
Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

353

SOLVING A PROBLEM OF RESOURCE-INTENSIVE

MODELING OF DECODERS ON MASSIVELY PARALLEL

COMPUTING DEVICES BASED ON VITERBI ALGORITHM

ALEXEY VIKTOROVICH BASHKIROV, ALEXANDER VASILIEVICH MURATOV,

OLEG YURIEVICH MAKAROV, VASILY IVANOVICH BORISOV,

KSENIA NIKOLAEVNA LAPSHINA

Voronezh State Technical University,

Moscow Avenue, 14, Voronezh, 394066, Voronezh region, Russia

ABSTRACT

In this paper, we consider the problem of resource-intensive simulation of coding/decoding which corrects

errors made at the preliminary stages of modern telecommunication system development. We propose to

use the technology of parallel computing on GPU (GPGPU) to solve the problem of the process

acceleration. We discuss the aspects of encoding/decoding simulation, which corrects errors in

heterogeneous systems. The results of this technology applying in the convolutional codec parameters

simulation, decoded by Viterbi algorithm, are given as well. Another problem concerned with limitation of

the interaction speed with the computing device tail part and a random access to memory is also considered.

We propose a solution by communication minimization at host-computing device level, as well as the use

of caching. The simulation tools are described in the paper, including the use of computing technique of

general purpose on GPU allowing to reduce the time required to optimize the noiseless coding system and

thus for the development and implementation of telecommunication devices. We describe the solutions of

tasks on codecs characteristics research using massively parallel computing, differing by simplified

initialization of flow pseudorandom-number generator (PRNG) ensuring high performance with sufficient

accuracy of calculations by reducing the number of calls to an external status register.

Keywords: Parallel Computing, Viterbi Algorithm, Noiseless Coding, GPU Of The Opencl Standard,

Communication Channels, Heterogeneous System.

1. INTRODUCTION

1.1 Introduce the problem

Continuously growing requirements to devices

for processing, receiving and transmission of

digital information cause the necessity of

involving significant resources, primarily

intellectual, to solve the problem of improving

efficiency of means, specific algorithms and

methods which implement technologies of data

processing, transmission and receiving in such

devices. One of the fastest growing ways to solve

this problem is the coding theory, the noiseless

coding in particular.

At the preliminary stages of development of

telecommunication systems, containing the

noiseless coding modules as inadvertent error

correction means in communication channels, the

optimization of these modules was an essential

step. There is a promising way to reduce time

given for this stage – to use the untapped

resources of heterogeneous computing systems,

in particular – the computing power of GPUs

(Graphics Processing Unit) [1-3]. In case of

sufficient parallelism of implemented

calculations using GPGPU technology (General-

Purpose computing on Graphics Processing

Units) [4], it is possible to achieve a significant

time saving compared to the same calculations,

produced in series on CPU (central processing

unit). The paper presents the results of this

technology implementation by using an open

OpenCL (Open Computing Language) standard

[5] for simulation of classical convolutional

encoder with Viterbi decoding.

The computing on GPU is actively developed

due to promising results and their relevance, in

particular by graphic card developers, providing

users the means of access to internal resources of

cards, tools for developing software to run on

GPUs. AMD and Nvidia are definitely the

leaders in the field of software implementation of

GPGPU technology and their products OpenCL

(Open Computing Language) and CUDA

(Compute Unified Device Architecture)

respectively. The leading position in terms of

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

354

performance and stability takes the CUDA

technology from Nvidia, but the hardware and

software architecture is limited to using only the

Nvidia hardware solutions. Using CUDA leads

to the lack of hardware independence, and under

current conditions it is quite an important factor,

forcing to refuse from using this technology in

favor of its competitor from AMD – OpenCL.

OpenCL is a completely open standard

implementation of GPGPU technology,

providing implementation of cross-platform

(hardware-independent) applications executed in

heterogeneous systems.

This task is relevant due to the fact that the

means of noiseless coding are widely introduced

all over the world allowing to move to new data

transmission standards, to reduce the number of

receiving and transmitting stations, to reduce

transmitter power, to reduce the harmful effects

of electromagnetic radiation on human, to

improve the reliability of data transmission, and

to increase data transfer speed.

The traditional approach to the noiseless

coding does not allow to detect adequately,

correct errors and to achieve the required level of

energy efficiency; it does not fully utilize the

hardware capabilities of data transmission

systems.

