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ABSTRACT 

 
This paper presents a novel approach to the detection of abnormal passangers’ movements onboard an 
aircraft. Firstly, it uses the simple indicators of the total passengers’ movements along the aisle and in their 
seats as classification features. Secondly, five machine learning classifiers are studied, namely: decision 
trees, SVM with Gaussian kernel, bagging ensemble, boosting ensemble and RUSBoost ensemble 
classifiers. The ROC curve, the confusion matrices and the McNemar tests are shown and conducted. 
Finally, we propose a method of enhancing the performance of the bagging ensemble using Bayes rule. The 
bagging ensemble are found to have a classification accuracy of about 65% which was increased by the 
application of the Bayes rule method to about 89.2%. The performance results of each method is reported 
and discussed. 
Keywords: Machine Learning; Ensemble Classifiers; Aviation Safety; Bayes Rule; Decision Support 

System  

1. INTRODUCTION 

The main theme of this research paper is the 
implementation of systems that can profile 
passengers on board. It has been argued that better 
decisions could be made once the main cues of a 
situation can be gathered so as to increase the 
situational awareness of decision-makers about the 
current state of passengers on-board. This research 
is part of a bigger research framework that aims at 
designing real-time threat analysis systems for 
profiling situations on-board aircraft from both 
safety and security points of view. More 
information can be found in [1-6].   

The wakeup calls cried by many catastrophic 
aircraft incidents and terrorist attacks have resulted 
in many revisions to aviation safety and security 
procedures. However, most of these procedures 
were only limited to better training, cockpit door 
reinforcement and deployments of sky marshals. 
On the other hand, the European Commission (EC) 
has proposed a project to prevent on-board threats 
and ensure safe journey from the moment 
passengers enter the airport right until they reach 
their destinations. The project started in 2004 and 
was codenamed SAFEE (Security of Aircraft in the 

Future European Environment)1. Various other 
projects and frameworks were proposed, for instant, 
the SVETLANA project2.  The main theme of these 
projects were to develop onboard threat detection 
and management decision support systems by 
analyzing flight data and/or deploying sensors 
onboard to collect key cues about the current 
situations.  Consequently, active response actions 
can be defined for a given threat level to ensure the 
smooth continuity of flight and reduce disruption. 
Since appropriate actions are the result of good 
comprehension of the key elements that if put 
together would precisely portray a given situation, 
it is essential that the right cues are collected from 
onboard using arrays of sensors, or smart nodes [7], 
processed efficiently and then summarized in a way 
as to increase the situational awareness of decision 
makers. 

This paper is concerned with analyzing and 
classifying human behaviors onboard an aircraft. It 
assumes that smart sensors are deployed around the 
passengers’ cabin and that they are capable of 
summarizing passengers’ movements numerically 

 
1 See SAFEE: Security of Aircraft in the Future European 

Environment, (accessed 11/12/2015)  
http://ec.europa.eu/research/transport/projects/items/safee_en.

htm 
2 See SVETLANA, (accessed 11/12/2015) 

http://www.svetlanaproject.eu/ 



Journal of Theoretical and Applied Information Technology 
 31

st
 December 2016. Vol.94. No.2 

 © 2005 - 2016 JATIT & LLS. All rights reserved.    

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
503 

 

into background movements in their seats and aisle 
movements. More details about this procedure are 
described in [1]. Since only ordinary cameras are 
required to quantify passenger movement patterns 
into numerical values, the total cost of deploying 
such sensors are kept to a minimum. In fact, many 
modern aircrafts already contain CCTV cameras 
installed around the passengers’ cabin, among other 
places, resulting in further reduction to installing 
and operating cost. The essential task of this 
research effort is: giving the numerical values of 
the progress of passengers’ background and aisle 
movements throughout the flight time, what threat 
score should be associated with the current 
development of events? The paper will start with a 
short literature review, following by brief theory 
discussion of the key machine learning algorithms, 
and then results are shown and discussed.  

