
Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

490

A SOFTWARE-HARDWARE OPTIMIZER MODEL FOR

OPTIMIZED DESIGN OF THINGS IN AGENTS OF THINGS

1
ANAS M MZAHM,

 2
MOHD SHARIFUDDIN AHMAD,

3
ALICIA Y. C. TANG,

4
AZHANA AHMAD

1
College of Graduate Studies, Universiti Tenaga Nasional, Malaysia, 2016

2,3,4
College of Computer Science and Information Technology,

Universiti Tenaga Nasional, Malaysia, 2016

E-mail:
1
anas1982mm@outlook.com, {

2
sharif,

3
aliciat,

4
azhana}@uniten.edu.my

ABSTRACT

The machines, or ‘things’ in the Internet of Things (IoT) lack self-reasoning capability, which limits their

potential to provide value-added services for humans. Consequently, we introduce the concept of Agents of

Things (AoT) as an extension to the IoT, in which the things are embedded with self-reasoning intelligent

software agents to provide value-added services for humans. Two crucial issues in designing intelligent

things are to determine what value-added services they should offer and the subsequent level of reasoning

abilities that are required for these services. Consequently, we need to find an optimum match between the

hardware capabilities of the things and their corresponding software agents’ reasoning abilities to deliver

value-added services on top of performing their basic IoT functions.

In this paper, we present the results of a software analysis represented by a software spectrum and a

hardware analysis represented by a hardware spectrum. We then link these two spectra to form a structured

hardware-software optimizer for a thing’s design model, which we called the Structured Hardware-

Software Optimizer or SHOM. We demonstrate the use of SHOM in designing optimized things in a

simulated traffic scenario in manifesting the AoT concept.

Keywords: Internet of Things; Agents of Things; Hardware Analysis; Software Analysis; Structured

Hardware-Software Optimizer; Software Hardware Optimizer Model; Value-added Services;

Optimum Things;

1. INTRODUCTION

The Internet has progressed over the years with

the use of new technologies such as the Web 2.0 [1-

3] and the Semantic Web [4, 5]. Recently, the

Internet is further expanded with a new concept of

interconnected ‘things’ known as the Internet of

Things (IoT) [6], in which devices or things are

connected to the Internet to provide connectivity

and communication between the cyber world and

the real world. Glass [7] and Jermyn et al. [8]

believe that the ability to establish a machine-to-

machine (M2M) interaction allows devices to be

connected and communicated with each other

without a user’s intervention. This characteristic

opens the door to many research in building useful

systems that could help humans in many aspects in

their daily lives. However, Tan and Wang [9] argue

that the IoT is constrained by the lack of

intelligence and self-reasoning on their

environments. Therefore, to augment the IoT, we

propose the Agents of Things (AoT) concept and

discussed a complete introduction of it in [10].

The benefits of developing applications utilizing

the concept of Agents of Things would support and

enhance the vision of the Internet of Things.

Creating things to be intelligent entities, enable

researchers to develop intelligent applications that

have great impact on the society, for example, an

application similar to that we proposed in a traffic

system in [11].

The society will experience the impact of such

applications, when the benefits translate to saving

human lives, warning other drivers about accidents

and minimizing the actions and time taken by the

authority to respond to an accident on the road.

Moreover, the benefits of continuously monitoring

driver’s speeds and giving them a fair warning

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

491

before fining for over speeding will create an

atmosphere of fair, justice and equality among the

drivers and motorists on the road. On the other

hand, this could indirectly manifest the efficiency

of the authority and government, when they will

use less resources, such as police forces,

ambulances, rescue services, et cetera and timely

actions to solve traffic system emergencies.

The AoT concept could be expected to advance

the research field to a new unprecedented level, by

enhancing machine-to-machine interactions.

However, to make the AoT concept a reality, we

need a model that determines an optimum

reasoning level in the things, i.e. we need to find an

optimal match of software and hardware for each

thing. In our previous work, we conducted analyses

on the available types of hardware [12] and

software [13]. We use the results from these two

analyses to form a structured software-hardware

optimizer [14], which plays an important role in

constructing the Software-Hardware Optimizer

Model (SHOM).

This paper presents the work-in-progress of our

research in Agents of Things. We organize the

paper as follows: Section 2 reviews related work in

this area. Section 3 discusses the results of the

hardware analysis, software analyses and the

structured hardware–software optimizer (SH-SO).

Section 4 introduces the Software-Hardware

Optimizer Model (SHOM). Section 5 demonstrates

the application and testing of SHOM in an AoT

traffic scenario. Section 6 discusses the SHOM and

Section 7 concludes the paper.