Thus, the problem of organization of parallel

computing in heterogeneous systems and the

development of appropriate tools for decoder

performance simulation based on the Viterbi

algorithm to reduce their design time requires

further research.

The problem of the parallel PRN generation

today is a relevant objective and is actively being

worked on [9-12]. Let us briefly consider

methods of generating parallel flows of PRN.

Viterbi algorithm is the most efficient among

the decoding algorithms based on the lattice

diagram, since it allows to get the most realistic

(MR) estimation of the transmitted code word.

Standard decoder implementing Viterbi

algorithm does not allow achieving the required

reliability and quality, and noise immunity.

The techniques described herein and

simulation tools imply the use of general-purpose

computing on GPU and will allow reducing the

time required to optimize the error-correcting

coding system and thus reduce the time for the

development and implementation of

telecommunication devices.

2. METHOD

2.1 Computing performance in heterogeneous

systems

One of the ways to solve the problem of

reducing the time costs for the simulation

process is the use of unused resources of

heterogeneous computers during the calculations:

in addition to the CPU resources (central

processing unit), the computing resources of

GPU (graphics processing unit). With the

sufficient parallelizability of simulation

algorithms, GPU computing is less costly in

terms of time resources [3].

In [3], the problem of communication

interactions of the host-computing device level

was considered. In this paper, we consider the

second fundamental problem – the problem of

random access to memory and a high-latency of

a global memory.

GPUs are theoretically far ahead of CPUs in

terms of performance, but in order to "load" GPU

to its highest level of performance, tasks must

run in parallel in the number of computing flows,

commensurately or greater than the number of

streaming processors GPU. The number of

stream processors in modern graphics cards is up

to several thousand, so the task of providing the

sufficient usage of GPU during calculations can

be quite complicated, and the main "bottleneck",

the diameter of which limits the performance, is

typically a need to communicate with the main

calculator of a heterogeneous system. Let us

consider in details the architecture of

heterogeneous computing systems in the context

of the chosen development environment and the

given task. The architecture of heterogeneous

system is shown in Figure 1 from the point of

view of OpenCL standard [6].

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

355

Figure 1. Architecture Of Heterogeneous Systems: 1 – Host; 2 – Computing Device; 3 – Computing Unit; 4 –

Processing Element

This architecture assumes that there is one or

more OpenCL devices connected to the host part

(Host, receiving guests) – a device providing

access services to a number of OpenCL devices,

divided into several computing units with a

number of processing elements. Calculations are

made on the device processing elements.

Commands of OpenCL application are addressed

by the host to run on the processor elements

inside the device. The processor elements run a

single flow as SIMD (Single Instruction,

Multiple Data) and SPMD (Single Program,

Multiple Data) instructions.

Thus, a significant problem of GPU

computing use is a set of constraints associated

with the low bandwidth of the host-computing

device connecting bus. This is a PCI bus for the

graphics card (Peripheral Component

Interconnect). For example, for a card used for

the simulation in this paper, PCI Express 2.1 bus

has a 5 Gb/s limit of maximum speed in one line

[7-8].

The problem of PRN parallel generation is still

a relevant one for today and it is actively being

worked on [9-12]. Let us briefly consider

methods of parallel flow generation of PRN.

As suggested in [3], the consistent PRNG

(PRN generator) can be used for the parallel

pseudorandom number flows generation. In

applications with parallel numerical methods of

statistical simulation – Monte-Carlo, additional

requirements are to be met by a perfect

generator, suitable for the designing of parallel

PRNG:

1) scalability of generation flows,

sufficient to generate the desired

number of flows;

2) locality of generated flows, allowing

to obtain the PRN sequences with no

need for interaction with other flows;

3) mutual independence of sequences

generated by different flows.

The main methods of obtaining parallel PRN

flows are, in accordance with [9, 13-14]:

1.Random selection of initialization values

(Random seeding).

Each flow uses the same PRNG, and different

initialization values are used for different flows.

This method is applicable in case of no strict

requirements for flows correlation.

2.Parameterization.

Each flow uses the same type of PRNG, with

different sets of parameters for the selected

flows. The example is the use of different

increments c or factors a for linear congruence

method Xn = (aXn -1 + c) mod m, where X0 is

value initializing the generator state.