2. CROWD BEHAVIOR ANALYSES IN THE 

LITERATURE 

Machine learning literature is full with numerous 
approaches and methodologies for dealing with the 
problem of human behavior modeling, analysis, and 
recognition. Approaches ranges from expert-rules 
based, control theory, to classification-based like 
Support Vector Machine (SVM) and k-Nearest 
Neighbors (kNN) based. However, little has been 
done on the analysis of human behavior on-board 
an aircraft. Human behaviors have been greatly 
researched in open-areas like parks and airports but, 
to the best of the authors’ knowledge, not that much 
on the closed and confined places like an aircraft 
where movement is greatly limited to relative 
movements in seats and aisle movements. In this 
section, approaches to the problem of crowed 
behavior analysis will be presented from the most 
generic to the most specific to the area of aviation 
safety. 

Isoda et al. have used the C4.5 algorithm to 
generate a decision tree that could distinguish the 
spatiotemporal context of human behavior 
interacting in a house into appropriate descriptive 
states. The states were prepared using priori-
defined task models [8].  Although it would be of 
value to investigate the performance of such 
approach in the aviation safety context because 
houses are, to an extent, confined places like an 
aircraft, the C4.5 algorithm lacks boosting which is 
a method of combining different classifiers together 
to improve performance and is less memory and 
CPU efficient than the C5.0 [9, 10]. C4.5 and C5.0 
have often been considered solved problem [9] and 

left in favor of most recent advances algorithms in 
machine learning such as CART, random trees and 
random forests [11-13]. 
Another approach is to use Hidden Markov Models 
(HMMs) and Coupled HMMs [14-16] to analyze 
human behavior recorded by a video feed over an 
extended amount of time [17]. On the other hand, 
agent-based approach has been utilized to simulate 
human decision-making in virtual crowds [18] 
which is an expert based solution as opposed to the 
machine learning approaches discussed so far. The 
approach of  [17] has been extended by 
incorporating levels of Kalman filters sequenced by 
a dynamic HMM [19]. This approach has been used 
to recognize and predict drivers’ behaviors over the 
extent of several seconds. Transfer learning has 
been used to update a classification model incase 
new activities have emerged from indoor video 
surveillance cameras [20]. Weighted block 
similarity methods have been used to analyze 
crowd movements in open areas and criteria have 
been set to detect anomalous behaviors such as 
running, wall-climbing and falling [21].  

All of the approaches discussed so far have 
focused on recognizing normal human interactions, 
social activities and/or abnormal agent behavior 
within a crowd. These methods in both the 
application and motivation are significantly far 
from the main objectives of this research paper 
where only minimum attention has been given. For 
instant, neuro-fuzzy networks were devised to 
model passenger behaviors onboard an aircraft [1]. 
The issue with this approach was that neural 
networks required huge amount of training sets of 
data, it lacked generality because human 
movements are often random to a significant extent, 
and their CPU and memory requirements are often 
a concern [22]. 

All in all, the machine learning literature is full 
of application examples of systems designed to 
detect and recognize human/crowd behaviors. 
Although only few of them were discussed in this 
section, the little attention paid to the specific 
application of detecting anomalies within 
passengers’ movements onboard an aircraft has 
paved the road for researching the most suitable 
machine learning algorithm to satisfy the objective 
of ensuring the highest level of situational 
awareness of decision-makers of an aircraft current 
state. 



Journal of Theoretical and Applied Information Technology 
 31

st
 December 2016. Vol.94. No.2 

 © 2005 - 2016 JATIT & LLS. All rights reserved.    

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
504 

 

3. ASSUMPTIONS AND METHODS 

 
The training and testing data used in this research 

have been acquired using the methods described in 
[1]. Passengers’ movements were synthetically 
generated using the Monte Carlo method to 
incorporate both the deterministic and random 
components of typical agents acting in response to 
abnormal events in their environments. Passengers’ 
movements were categorized into background 
movements describing movements in the 
passengers’ seats and to aisle movements denoting 
movements along the aircraft aisles. Movements are 
collectively quantified into a scale of (0) to (100) 
with (0) representing no movements at all and (100) 
expressing a very high amount of movements. The 
reason for that is to simplify the interfacing 
circuitry with a CCTV camera of an aircraft and 
thereafter, converting it to a scalar of how much 
relative changes there are between recorded frames.  
Data were sampled every 5 seconds out of a trip 
time of 1 hour and 40 minutes. The flight profile 
has been classified into five states: boarding, 
taking-off, cruising, landing and stopping. 
Abnormal passenger movements were randomly 
injected along the flight time and assumed to have 
duration of either 60, 300, or 600 seconds.  The 
maximum amounts of abnormalities have been 
limited to 1σ, 3σ and 6σ, where σ is the standard 
deviation. Finally, a vector of classification labels 
has been created which labels the parts where 
abnormalities were introduced as (1) and (0) 
otherwise. Figure 1 and 2 shows typical passengers 
background and aisle movements without the 
introduction of anomalies. 