2. RELATED WORK

Researchers who work on intelligent systems that

can improve and solve many issues in daily life are

courting on the huge potential of the IoT concept

[15-19]. They inspire us to take a different

approach to the IoT concept by analyzing and

identifying the inherent constraints in the IoT. We

attempt to alleviate these constraints by proposing

an extension to the IoT concept, which we call the

Agents of Things (AoT) [10, 11].

A review of the literature on similar work does

not reveal significant results on the related work.

While there are a few studies made on the

optimization of hardware and software in

computing, there is a lack of universal studies on

the hardware and software to find an optimum

combination between them. However, there are

many studies that are focused on software

optimization to suit a certain type of hardware, such

as finding the optimum software for embedded

systems in studies by Tabbara et al. and Tang et al.

[20, 21].

There are also studies that attempt to optimize a

hardware in running a certain type of software, such

as Kolasa and Dlugosz [22] who investigate the

optimum architecture to run self-organizing neural

networks. Likewise, Lysecky [23] studies a

configurable architecture to run various types of

software.

We focus our effort to review some research on

IoT models that constitute some factors that are

related to our application scenarios, specifically in

hardware and software integration, and especially,

those that present or introduce a model for a

specific application.

The IoT applications on business issues are

important to discuss. Some researchers, like Yu et

al. [24], use the IoT to improve a business model by

reducing information asymmetry and improving the

communication channel between consumers and

producers of green agriculture products. Others,

like Jia et al. [25], create a new IoT business model

based on the IoT infrastructure itself. These models

are telecom model, Internet model and vertical

industry model, each of which has its own

characteristics that fit different types of

applications.

Researchers have also investigated on the IoT

infrastructure and shown how it improves or

incorporates new applications. For example, Zhang

and Meng [26] attempt to improve the IoT itself by

proposing a multi-dimensional ontology model to

manage resources and representation of IoT

devices’ attributes, which improve the ability of

inquiry and perceptiveness. Another researcher,

Zuerner [27], proposes a model based on the

Greenfield approach, which categorizes IoT

hardware devices into a number of flags that consist

of many options to represent different categories.

Using this approach, he attempts to achieve a

number of goals namely, to catalogue hardware

devices with a certain order or classification, and to

display some important information with labelled

flag such as, applications, storage capacity or

energy requirements. He also attempts to improve

the transparency for social acceptance by specifying

the applications and promoting self-autonomy via

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

492

managing and controlling the labelled flags storage

capacities.

Research has also been conducted on power

consumption of IoT hardware devices, such as

sensors and RFIDs. Abedin et al. [28] propose a

model for green IoT systems, which improve the

energy efficiency of IoT devices and extending the

life span of the IoT network. They use an algorithm

to evaluate the need for certain devices and

reschedule their operations for more appropriate

time to save power, which promotes green IoT

systems. Correspondingly, Kang et al. [29] propose

a monitoring system for future smart homes. They

propose a model built from three levels of context,

which is collecting or data acquisition, processing

and generating information and context making.

This model claims to improve the context

awareness of smart home monitoring.

We review another IoT research about a warning

system for environment crisis management

proposed by Poslad et al. [30]. They introduce an

IoT EWS system model built from combining a

lightweight and heavyweight semantics with W3C

web ontology to rescale a valuable data for

exchange and process. This is done to adaptably

manage and control information and

communication resources in a crisis zone.

3. SIGNIFICANCE OF HARDWARE AND

SOFTWARE ANALYSES

We incorporate the results from the hardware and

software analyses [12, 13] as an important aspect of

the AoT design to determine the association of

hardware and software in designing optimized

things that are used in the AoT concept.

Consequently, these things are endowed with

optimum reasoning level for use in building AoT

systems.

3.1. Hardware Analysis Spectrum

The hardware analysis that we conducted

previously [12] classifies a wide range of hardware

devices and their specifications. The results of the

analysis are summarized as a hardware spectrum, as

shown in Figure 1. This spectrum includes the

devices’ specifications such as size, computing

capability and cost. We structure the hardware

spectrum to focus on important specification and

make the spectrum expressive and convenient to

form a structured hardware-software optimizer.

Figure 1: Hardware Spectrum

From Figure 1, at the bottom of the spectrum, we

find the RFID devices, which is specified by their

small sizes, very low costs and restrictive

computing capabilities. An RFID device can only

run a simple program that is specifically designed

for it. Above the RFIDs are the sensor devices.

These devices are distinguished by their small

sizes, low costs and limited computing abilities.

However, it is powerful enough to execute simple

software with interchangeable capability, i.e. it can

run different types of software sequentially but not

concurrently.

Next, one step above to the middle of the

spectrum, are the microcontrollers. These devices

are notable by their moderate sizes, reasonable

costs and considerable computing capabilities.

They manifest the characteristics of the lower and

higher levels’ devices. The moderate size with

powerful performance ability to run sophisticated

software make them contenders to the computers.