The method also does not guarantee the

absence of correlation flows, in addition, the

number of generated flows is restricted with the

set of variable parameters, i.e. scalability is not

guaranteed.

1.Block Splitting.

The output sequence of generator r is divided

into blocks of M length (Figure 2) [15], where M

is biggest number needed for solving tasks of

PRNG implementations.

To use the method these options are required:

a) Possibility to estimate in advance the

top value of M;

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

356

b) Presence of an effective method for

skipping values blocks by PRNG.

The result of this method depends on the

existence of correlation between elements of

sequence at M spaces.

2.Leapfrog.

Flows use one generator, at that each of the

flows performs skipping p-1 implementations of

PRNG, where p is the required number of flows

(Figure 2).

Figure 2. Parallelization With "Leapfrog" Method

The "leapfrog" parallelization method is

reliable enough, before computing it is not

required to estimate the amount of PRNG

implementations needed to complete the task;

however, it requires an efficient algorithm of

generator skipping of a predetermined number of

values.

The effect of flows correlation generated by

PRN is not so great during the simulation of

noiseless coding of low-density, in contrast to,

for example, cryptography applications, so the

parameterization and random initialization were

chosen to parallelize PRNG.

Figure 3 Parallelization With Block Splitting

Random access to the memory of the graphics

accelerator and the high latency of its global

sections have a significant impact on

heterogeneous computing performance. Let us

address the memory model, provided by OpenCL

standard in this issue (Figure 4) [4].

The standard provides for the following types of

memory:

1) global:

• reading and writing;

• low-speed access;

2) constant:

• access from all the processing elements

(PE) to reading;

3) local:

• reading and writing one group to all PE

(computing unit);

• high-speed access;

4) private:

• allocated by the compiler;

• reading and writing exclusively within PE;

• high-speed access;

t0,i

t1,i

t2,i

ri

t0,i

t1,i

t2,i

ri

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

357

Figure 4. The Memory In Accordance With The Opencl Standard

According to this model, the main problems

are:

Access to global memory itself, due to the fact

it is conjugate with high latency and low speed;

Problems of random access to memory –

delays during simultaneous multiple access of

PEs to memory cells (collision) (Figure 5);

Figure 5. Conflicts Of Access To Memory: A) Conflict-Free Access; B) Collision

• problems of access synchronization within

the computing device in terms of inability to

access the memory of another computer unit.

Thus, when working with memory, the main

principles are as follows:

• first minimize calls to slow global

memory and second – to the local

memory;

• use caching – copy commonly used

slow memory units to a faster memory.

In papers [16-17], the caching procedure is

used. The benefits of using caching procedures

for some variables are shown on the diagram of

Figure 6.

PE

Memory

PE

Memory

PE

Memory

Conflicts: 0 1 0 0 1

a) b)

Calculation unit

∙∙∙

Calculation unit 1

∙∙∙

Private

memory1

PE 1

Private

memoryM

PE M

Local
memory 1

Calculation unit N
Private

memory1

PE 1

Private

memory M

PE M

Local
memory N

Global/constant memory and a data cache

Memory calculation unit

Global memory

Constant memory

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

358

Figure 6. The Gain From The Using Caching Procedures

In Figure 6, Tcashe is the decoding time with the

use of caching procedures and Tnot cache is the

decoding time without caching procedures.

Decoding was produced in 10 iterations and

3,408 simulations per one value of SNR (10

values of SNR were simulated: from 0.1 to 2.5

with the resolution of 0.25 dB). Graphics

accelerator Radeon HD 5770 was used as a

computing device (800 stream processors, 850

MHz).

2.2. Modified algorithm of parallel calculation

performing

The code performed during the calculations on

the GPU corresponds to counting of path metrics,

selection of these survivors and updating array of

metrics for the current and the previous steps

[18-20]. To enable running in parallel with the

necessary calculations, the operation algorithm is

modified as follows:

Legend:

l – length of code constraint;

M0 [2
l-1

] – the array for storing the metrics of

surviving paths calculated at the previous step;

M1 [2
l-1

] – the array of calculated metrics;

P [n ∙ 2
l-1

] – the array storing the number of the

previous states of the survivor path state;

i – number of processing element (kernel in

OpenCL terminology);

m0 is a metric value, provided that for the

previous state of i (or i - 2
l -2

, if i ≥ 2
l - 2

) there

was a state i ∙ 2 ((i - 2
l - 2

) ∙ 2);

m1 is a metric value, provided that the

previous state of i or i - 2l – 2, there was a state i

∙ 2 + 1 ((i - 2
l - 2

) ∙ 2 + 1);

t – a number of flow metrics counting step.