 
 
 
 

Although passengers’ activities may seem 
random at once, they do follow some pattern that 
correlates with the current flight profile. For 
example, the movement in the aisle would be 

significantly greater during boarding than taking-
off. One would also expect the background 
movement to increase during serving of food and 
the aisle movement to decrease during the same 
period. However, the random component of such 
activities would result in the failure of typical 
solutions by expert system approach because 
randomness is too complex to be expressed in if-
then rules.  

Therefore, it is of the essence to seek out a 
machine learning approach where algorithms can be 
used to search for structures within large amount of 
training data. For that end, abnormalities were 
added to the data samples shown in figure 1 and 2 
and labelled abnormal. Figure 3 shows a scatter plot 
of such abnormal samples with maximum 
amplitude of 3σ and duration of 600 seconds. 
Notice the overlapping of the normal samples, 
marked with cross sign, and abnormal samples, 
marked with circle sign. Since the normal and 
abnormal samples aren’t spatially separable by a 
mere line, typical clustering algorithm would result 
in a poor performance unless more features are 
added or by kernel transformation, or other data 
processing techniques. 

 
 

 

 
 

Fig.  4. Scatter Plot Of The Background Vs Aisle 

Movements. Abnormal Samples Are Marked With A 

Circle Sign. 

Fig.  1 Amount Of Passenger Movements In Their Seats 

(Background Movements). 

Fig.  3.  Amount Of Passenger Movements In The Aisle. 
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Fig.  5. 3D Scatter Plot Of A Typical Aisle Movement, 

Background Movement And Flight Stage. Normal 

Samples Are Shown With Crosses Where Abnormal 

Samples Are Drawn With Circles. 

A third feature that could be added is the current 
flight stage (profile). For that end, each flight phase 
is coded into a numeric of values from 1 to 5. The 
result of such addition is show in figure 4.  

Figure 4 shows that the abnormalities in 
passenger behavior were recorded during the 
cruising stage of the flight time. Since the flight 
stage does not change during the abnormality 
duration, it wouldn’t result in a significant increase 
of information to help classify passengers’ 
behaviors more easily. Nonetheless, it could help 
with the development of a stage-specific structure 
that identifies typical behaviors of passengers. 

4. BACKGROUND THEORY OF MACHINE 

LEARNING 

 
In this section, we will introduce the basic theory 

behind some of the most popular, and applicable, 
supervised machine learning algorithms. It will 
provide common notations for further discussion 
throughout this research paper. The reader is 
encouraged to follow the list of references in this 
section for more details. 

Machine learning is the science of learning from 
data [23]. It uses datasets, often a large amount of, 
to look for patterns, construct structures or estimate 
parameters that can model a complex system where 
expert-based modelling is tedious or time 
consuming [24]. Supervised machine learning is a 
subfield of machine learning that search for 
algorithm that can learn to classify new instances 
from a large dataset of classification examples [25]. 
Some of the widely used techniques in this field 
includes: decision trees, SVMs, ANN, kNN [25] 
and ensemble classifiers [26]. There are 
innumerous algorithms and techniques in the field 
of machine learning. The suitability of an algorithm 
for a given classification problem is judged based 
on some performance measures such as the Area 
Under Curve (AUC), the Root-Mean-Square-
Deviation RMSD, confusion matrix...etc. [27]. One 
procedure to find a suitable classification algorithm 
is to pre-train as many classification algorithms as 
practical and then nominate the most promising 
ones for further tuning. The research described in 
this paper has gone through that route and therefore 
we will only introduce some key details about the 
most promising machine learning algorithms 
applicable to problem of this study. These are 
decision trees, SVM, and ensemble classifiers. 
 