However, due to their unique architectures, they are

able to run several simple programs or one

sophisticated program at the same time. Finally, at

the top of the spectrum, we find the computers.

These devices are well-known for their large size,

high cost and very powerful computing capabilities.

These devices are capable of concurrently

executing several simple and sophisticated

programs.

3.2. Software Analysis Spectrum

The software analysis we conducted previously

[13] re-classifies a wide range of software based on

their types and programming abilities. The results

of this analysis are summarized in the software

spectrum as shown in Figure 2. This spectrum

represents the capabilities, such as the program

sophistication level and the corresponding type of

software that this level supports, such as application

software, system software, and et cetera.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

493

Figure 2: Software Spectrum

This spectrum holds the information about the

software. It is structured vertically to show the

software main types, such as application software,

operating systems and utility software. However, it

is more focused on the software types and abilities,

e.g. an application software that forms a

complicated and sophisticated program and uses to

solve a user’s needs. This ability represents an

important factor to find the corresponding match or

optimum device in the hardware spectrum.

Starting from the bottom of the inverted triangle,

a software at this level is represented by a simple or

primitive logical operations, such as Boolean logic.

It is also formed by application software without an

operating system or other supporting software. An

example of a software at this level is a thermostat in

an air-conditioner or an electric water heater. Such

a software can also be found in low level sensors,

such as motion, light or radiation sensors [31].

Moving up to the next level, a software at this level

is more advanced from the previous level. It is

represented by advanced logical operations, such as

multiple selection, loops and functions. Moreover,

it is formed as an application software running

under an operating system software. Good

examples are the software in home appliances, such

as washing machine and television set [32].

Another good example is the software of sensor

nodes in sensor networks. The sensor’s software

represents the operating system that provides the

basic operations to control the communication

protocols and the internal operations of the sensor

[33, 34]. However, the application software is

usually a standalone software provided by a

user/designer to meet his/her requirements. This

software ranges from simple functions to reactive

software agents to alter the behavior of the sensor

[35-37].

In the next level, the software is more advanced

and powerful represented by a complex algorithm.

It can be a single algorithm that includes a

combination of functions, objects or abstraction of

logic. In this level, a software contains all the

software classification types, such as application,

operating system and utility software. An example

is any software coded to run on single chip devices,

such as Arduino microcontroller or Roseberry Pi

microcomputer [38-40]. Both of these devices come

with internal operating system and supported

software to identify and connect external devices,

such as a printer and a monitor. The software

application is usually a user-defined app, such as

image recognition and editor, robot controller and

programming code editor [41, 42].

Finally, at the top of the inverted triangle, the

software is very powerful, represented by multiple

sophisticated algorithms. It can include a countless

combination of functions, objects and advanced

logical abstraction or artificial intelligence. The

software at this level constitute all the software

classification types, such as application, operating

system and utility software. Examples of software

at this level are computer and mobile applications,

such as graphic editors, movie and video editors,

video players and text editors [43].

3.3. Structured Hardware-Software Optimizer

The combination of these two spectra forms a

structured hardware-software optimizer for the AoT

thing’s design model. This structured optimizer

plays an important role in finding the optimum

combination of the hardware and software to design

an AoT thing. Figure 3 shows the structured

hardware-software optimizer.

The main working principle of the structured

optimizer is centered on the requirement to find the

hardware and software capabilities. Basically, any

thing’s design must start from a basic point, which

is predefined by a user depending on the hardware

and software required by the thing. The hardware

software integration produces the function the thing

must perform in the AoT system. We design the

structured optimizer to determine the software

capabilities as output given the hardware as an

input or vice versa.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

494

Figure 3: The Structured Optimizer for the AoT Model

To clarify this working principle, consider the

structured optimizer of Figure 3. It is formed by

associating two parts represented by the hardware

and software spectra. Each spectrum is divided into

four levels, each represents a category of hardware

and software capability. The hardware part is

divided into four hardware capabilities. First,

powerful category that include hardware devices

such as computers, smart mobile phones and

tablets. Second, considerable category that include

hardware devices such as the cellular mobile

phones and microcontrollers. Third, limited

category that include hardware devices such as

mobile sensor nodes. Finally, we have restrictive

category, which includes hardware devices such as

the basic sensors and RFIDs.

Correspondingly, the software part is similarly

divided into four capabilities. Starting from the

sophisticated capability category which represents

sophisticated software, such as multiple BDI

software agents, real-time systems and dynamic

artificial intelligent programs. Second, the

complicated category that represented by

complicated algorithms, such as reactive software

agents and multiple object-oriented entities. Third,

the advanced category which is represented by

software with complicated logic, such as simple

object-oriented entity or multiple functions

programs. Finally, the primitive category,

represented by limited software capabilities, such as

a simple logic or selection program.