Each processing element:

1. Calculates M1 [i],

- In case of i < 2
l-2

, equal to a bigger of the

values M0 [i ∙ 2] + m0 and M0 [i ∙ 2 + 1] + m1;

i ∙ 2 is written in P [t] if M0 [i ∙ 2] + m0> M0 [i ∙

2 + 1] + m1 and i ∙ 2 + 1 otherwise.

- In case of i ≥ 2
l-2

, according to the larger

value of M0 [(i - 2
l-2

) ∙ 2] + m0 and M0 [(i - 2
l-2

) ∙

2 + 1] + m1;

i ∙ 2 is written in P [t] if M0 [(i - 2
l-2

) ∙ 2] + m0

> M0 [(i - 2l - 2) ∙ 2 + 1] + m1 and i ∙ 2 + 1

otherwise case.

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

359

2. Sets of metrics are updated:

- on the first step of metrics calculation – M0

[i] = M1 [i] = -∞, M0 [0] = 0;

- In other cases – M0 [i] = M1 [i], M1 [i] = -∞.

This solution is justified by the structure of the

convolutional encoder trellis diagram. For

example, according to the diagram of a

convolutional code with a constraint equal to

“4”, as shown in Figure 7, it is obvious that at

step t of metrics calculation, states i ∙ 2 and i ∙ 2 +

1, 0 ≤ i <2
l - 2

on the trellis diagram are the

previous ones to states 0 ≤ i <2
l-2

, if at step t – 1,

“0” was a new information bit, and they are the

previous ones to states 2
l - 2

≤ i <2
l - 1

, if “1” was a

new information bit at step t – 1.

Figure 7. The Trellis Diagram Of A Convolutional Code With A Constraint Equal To “4” For Three Steps Of Counting

Metrics

This fact was used for the parallelization of

metrics calculation algorithm. Abbreviated code

implementing the algorithm was adapted in

accordance with the requirements of OpenCL

and it is shown below (left – shortened code

implementing the algorithm in sequence on the

CPU, right – parallel version for computing on

GPU):

1. Counting metrics (Kernel No. 1).

 for(int i=0;i <NoS;i++)
 {

if (M0[i]>-DBL_MAX)
 {
 double m0=0;
 double m1=0;
 for(int
t=0;t<R;t++)
 {
m0+=trfrm((rules[i][0]>>(R-1-
t))&1)*rx[k*R+t];

//k1 = D/R;
uint i = get_global_id(0);
if (i<NoS)
{
if (i<NoS/2)
{
if ((M0[i*2]>- FLT_MAX)||(M0[i*2+1]>-
FLT_MAX))
 {
 float m0_0=0;
 float m0_1=0;
 for(int t=0;t<R;t++)
 {
m0_0+=trfrm((rules0[i*2]>>(R-1-
t))&1)*rx[R*k+t];

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

1 2 3

…

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

360

m1+=trfrm((rules[i][1]>>(R-1-
t))&1)*rx[k*R+t];
 }
 if (M1[i/2]<M0[i]+m0)
 {
 M1[i/2]=M0[i]+m0;
 prev[i/2][k]=i;
 }

 if (M1[i/2+NoS/2]<M0[i]+m1)

 {

 M1[i/2+NoS/2]=M0[i]+m1;