A. Decision Trees 

Decision trees are types of logical classification  
algorithms that work by sorting classification 
instances based on feature values [25]. Each feature 
is represented with a node which could have 
multiple branches each with a subset of values that 
the node feature can assume. Decision trees are 
attractive because of their comprehensible 
classification capabilities and ease of use [28]. The 
three most common algorithms in the decision trees 
classification techniques are ID3 [29], C4.5 [30] 
and random forests [31]. Random forest is probably 
the most accurate predictor of the bunch although it 
is an ensemble of bagged decision trees trained on 
various subsets of the training data [32].  

The decision tree learner used in this research 
works by first splitting the training data on a feature 
that optimizes Gini’s diversity index measure and 
repeats the process recursively while adding the 
selected features as children of the previous nodes. 
More information about the implementation of the 
decision tree algorithm can be found in [33]. 

B. Support Vector Machines 

Support Vector Machines (SVMs) are one of the 
widely used and relatively recent technique in the 
literature [22]. SVM works by maximizing the 
margins of linear separators between data classes 
and thereby minimizing the generalization error of 
the predictor [34]. In cases where no linear 
separator can be drawn between data classes, SVM 
uses nonlinear transformations to higher planes, 
called kernels, and apply the linear separator there 
[34]. SVMs have been used in so many applications 
and are the subject of numerous research efforts and 
analytical studies [35].  
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The standard formulation of SVM is defined as 
follows: given training dataset like D where: 
 

 D � � x�; y�		where	i � 1,2,3… nand	x� ∈ �T, F�, y ∈ �1, �1�� (1) 

The SVM method can be expressed by: 

 
ω�x�  ω! " 1, ∀x� ∈ Tω�x�  ω! $ �1, ∀x� ∈ F (2) 

 
Where ω is called the weights vector and ω! the 
bias [25]. If the data is linearly separable then the 
optimum separation hyperplane can be found by 
minimizing ψ&ω� where ψ&ω� is given by:  

 ψ&ω� � 12 |ω|(),)*+�,  (3) 

 
The selection of the right kernel to transform non-
linearly separable data is of the essence because the 
kernel defines the transformation of the instance to 
be classified. One way to determine, and also a 
drawback of SVMs, is to test some potential kernels 
and benchmark their performance measures. 
Although many kernels are discussed in the 
literature, for instance [36], our preliminary test 
showed the Gaussian kernel to be the most 
promising transformation method for the research 
problem of this paper. The mathematical details of 
the Gaussian kernel can be found in [37]. 
 

C. Ensemble Classifiers 

Ensemble classifiers or learners work by 
combining learners which are weak on their own 
nevertheless become very powerful when combined 
together. There are many ways to combine 
individual learners together to create an ensemble 
learner. For example, the individual learner, called 
a bag, can be trained on a random subset of the 
training data with replacement and then the output 
of each bag could be combined together by taking 
the mean or majority vote. Such technique is called 
bagging [38]. Alternatively, each bag is tested on 
the whole training set and the instances where the 
bag has misclassified are giving more weights in 
the training of the next bag and so on. This method 
is called AdaBoosting [39]. Some algorithms 
accounts for unbalanced, or skewed, datasets by 
oversampling the sparse class or undersampling the 
excessive class. One example of such algorithm is 
the Random Under Sampling Boosting Ensemble 
learner more commonly known as RUSBoost [40]. 

Some research studies have showed that bagging 

performs better in the presence of classification 
noise than Adaboost [41]. When the data is 
imbalanced, bagging outperforms RUSBoost 
however, RUSBoost would perform better when the 
noise level is low [42].  

For the research effort of this paper, we are going 
to compare the performance measures of five 
classifications algorithms that have shown good 
classification potential during our preliminary tests. 
These are: Decision Trees, SVM with Gaussian 
kernel, Bagging Ensemble, Boosting Ensemble and 
RUSBoost Ensemble. 