Assume that we are designing a system for which

we know the hardware device (thing) to use but we

want to find the software capabilities that run on the

hardware. Therefore, if the device is from the first

category, then it can execute all the software

programs in the software spectrum. If the device is

from the second category, it can run the

complicated software category and those below it.

If the device is from the third category, then it can

run the software programs from the advanced and

primitive software categories. Finally, if the device

belongs to the fourth category in the hardware

spectrum, then it can run the software programs

from the primitive category only. It is important to

mention, that when a thing’s hardware belongs to

the powerful, considerable or limited category,

there is a few rules that need to be applied to find

the optimum software without wasting hardware or

software resources. These rules are represented by

these questions:

� Does the thing require multiple advance

artificial intelligence or object entities?

� Does the thing require simple artificial

intelligence abilities or object entities?

� Does the thing require using multiple sub-

programs, such as functions and procedures?

Now, let us assume the opposite scenario, in

which we know the essential software functionality

but we need to find the optimum hardware

capability to run the software. From Figure 3, if the

program belongs to the first category in the

software spectrum, then it can be run on the first

hardware category only (restrictive). If the software

belongs to the second category, then it can be run

on the powerful and considerable categories in the

hardware spectrum. However, if the program

belongs to the advanced category, then it can be run

by the limited hardware category and the categories

above it. Finally, if the program belongs to the

fourth category, then it can be run by all the

hardware categories in the hardware spectrum.

When we have a program that can run on multiple

hardware categories, a few rules need to be applied

to find the optimum hardware without wasting any

hardware or software resources. These rules are

represented by the following questions:

� Does the software need to be executed multiple

times with different forms at the same time?

� Does the software need to be executed multiple

times with different forms one at a time?

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

495

� Does the software need to be executed multiple

times with the same form one at a time?

We can explain and clarify the working principle

of these rules in any given scenarios. For an

example, let us assume that we want to design a

system for a road accident monitor (RAM), which

we described in [11]. The system monitors the road

for traffic accidents. When an accident occurs, the

system alerts other vehicles heading towards the

accident area. It then contacts the emergency

services to facilitate the accident situation.

This system consists of two main devices

(things), which is the RAM that monitors the

vehicles and the device in each car. Knowing the

software capability of each device as

“Complicated” (i.e., specifically software agents as

used in the scenario), we trace the corresponding

hardware capability by using the structured

optimizer flowchart, as shown in Figure 4.

Figure 4: The Structured Hardware-Software Optimizer Flowchart

Tracing the flowchart, the first question is

“Looking for Hardware or Software capabilities?”

Moving to the “Hardware” route, the trace meets

the second question “Does the software need to be

executed multiple times with different forms at the

same time?” A “No” route moves the trace to the

next question, “Does the software need to be

executed multiple times with different forms one at

time?” Since a software agent is characterized by

such implementation, the resulting route should be

“Yes”, hence, determining the optimum hardware

capability for our complicated software as

“Considerable”. We then look up the corresponding

hardware specification based on this capability.

The combination of the hardware and software

spectra offers a framework in designing an

optimum thing for the AoT system. The SH-SO

determines a perfect match between a thing’s

hardware and its software capabilities. A near

perfect hardware-software match provides the

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

496

configuration in determining an optimum design for

things that commensurate with a correspondingly

optimum reasoning level to be used in building

AoT systems.

4. SOFTWARE-HARDWARE OPTIMIZER

MODEL

The Software-Hardware Optimizer Model

(SHOM) is the final step to complete a thing’s

design for the AoT concept. It is used to create

optimized things that form the components of AoT

systems. The main purpose of this model is to find

the right hardware specification for a given

software or vice versa. Figure 5 shows the general

illustration and internal components of SHOM.

The SHOM accepts inputs such as hardware and

software specifications and reasoning capabilities

from the outside world, perform internal processes

and procedures on these inputs to produce an output

represented by “optimized things”. The SHOM

internal components are formed from two main

parts, which is the controller and the structured

hardware-software optimizer.

Figure 5: SHOM Illustration and Internal Components

The controller is responsible for all the internal

operation inside the model, such as receiving/

delivering the inputs/outputs, evaluating and

consulting the structured hardware-software

optimizer. On the other hand, the structured

hardware-software optimizer (SH-SO) is

responsible for finding the optimum match for the

inputs to produce outputs.

The internal operation of SHOM starts with the

controller receiving the inputs of hardware or

software and reasoning level. Then, it consults the

SH-SO for the optimum match for the given inputs

(i.e. the SH-SO finds the perfect software match for

a hardware input or finds the perfect hardware

match for a software input). At this point, the SH-

SO returns the result represented by a hardware-

software combination to the controller, which it

evaluates and compares with the reasoning input.