 prev[i/2+NoS/2][k]=i;
 }

 }
 }

m0_1+=trfrm((rules0[i*2+1]>>(R-1-
t))&1)*rx[R*k+t];
 }
 if
((M0[i*2]+m0_0)>(M0[i*2+1]+m0_1))
 {
 M1[i]=M0[i*2]+m0_0;
 prev[i*k1+k]=i*2;
 }
 else
 {
 M1[i]=M0[i*2+1]+m0_1;
 prev[i*k1+k]=i*2+1;
 }
 }
}
else
{
 if ((M0[(i-NoS/2)*2]>-FLT_MAX)||
 (M0[(i- NoS/2)*2+1]>-FLT_MAX))
 {
 float m1_0=0;
 float m1_1=0;
 for(int t=0;t<R;t++)
 {
m1_0+=trfrm((rules1[(i-NoS/2)*2]>>
 (R-1-t))&1)*rx[R*k+t];
m1_1+=trfrm((rules1[(i-NoS/2)*2+1]>>
 (R-1-t))&1)*rx[R*k+t];
 }
if ((M0[(i-NoS/2)*2]+m1_0)>
(M0[(i-NoS/2)*2+1]+m1_1))
 {
 M1[i]=M0[(i-
NoS/2)*2]+m1_0;
 prev[i*k1+k]=(i-NoS/2)*2;
 }
 else
 {
 M1[i]=M0[(i-
NoS/2)*2+1]+m1_1;
 prev[i*k1+k]=(i-
NoS/2)*2+1;
 }
 }
}
}
}

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

361

2. Updating arrays of metrics (Kernel No. 2).

1. Counting metrics with synchronization (Kernel No. 3).

3. RESULTS

In the provided short listing on the right – the

code, that runs separately by GPU 2
l-1

 cores [21-

23]. Code get_global_id(0) provides the

identification of kernel executing the code

instance. Thus, in the pseudo code to the left,

cycles for (int i=0; i < NoS; i++),

where NoS = 2
l-1

 run parallel on GPU. The

number of running flows Thg (globalThreads)

and the size of a working group Thl

(localThreads) for running on the GPU 2
l-1

instances of code are defined by the expression:

()[]
,

.2,2

;,mod22,2
1

max

1
maxmax

1

max

1

max

1





==≤
=−+=>

−−

−−−

l

lgl

l
lll

l

l

l

gl

l

ThThTh

ThThThThThTh

 (1)

where Thlmax is the maximum size of a one-

dimensional local workgroup

(CL_KERNEL_WORK_GROUP_SIZE).

 for(int i=0;i<NoS;i++)
 {

 M0[i]=M1[i];
 M1[i]=-DBL_MAX;
 }

uint i = get_global_id(0);
if (i<NoS)
{
if(k==k1-1) {
 M0[i]=-FLT_MAX;
 if (i==0) {M0[0]=0;}
 }
else M0[i]=M1[i];
M1[i]=-FLT_MAX;
}

 for(int i=0;i<NoS;i++)
 {
 M0[i]=M1[i]=-DBL_MAX;
 for(int k=0;k<D/R;k++)
 prev[i][k]=-1;
 }
 M0[0]=0;
 for(int k=0;k<size/R;k++)
 {
 for(int i=0;i<NoS;i++)
 {

if (M0[i]>-DBL_MAX)
 {. . . }
 }
 for(int i=0;i<NoS;i++)
 {
 M0[i]=M1[i];
 M1[i]=-DBL_MAX;
 }
 }

//k1 = D/R;
uint i = get_global_id(0);
if (i<NoS)
for(int k=0;k<k1;k++)
{
if(k==0) {
 M0[i]=M1[i]=-FLT_MAX;
 if (i==0) { M0[0]=0; }
 }

if (i<NoS/2)
{. . . }
else
{. . .}

barrier(CLK_GLOBAL_MEM_FENCE);

M0[i]=M1[i];
M1[i]=-FLT_MAX;
}

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

362

If the 2
l-1

 ≤ Thlmax, is performed only by

Kernel No. 3, or sequentially for D/R times in

one after another Kernel No. 1 and Kernel No. 2,

starting from Kernel No. 1 are performed, where

D is the length of decoded packet and R is a

value of inverse code rate.

In these modes, calculations were performed

on a AMD Radeon HD 5770 graphic card (800

flow processors with a frequency of 850 MHz),

AMD Radeon HD 4650 (320 flow processors

with a frequency of 600 MHz) and CPU – Intel

Core 2 Duo E8400 in single-flow mode with a

frequency of 3.6 GHz. The simulation was

performed at 100 iterations of coding, decoding

and noise pollution of packet with the length of

1024 bit, with the noise level of 1; 1.5; 2; 2.5 dB

with the code rate of 0.5. Diagrams of time

dependency on the number of states during the

simulation and the constraint length are shown in

Figure 8 a) and b).

a)

b)

Figure 8. Simulation Of Noiseless Convolutional Coding System With Viterbi Decoding: A) Dependence Of The

Computing Time On The Number Of Encoder States; B) Dependence Of Computing Time On The Constraint Length

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

363

Applying this model we managed to reduce

the payment execution time. Figure 9 shows the

time benefit of applying the parallelization

scheme described above, depending on the code

length.

