing, Vol. 27 (2015), 299-312.

[35] M. Hamedi, S.H. Salleh, M. Astaraki, A. M.

Noor, and A. R. Harris, "Comparison of

multilayer perceptron and radial basis function

neural networks for EMG-based facial gesture

recognition." In The 8th International

Conference on Robotic, Vision, Signal

Processing & Power Applications, Springer

Singapore, 2014, 285-294.

[36] S. Kalyani, K. Shanti Swarup,

"Design of pattern recognition system for

static security assessment and classification."

Pattern Analysis and Applications, Vol. 15

(2012) No. 3, 299-311.