The controller then checks and evaluates if the

hardware-software combination produced by the

SH-SO is powerful enough to handle the reasoning

capability received from the Value-added Service

Analyzer (VaSA). If it is adequate to execute the

suggested reasoning capability, the controller is

considered to have produced an “optimized thing”

as a consequence of the fusion of the reasoning

capability with the hardware-software combination.

However, in case the hardware-software

combination is not adequate to execute the

suggested reasoning capability, then, the controller

returns the hardware-software combination result to

the SH-SO to improve the hardware or software

aspect of the hardware-software combination. Only

the hardware aspect is improved because it is the

only material thing that can be altered or changed.

Finally, when the improved result is returned from

SH-SO the controller, it proceeds with the fusion

process and produce the optimized thing. To clarify

the internal process of SHOM, we use the following

flowchart in Figure 5.

Figure 6: SHOM Operation Flowchart

From Figures 5 and 6, we can see that this model

is flexible enough to produce optimally specified

things for AoT and IoT systems. The model

produces designs of things for IoT systems without

the reasoning capability input, i.e. at the step for

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

497

checking the reasoning capability, “if it can be run

by HW-SW combination?” respond with a Yes and

proceed normally.

5. APPLYING SHOM ON AOT ROAD

ACCIDENT MONITORING (RAM)

SCENARIO

The SHOM model is a very flexible tool that is

able to produce optimized things for AoT systems.

It finds the optimum match for any hardware or

software and add to it the reasoning capability

produced by the Value-added Service Analyzer.

These optimized things are used to build AoT

systems that solve real life issues. An example of

these issues is the previously designed AoT road

accident monitoring scenario [11]. In this scenario

we apply the AoT concept on a traffic system to

monitor the road for any traffic accidents.

In this system, called the Road Accident Monitor

(RAM), when an accident happens, the system

warns other vehicles heading towards the accident

area. It then contacts the emergency services to

facilitate the accident situation. Figure 7 shows the

main topography of this system.

Before we apply the SHOM model on the RAM

system, it is important to notice the topography of

the RAM system. Due to the nature of this system,

it is not designed to cover a vast area, but to cover a

limited area, where the accident rate is high, like

road junctions. On the other hand, when an accident

occurs, the number of vehicles involved in the

accident are usually small. Therefore, there is no

need to use a high range device to perform the

RAM delegated operations.

Figure 7: RAM System Topography

Now, let us apply the SHOM model on this

scenario when we know the hardware capability

and we need to find the optimum software

capability to form the HW-SW combination for the

RAM system. SHOM consults the SH-SO for a

perfect match. The process starts as follow:

Q 1 What is the user input: Hardware/Software?

Ans.: Hardware.

Q 2 What is the hardware capability?

Ans.: Considerable.

Q 3 Does the thing require multiple advance

artificial intelligence or object entities?

Ans.: Skipped.

Q 4 Does the thing require simple artificial

intelligence abilities or object entities?

Ans.: Yes.

Q 5 Does the thing require using multiple sub-

programs, such as functions and procedures?

Ans.: Skipped.

At this level, we have the optimum software

capability result which is “Complicated”. The HW-

SW combination is formed from “Considerable”

hardware and “Complicated” software. Now,

SHOM checks if this HW-SW combination can run

or execute the reasoning capability. If we assume

that the reasoning capability is “Medium”.

Q 6 Does the reasoning capability equal or less

than software capability?

Ans.: Yes, Equal.

The result of applying SHOM on RAM system

produced an optimum thing formed from

Considerable hardware, Complicated software and

Medium reasoning. This optimum thing looks like a

micro-controller programmed with hybrid software

agents, such as rational BDI agent. This is the final

result when we try to find the software capabilities

for RAM system. However, can we get the same

result if we apply SHOM to find the hardware

capabilities for the RAM? The process starts as

follow:

Q 1 What is the user input: Hardware/Software?

Ans.: Software.

Q 2 What is the software ability?

Ans.: Complicated.

Q 3 Does the software need to be executed multiple

times with different forms at the same time?

Ans.: No.

Q 4 Does the software need to be executed multiple

times with different forms one at a time?

Ans.: Yes.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

498

Q 5 Does the software need to be executed multiple

times with the same form one at a time?

Ans.: Skipped.

The result shows that the optimum hardware

capability is “Considerable”, i.e. the HW-SW

combination is formed from “Considerable”

hardware and “Complicated” software. Now,

SHOM check if this HW-SW combination can run

or execute the reasoning capability. If we assume

that the reasoning capability is “Low”.

Q 6 Does the reasoning capability equal or less

than software capability?

Ans.: Yes, Equal.

The result of applying SHOM on the RAM

system produces an optimized thing formed from

Considerable hardware, Complicated software and

Medium reasoning. Therefore, the result after we

reverse the inputs from hardware to software shows

“Considerable” capability, which is the same

hardware capability that we used when we initially

try to find the software ability.