5. RESULTS 

The main purpose of this research effort has been 
to classify the behavior of aircraft passengers into 
normal or abnormal using machine learning. 
Passengers’ behaviors have been measured by 
aggregating their movements into two metrics: aisle 
movements and background movements. Hence, 
there are three features available for machine 
learning classifiers to learn from: the two 
mentioned movements and the current flight stage. 
Our preliminary tests have shown potential for 
decision trees, SVM with Gaussian kernel, bagging 
ensemble, boosting ensemble and RUSBoost 
ensemble classifiers. MATLAB was used to carry 
out the calculations throughout this research. In this 
section, we will report the performance of the 
chosen classifiers. 

Figure 5 shows the Receiver Operating 
Characteristic (ROC) curves of the five classifiers 
chosen in this study. An ROC plots the sensitivity, 
or true positive rate, against the specificity, or false 
positive rate, of a model [43].  The more ideal a 
classifier is, the more it is closer to the (0,1) point 
of the curve. Figure 5 shows that RUSBoost has 
performed the worse. However, its performance is 
considerably better than mere random classifier 
because a random classifier would be nothing more 
than a diagonal line on the ROC plot. This result is 
not surprising giving the fact that passengers’ 
behaviors are random to some extent. On the other 
hand, the bagging and boosting ensembles 
performed better than all the other methods. This 
result comes in agreement with the literature 
discussed so far in this research.  We can 
summarize the ROC performance by calculating the 
Area Under Curve (AUC) of each classifier’s ROC 
Curve. Since the optimal curve would be a point at 
coordination (0,1), the closer the AUC to one, the 
better it performance is. Table 1 shows the AUC 
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measures of the five classifiers.  

 
Fig.  6. ROC Of The Five Classifiers Chosen In This 

Research 

 
Table 1. Area Under Curve (AUC) Of The Five 

Classifiers In This Study 

 
Unfortunately, ROC and AUC may give us 

wrong intuition as to which classifier to choose for 
the problem of this research because it assumes that 
the cost of misclassifying the abnormal class and 
the normal class is the same [44] which is clearly 
not the case. The penalty of classifying abnormal 
behavior as normal may result in a catastrophic 
security breach. Therefore, we must look for an 
alternative measure to either solidify our choices 
made so far or try another classifier.  
One easy way to assess the algorithm power in 
classifying each class is to construct the confusion 
matrix of the classifier. Table 2 shows the 
confusion matrices of the decision trees, SVM with 
Gaussian kernel, bagging ensemble, boosting 
ensemble and RUSBoost ensemble classifiers.  
The confusion matrix would help us assess the 
prediction value for each class, specifically the true 
class which represents the instances of anormal 
passengers’ movements. This is shown in table 2 as 
the positive prediction value of the model.  The 
positive predication value of the model is the 
portion of number of true positives out of the total 
number of the true, i.e. abnormal movement, class. 
Bagging ensemble and decision tree classifier have 
the highest positive predication value of 0.633 and 

0.658 respectively. In order to evaluate whether the 
difference between the more complex model, i.e. 
bagging ensemble, is statistically better than the 
simpler model, i.e. decision tree, we can use the 
McNemar mid-p and asymptotic tests.  
Let nij be the number of pairs that both models 
classify correctly and incorrectly. Hence nii  is the 
number of samples that was classified the same 
way by the two models and nij, where i≠j, is the 
number of instances that has been classified 
differently. In addition, the classification rate for 
the Bagging Ensemble is defined by: 

ρ. � /(0  /((/  (4) 

and for the decision tree: 

ρ1 � /0(  /((/  (5) 

then, we can compare the accuracy of the two 
models using the following test: 

 
23:	ρ. � 	ρ1 

20:	ρ. 5 	ρ1  
(6) 

 
Using these basic definitions the asymptotic 
McNemar test statistics and rejection regions for 
significance level (α) is given by [45]: 

 t7 � &/0( � /(0�
(

/0(  /(0  (7) 

 
If 1 � 8(9&:,;� < = where 8(9&:,;� is the >?( 
cumulative distribution function evaluated at x, 
then reject H0. Whereas the Mid-p McNemar test 
statistics and rejection regions for significance-level 
(α) is given by  [45]: 
 

 

t@ � min	&&/0(, /(0� 
If 	8.BCDt@ � 1;	/0(  /(0 � 1,0.5H  0.5I.BCDt@; 	/0(  /(0, 0.5H < =/2, then 
reject H0. 