4. DISCUSSION

Curves on Figure 9: E8400 – corresponds to

the time required for modeling sequential

computing on CPU Intel Core 2 Duo E8400;

5770 – costs of simulation using parallel

computing on GPU Radeon HD 5770; 4650 – on

the GPU Radeon HD 4650 respectively. For

GPU Radeon HD 5770, time gain compared to

the CPU E8400 becomes apparent at 2
l-1

= 128;

for the Radeon HD 4650 – at 2
l-1

= 512. For

clarity, Figure 8 shows the dependency graphs of

the time ratio of calculation performing with the

calculations of the CPU to the GPU on the

number of convolutional encoder states.

Figure 9. Relative Time Gain Of Gpu Computing

The dip in the curve "E8400/5770" at the point

corresponding to the value of the 2
l-1

= 512 is

associated with the size limitations of "working

group" during the calculations on Radeon HD 5770.

The driver of graphic card limits the size of the

value to 256. At 2
l-1

≤ 256 kernel No. 3 runs,

corresponding to the algorithm with

synchronization of the local group, which provides

the possibility to perform metrics calculation of the

paths for each step of initializing kernel only at the

first step and provides the possibility to update sets

of metrics at the time of guaranteed completion of

the metrics counting within a single kernel,

resulting in reduced communication costs of host-

kernel levels.

Thus, for small length values (N=96), the time

gain is 80% and decreases to 60% at N=204, and

41% when N=273. Then there is a stable site with

an average gain value of 21%, when the code length

is in range from N=504 to 3000.

The scope of this method is limited by the

condition Q < Maxsim. It should be noted that

basically this method can be implemented in

heterogeneous systems with multiprocessor CPU,

based with the full load of all CPU cores.

5. CONCLUSION

Thus, the main problems of noiseless codec

simulation in heterogeneous systems are problems

of low bandwidth of connecting bus of host-

computing device, the problem of random access to

memory and high-latency of global memory. As

part of the solution of the first problem, it is

proposed to follow the principles of minimizing the

levels of host-computing device communications,

and as for the problem of access to memory – to

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

364

follow the principles of minimizing costly accesses

to slower memory and applying caching

procedures.

The effect of a low flow capacity of a global and

local memory of GPU on computing performance

of automated simulation tools of decoders can be

reduced by the use of developed computational

schemes by minimizing request to these memory

sections and applying caching procedures.

Experimentally estimated computing performance

increase for code length of 96... 9972 comprises

11% on average.

The problem of reducing the computing

performance as the result of interactions of two

communication levels of CPU-GPU. To limit

communication interactions, the model of noise

source should be implemented at the level of

processing elements of GPU. The use of the

developed simulation method of the noise source

provides sufficient accuracy of the results and the

increase in computing performance by reducing the

number of requests to an external status register of

the pseudorandom number generator.

Experimentally estimated computing performance

increase reaches 30%. The results of the conducted

research can be applied for decoder simulation used

in the wireless, interference-proof networks, such as

WLAN, WPAN, WMAN.

The results of GPGPU technology application

give reason to believe this approach to be promising

to solve the problem of reducing the time spent on

resource-intensive simulations of error-correcting

codec characteristics even in the case of classical

convolutional codes decoded by Viterbi algorithm.

REFERENCES:

[1] Bashkirov, A.V., Klimov, A.I., Muratov,

A.V., Naumenko, Yu.S., & Tsymbalyuk, V.S.

(2013). Perspektivy modelirovaniya

parametrov algoritmov pomekhoustoychivogo

kodirovaniya s vysokoy stepen'yu

parallelizma pri pomoshchi apparatnoy

platformy na baze GPU [Outlooks for

Simulation of Parameters of Noiseless Coding

Algorithms with a High Degree of Parallelism

with the Help of Hardware Platform Based on

GPU]. Radiotekhnika, 12, 26-29.

[2] Naumenko, Yu.S. (2014). Problemy

modelirovaniya pomekhoustoychivykh

kodekov v geterogennykh sistemakh

[Problems of Noiseless Codecs Simulation in

Heterogeneous Systems]. Radiotekhnika, 3,

80-82.