By applying SHOM on the traffic scenario, we

demonstrate that SHOM works well when we try to

find the optimum software or hardware for the

corresponding hardware or software input.

Moreover, it works in this scenario when we use

simple compact device for limited number of

communications. Consequently, it can be used to

find optimum things for IoT system or other real

world systems.

6. DISCUSSION

The AoT is a revolutionary concept in some

aspects. It is an inherently intelligent system due to

the reasoning action performed by software agents

embedded in the things. The generality of the

concept is gained by its ability to be customized

and reshaped to suit any related issues and generate

proper solutions. The central core of this ability is

due to SHOM.

The SHOM is a very effective tool capable of

finding an optimized hardware and software

combination for any system design fused with a

reasoning capability to solve any issues as

demonstrated by the RAM things in a traffic system

scenario. The SHOM model determines the

optimum level of hardware or software given the

corresponding software or hardware input.

Likewise, the model is able to determine the

general category or level of the hardware

computing capability or software representation

capability.

The significance of SHOM is enhanced by the

need for agents embedded in the things to be

endowed with a reasoning ability. Consequently, a

Value-added Service Analyzer is required to

improve agents’ actions in serving other value-

added services to humans. For example, in the

RAM system, the agent in the RAM monitors the

vehicle numbers on the road and if an alert about

insurance state is placed for a particular vehicle

number, the agent responds by informing the

relevant authority.

The limitation in the SHOM model is represented

by two main issues, which is limited hardware and

software specifications and granularity. First, this

model does not illustrate detailed specifications

about the hardware and software found from the

matching process. It is purposely designed to

determine a specific HW/SW level with its

description but without further technical details.

The main reason is due to the HW/SW short life

span. If we specify our model with detailed

HW/SW specifications based on the current

technology, it will be obsolete in a year or less,

which will render our model obsolete too. For

example, the computer specifications that we used

ten years ago, which sits on the top level of the HW

spectrum, is now a specification of a low end

mobile device in the market, which is at the second

level of the HW spectrum. Therefore, we opt to

make SHOM a generic and flexible model that can

be applicable for any era leaving the HW/SW

details to the users’ considerations.

The second issue is represented by the

granularity of the HW/SW spectra levels. The idea

behind this issue is based on how coarse or fine the

levels’ granularity, i.e. the number of the HW/SW

spectra levels that could be conceived. Our studies

of identifying the HW/SW spectra levels are based

of the current technology with which the

corresponding level devices and software are

designed. We could have more HW/SW spectra

levels (not just four of each) if we consider the finer

details of the HW/SW in the studies. In our scope,

the SHOM model limits the optimality of the

working things in the real world. We reckon that

the finer the HW/SW levels, the higher the

optimality of the designed things.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

499

7. CONCLUSION AND FUTURE WORK

In this paper, we introduce a Software-Hardware

Optimizer Model (SHOM), which helps in the

design of optimized things that form the

components of AoT systems. We review the

software and hardware analyses to focus on the

important factors that improve the process of

finding a suitable hardware-software match from

inputs. The combination of these two analyses

produces a structured hardware-software optimizer

(SH-SO) for SHOM. Then, we represent rules in a

flowchart that the SH-SO uses to find the optimum

match for the inputs which results in the HW-SW

combination. SHOM then tests this (HW-SW) for

its ability to run or execute the reasoning capability

to produce “Optimized Things”.

We present a scenario of a traffic system in

which we apply the AoT concept and test the

SHOM to demonstrate its efficiency and capability

to produce the optimized things for the system. The

result shows that the model is able to find the

optimum match for both types of inputs, software

or hardware. Similarly, it is able to be adaptive in

finding the correct match whatever the system

design is, as we notice the differences in the design

of the traffic system example. Finally, we discuss

our findings and how far the model proves its

capability and shed some light on the limitations of

the SHOM model.

For the future work, we shall investigate a Model

of Things that include SHOM and the Value-added

Service Analyzer in one general model. Moreover,

we shall discuss the internal operations, outcome

and the importance of producing an optimum

reasoning capability and the relations between these

combined models. On the other hand, the SHOM

model can be improved by upgrading the structured

hardware-software optimizer and including more

details about hardware and software specifications.

Finally, a practical demonstration of the AoT traffic

system will be established to validate the concept

that uses the RAM and an agent-endowed vehicle.

ACKNOWLEDGEMENT

This work is sponsored by Ministry of Higher

Education (MOHE), Malaysia under the

Fundamental Research Grant Scheme (FRGS).

Under the grant number 20140116FRGS.

REFRENCES:

[1] T. O'reilly, "What is Web 2.0: Design patterns

and business models for the next generation of

software," Communications & strategies, p.