(8) 

 
where 8.BC&K; /, L� and I.BC&K; /, L� are the 

binomial cumulative distribution function and the 
probability distribution function respectively with 
sample size n and success probability p evaluated at 
x. The results of applying the Asymptotic and Mid-
p McNemar tests to bagging ensemble and decision 
tree classifiers are shown in table 3. 
 
 
 
 

Classifier 
Decision 

Trees 
Bagging 

Ensemble 
Boosting 
Ensemble 

RUSBoost 
Ensemble 

Gaussian 
SVM 

AUC 0.850 0.954 0.959 0.716 0.725 
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Table 2. Confusion Matrices Of The Five Classification Algorithms Used In The Study 

 
 
 
 
 

 
 
 
 
 

Bagging Ensemble 
Target 

  
Decision Tree 

Target 

  Positive Negative Positive Negative 

Model 

Positive 76 44 

Positive 

Predictive 

Value 

0.633 

Model 

Positive 79 41 

Positive 

Predictive 

Value 

0.658 

Negative 1 1080 

Negative 

Predictive 

Value 

0.999 Negative 2 1079 

Negative 

Predictive 

Value 

0.998 

  
Sensitivity Specificity 

Accuracy 0.963   
Sensitivity Specificity 

Accuracy 0.964 

0.987 0.961 0.975 0.963 

Boosting 

Ensemble 

Target 

  

RUSBoost 

Ensemble 

Target 

  Positive Negative Positive Negative 

Model 

Positive 52 68 

Positive 

Predictive 

Value 

0.433 

Model 

Positive 52 68 

Positive 

Predictive 

Value 

0.433 

Negative 0 1081 

Negative 

Predictive 

Value 

1.000 Negative 0 1081 

Negative 

Predictive 

Value 

1.000 

  
Sensitivity Specificity 

Accuracy 0.943 
  

Sensitivity Specificity 
Accuracy 0.943 

1.000 0.941 1.000 0.941 

Gaussian SVM 
Target 

  Positive Negative 

Model 

Positive 59 61 

Positive 

Predictive 

Value 

0.492 

Negative 36 1045 

Negative 

Predictive 

Value 

0.967 

  
Sensitivity Specificity 

Accuracy 0.919 

0.621 0.945 
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Table 3. The Mcnemar Test Results 

 Asymptotic Mid-p 

Reject null hypothesis? yes yes 

p-value 1.2164×10-08 5.3842×10-10 

Classification loss 0.026644 0.026644 

 
Both the asymptotic and Mid-P test results 

suggest rejecting the null hypothesis that the more 
complex model, i.e. the bagging ensemble, is 
statistically as accurate as the simpler model, i.e. 
the decision tree. This result favors the bagging 
ensemble over decision tree classifier. The p-value 
represents the probability that a random test 
measurement is as extreme as the observed value 
under the assumption that the null hypothesis is 
true. The fact that its value is close to zero suggests 
strong evidence to reject the null hypothesis.   
In conclusion, the bagging ensemble classification 
algorithm proved better than the other classifiers. 
The positive predictive rate has been found to be 
0.633 and we proved, using McNemar tests, that it 
performs better than its closest alternative. 
However, an accuracy of about 63% is not 
interesting giving the fact that a random classifier 
would have an average accuracy of 50%. We will 
discuss a simple method of increasing the 
prediction accuracy of the bagging ensemble in the 
next section. 

6. IMPROVING PERFORMANCE USING 

BAYESIAN PREDICTOR 

 
Bayes Rule is a one simple way to improve the 

performance of the bagging ensemble in classifying 
passengers’ movements. The output of the 
ensemble classifier is used as a posterior probability 
to update the belief of how much abnormal a 
current movement is. The non-normalized posterior 
probability of an instant like (s) belonging to class 
(k) is the product of the prior probability and the 
multivariate normal density with mean µk and 
standard deviation σk. Hence, the multivariate 
density function can be written as [46]: 

 

M&K|N�
� 1
√2P|QB|( R

ST0(&UTVW�XYWZ[&UTVW�\
 

(9) 

 
where |QB| is the determinant of QB and QBT0 is the 
inverse matrix. If P(i) represents the prior 
probability of class (i), then the posterior 

probability of observation (x) belonging to class (i) 
is [46]: 

 
M&N|K� � M&K|N�	M&N�M&K�  

M&K� � ]MDK^N_H	MDN_H
_

 
(10) 

Applying equation 10 to the bagging ensemble 
results summarized in table 2, we obtain the 
improved confusion matrix result shown in table 4.  
 