17, 2007.

[2] E. Rahimi, J. van den Berg, and W. Veen,

"Facilitating student-driven constructing of

learning environments using Web 2.0 personal

learning environments," Computers &

Education, Vol. 81, pp. 235-246, 2015.

[3] A. P. Ribeiro, H. Barranha, and R. Pereira,

"Towards the metaphorical transformation of

urban space: Digital Art and the City after

Web 2.0," in 1st International Symposium

Global Cities and Cosmopolitan Dreams,

2015.

[4] T. Berners-Lee, J. Hendler, and O. Lassila,

"The Semantic Web," Scientific American,

Vol. 284, pp. 28-37, 2001.

[5] A. Hogan, P. Hitzler, and K. Janowicz,

"Linked dataset description papers at the

semantic web journal: A critical assessment,"

Semantic Web, Vol. 7, pp. 105-116, 2016.

[6] A. Zaslavsky and D. Georgakopoulos,

"Internet of Things: Challenges and State-of-

the-Art Solutions in Internet-Scale Sensor

Information Management and Mobile

Analytics," in Mobile Data Management

(MDM), 2015 16th IEEE International

Conference on, 2015, pp. 3-6.

[7] R. Glass, "The Impact of Disruptive

Technology: The Internet of Things," 2015.

[8] J. Jermyn, R. P. Jover, I. Murynets, M.

Istomin, and S. Stolfo, "Scalability of

Machine to Machine systems and the Internet

of Things on LTE mobile networks," in World

of Wireless, Mobile and Multimedia Networks

(WoWMoM), 2015 IEEE 16th International

Symposium on a, 2015, pp. 1-9.

[9] L. Tan and N. Wang, "Future Internet: The

Internet of Things," in Advanced Computer

Theory and Engineering (ICACTE), 2010 3rd

International Conference on, 2010, pp. V5-

376-V5-380.

[10] A. M. Mzahm, M. S. Ahmad, and A. Y. Tang,

"Agents of Things (AoT): An intelligent

operational concept of the Internet of Things

(IoT)," in Intelligent Systems Design and

Applications (ISDA), 2013 13th International

Conference on, 2013, pp. 159-164.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

500

[11] A. M. Mzahm, M. S. Ahmad, and A. Y. Tang,

"Enhancing the Internet of Things (IoT) via

the Concept of Agent of Things (AoT),"

Journal of Network and Innovative

Computing, vol. 2, pp. 101-110, 2014.

[12] A. M. Mzahm, M. S. Ahmad, and A. Y. Tang,

"Computing hardware analysis for Agents of

Things (AoT) applications," in Information

Technology and Multimedia (ICIMU), 2014

International Conference on, 2014, pp. 223-

228.

[13] A. M. Mzahm, M. S. Ahmad, A. Y. Tang, and

A. Ahmad, "Software Analysis for Agents of

Things (AoT) Applications," 2015.

[14] A. M. Mzahm, M. S. Ahmad, A. Y. Tang, and

A. Ahmad, "Towards a Design Model for

Things in Agents of Things," in Proceedings

of the International Conference on Internet of

things and Cloud Computing, 2016, p. 41.

[15] J. Bughin, M. Chui, and J. Manyika, "An

executive’s guide to the Internet of Things,"

McKinsey Quarterly, McKinsey&Company,

2015.

[16] M. Parashar, M. Abdelbaky, M. Zou, A. R.

Zamani, and J. Diaz-Montes, "Realizing the

Potential of IoT Using Software-Defined

Ecosystems," in 2015 IEEE 8th International

Conference on Cloud Computing, 2015, pp.

1149-1158.

[17] A. Hakiri, P. Berthou, A. Gokhale, and S.

Abdellatif, "Publish/subscribe-enabled

software defined networking for efficient and

scalable IoT communications," IEEE

Communications Magazine, Vol. 53, pp. 48-

54, 2015.

[18] W. Ramirez, V. B. C. Souza, E. Marin-

Tordera, and S. Sanchez, "Exploring potential

implementations of PCE in IoT world,"

Optical Switching and Networking, 2015.

[19] L. Atzori, A. Iera, and G. Morabito, "Social

Internet of Things: Turning Smart Objects into

Social Objects to Boost the IoT," Newsletter,

vol. 2016, 2016.

[20] B. Tabbara, A. Tabbara, and A. Sangiovanni-

Vincentelli, "Hardware and software

representation, optimization, and co-synthesis

for embedded systems," a:= a, Vol. 1, p. S2,

2000.

[21] J. W. Tang, Y. W. Hau, and M. Marsono,

"Hardware/software partitioning of embedded

System-on-Chip applications," in Very Large

Scale Integration (VLSI-SoC), 2015

IFIP/IEEE International Conference on, 2015,

pp. 331-336.

[22] M. Kolasa and R. Dlugosz, "An advanced

software model for optimization of self-

organizing neural networks oriented on

implementation in hardware," in Mixed

Design of Integrated Circuits & Systems

(MIXDES), 2015 22nd International

Conference, 2015, pp. 266-271.

[23] R. Lysecky and F. Vahid, "A configurable

logic architecture for dynamic

hardware/software partitioning," in Design,

Automation and Test in Europe Conference

and Exhibition, 2004. Proceedings, 2004, pp.

480-485.

[24] L. Yu, L. Xuemei, Z. Jian, and X. Yuning,

"Research on the innovation of strategic

business model in green agricultural products

based on Internet of things (IOT)," in e-

Business and Information System Security

(EBISS), 2010 2nd International Conference

on, 2010, pp. 1-3.

[25] X. Jia, J. Wang, and Q. He, "IoT business

models and extended technical requirements,"

in IET International Conference on

Communication Technology and Application

(ICCTA 2011), 2011, pp. 622-625.

[26] H. Zhang and C. Meng, "A multi-dimensional

ontology-based IoT resource model," in

Software Engineering and Service Science

(ICSESS), 2014 5th IEEE International

Conference on, 2014, pp. 124-127.

[27] H. Zuerner, "The Internet of Things as

greenfield model: A categorization attempt for

labeling smart devices," in Internet of Things

(WF-IoT), 2014 IEEE World Forum on, 2014,

pp. 5-9.

[28] S. F. Abedin, M. Alam, G. Rabiul, R. Haw,

and C. S. Hong, "A system model for energy

efficient green-IoT network," in Information

Networking (ICOIN), 2015 International

Conference on, 2015, pp. 177-182.

[29] B. Kang, S. Park, T. Lee, and S. Park, "IoT-

based monitoring system using tri-level

context making model for smart home

services," in Consumer Electronics (ICCE),

2015 IEEE International Conference on,

2015, pp. 198-199.

[30] S. Poslad, S. Middleton, F. Chaves-

Salamanca, R. Tao, O. Necmioglu, and U.

Bugel, "A Semantic IoT Early Warning

System for Natural Environment Crisis

Management," 2015.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

501

[31] L. Ciabattoni, G. Cimini, F. Ferracuti, and G.

Ippoliti, "Humidex based multi room thermal

comfort regulation via fuzzy logic," in

Consumer Electronics (ISCE), 2015 IEEE

International Symposium on, 2015, pp. 1-2.

[32] D. M. Berry, "The Philosophy of Software:

Code and Mediation in the Digital Age,"

2011.

[33] X.-m. Cao, "The Research on Wireless Sensor

Network for Mechanical Vibration

Monitoring," in 2015 International

Conference on Intelligent Systems Research

and Mechatronics Engineering, 2015.

[34] M. Tancreti, V. Sundaram, S. Bagchi, and P.

Eugster, "TARDIS: software-only system-

level record and replay in wireless sensor

networks," in Proceedings of the 14th

International Conference on Information

Processing in Sensor Networks, 2015, pp.

286-297.

[35] K. Kim and H. Myung, "Sensor Node for

Remote Monitoring of Waterborne Disease-

Causing Bacteria," Sensors, Vol. 15, pp.

10569-10579, 2015.

[36] A. R. Deshmukh, R. R. Sonawane, A. S.

Shedwad, P. D. Humane, and R. Satao, "Fast

Detection of Replica Node in Mobile Sensor

Network," 2015.

[37] L. Gao, H. Yin, Y. Wei, and L. Wang, "Data

Collection Methods Based on Mobile Sink

Node," in 2015 International Conference on

Advances in Mechanical Engineering and

Industrial Informatics, 2015.

[38] A. K. Dennis, Raspberry Pi Home Automation

with Arduino: Packt Publishing, 2013.

[39] N. Agrawal and S. Singhal, "Smart drip

irrigation system using raspberry pi and

arduino," in Computing, Communication &

Automation (ICCCA), 2015 International

Conference on, 2015, pp. 928-932.

[40] A. K. Dennis, Raspberry Pi home automation

with Arduino: Packt Publishing Ltd, 2015.

[41] P. Teja, V. Kushal, and K. Srinivasan,

"Photosensitive security system for theft

detection and control using GSM technology,"

in Signal Processing And Communication

Engineering Systems (SPACES), 2015

International Conference on, 2015, pp. 122-

125.

[42] K. Propp, A. Fotouhi, and D. J. Auger, "Low-

cost programmable battery dischargers and

application in battery model identification," in

Computer Science and Electronic Engineering

Conference (CEEC), 2015 7th, 2015, pp. 225-

230.

[43] G. B. Shelly and M. E. Vermaat, "Discovering

Computers-Fundamentals 2011 Edition,"

2010.