Table 4. Confusion Matrix Of The Bagging Ensemble 

When Bayes Rule Is Applied 

Bagging Ensemble 
with Bayes Rule 

Target 

 Positive Negative 

Model 

Positive 117 3 
Positive 

Predictive 

Value 

0.975 

Negative 127 954 
Negative 

Predictive 

Value 

0.883 

 

Sensitivity Specificity 
Accuracy 0.892 

0.480 0.997 

 
Table 4 shows how the positive predictive value 

has been enhanced from about 63% up to about 
97.5%. However, this enhancement has come with 
the cost of decreasing the negative predictive value 
to about 88%. Since the cost of misclassifying 
abnormal movement as normal may result in fatal 
incidents while the cost of the other way around is 
only inconvenience, the reduction of the negative 
predictive value can be considered an accepted loss. 
Finally, table 5 summarizes the percentage of 
(PPV/NPV) for 1 to 10 minutes of abnormal 
activity of value 1σ to 3σ. 
 

Table 5. The Percentage Of (PPV/NPV) For Different 

Periods Of Abnormal Movements Of One To Three 

Standard Diviations 

Duration/Sigma 1σ 2σ 3σ 

1 minute (0.99/0.12) (0.99/0.21) (0.99/0.513) 

5 minutes (0.91/0.454) (0.93/0.555) (0.946/0.645) 

10 minutes (0.822/0.67) (0.95/0.69) (0.975/0.883) 

 
Table 5 shows significant tradeoff between PPV 
and NPV for small values of standard deviations; 
i.e. when the amount of movement of passengers 
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does not deviate much from the norm. The 
classifier was successful in detecting abnormal 
movements up to 0.99 percent accuracy but at the 
cost of great amount of false negatives. 
Nonetheless, the most important figure is that of the 
3σ because 0.99 percent of the normal values of 
movements are expected lie within three times the 
standard deviation value. At 3σ the PPV is as high 
as 97.5% while the NPV is 88.3%. These figures 
prove the feasibility of the classifier and its 
modification in detecting abnormal passenger 
movements onboard an aircraft. 

7. CONCLUSION 

The main objective of this paper has been to 
prove the feasibility of using the relative amount of 
movement to distinguish normal from abnormal 
situations onboard a commercial aircraft. We have 
utilized very simple indictors of passengers’ 
behaviors consisting of the total amount of 
movements in the aisles of the aircraft and the total 
amount of movements in their seats. These 
indicators can easily be acquired using current 
technology and they require no special interface 
circuitry other that CCTV cameras, thereby, 
simplifying the deployment process. 

We used machine learning classifiers to classify 
the indicators values into two classes: normal and 
abnormal. Only five classifiers are studied and 
compared after they have shown some potential 
classification accuracy during our preliminary tests. 
These classifiers are: decision trees, SVM with 
Gaussian kernel, bagging ensemble, boosting 
ensemble and RUSBoost ensemble classifiers. We 
proved that the bagging ensemble has the highest 
performance factors of the lot; however its 
performance was not high enough. We have 
proposed using the average score of the individual 
learner as a belief measure and Bayes rule to come 
up with a normality confidence figure. This figure 
showed an accuracy of up to 89.2%.  

This research effort has paved the road to the 
implementation of non-obtrusive airplane 
passengers’ profilers because it does not require the 
installation of extra equipment and/or complex 
algorithms that convert camera feed into abstracts 
of meaningful human behavior but rather the simple 
raw amount of movement as recorded by CCTV 
cameras readily available on-board the aircraft 
itself. We improved the performance of the 
standard machine learning classifiers by the 
addition of the Bayes rule and proved the feasibility 

of the algorithm by increasing the PPV from 63% 
to 97.5%.   
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