[3] Naumenko, Yu.S. (2014). Massivnye

parallel'nye vychisleniya v geterogennykh

sistemakh pri modelirovanii nizkoplotnosnykh

kodekov [Massive Parallel Computations in

Heterogeneous Systems during Simulation of

Low-Density Codecs]. Radiotekhnika, 6, 43-

46.

[4] Boreskov, A.V., & Kharlamov, A.A. (2010).

Osnovy raboty s tekhnologiey CUDA [Basic

Operation with CUDA Technology]. Moscow:

DMK Press.

[5] Khronos OpenCL Working Group. (2013,

November 14). The OpenCL Specification.

Version: 2.0. Document Revision: 19.

[6] Zhmurov, A.A., Varsegov, V.A., Trifonov,

S.V., Kholodov, Ya.A., & Kholodov, A.S.

(2011). Effektivnye generatory

psevdosluchaynykh chisel pri molekulyarnom

modelirovanii na videokartakh [Effective

Pseudorandom Number Generators for

Molecular Simulation on Graphic Cards].

Komp'yuternye issledovaniya i modelirovanie,

3(3), 287-308.

[7] Bauke, H., & Mertens, S. (2007). Random

Numbers for Large Scale Distributed Monte

Carlo Simulations. Physical Review E, 75(6).

[8] Manssen, M., Weigel, M., & Hartmann, A.

(2012). Random Number Generators for

Massively Parallel Simulations on GPU. Eur.

Phys. J. Special Topics, 210(1), 53-71.

[9] Giles, M. (2011). Approximating the Erfinv

Function. In W.W. Hwu (Ed.), GPU

Computing Gems (Vol. 2) (pp. 109-116).

Burlington: Morgan Kaufman.

[10] Bradley, T., Toit, J., Giles, M., Tong, R., &

Woodhams, P. (2010). Parallelisation

Techniques for Random Number Generators.

In W.W. Hwu (Ed.), GPU Computing Gems

(Vol. 1). Morgan Kaufmann.

[11] Blahut, R. (1986). Teoriya i praktika kodov,

kontroliruyushchikh oshibki [Theory and

Practice of Error Control Codes] (I.I.

Grushko, & V.M. Blinovskiy, Trans.).

Moscow: Mir.

[12] Bauke, H. (2014, August 5). Tina’s Random

Number Generator Library. Version 4.17.

Retrieved August 1, 2016, from

http://numbercrunch.de/trng/.

[13] Blahut, R. (1989). Bystrye algoritmy tsifrovoy

obrabotki signalov [Fast Algorithms for

Digital Signal Processing] (Trans. from

English). Moscow: Mir.

[14] Barash, L.Yu., & Schur, L.N. (2013). O

generatsii parallel'nykh potokov

Journal of Theoretical and Applied Information Technology
 31

st
 December 2016. Vol.94. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

365

psevdosluchaynykh chisel [About Generation

of Parallel Flows of Pseudorandom Numbers].

Programmnaya inzheneriya, 1, 24-32.

[15] Falcao, G., Sousa, L., & Silva, V. (2009).

How GPUs Can Outperform ASICs for Fast

LDPC Decoding. In ICS '09: Proceedings of

the 23rd international conference on

Supercomputing (pp. 390-399). New York:

ACM.

[16] Bykov, V.V. (1971). Tsifrovoe modelirovanie

v statisticheskoy radiotekhnike [Digital

Simulations in Statistical Radio]. Moscow:

Sovetskoe radio.

[17] Komashinskiy, V.I., & Maksimov, A.V.

(2007). Sistemy podvizhnoy radiosvyazi s

paketnoy peredachey informatsii. Osnovy

modelirovaniya [Mobile Radio Systems with

Packet Data Transmission. Basics of

modeling]. Moscow: Goryachaya liniya –

Telekom.

[18] Savinkov, A.Yu. (2006). Avtomatizatsiya

proektirovaniya sistem tsifrovoy obrabotki

signala na osnove integrirovannoy sredy

imitatsionnogo modelirovaniya i optimizatsii:

Dis. d-ra tekhn. nauk [Computer-Aided

Design of Digital Signal Processing Systems

Based on Integrated Environment Simulation

and Optimization (Doctoral Thesis in

Technical Sciences)]. Voronezh.

[19] Tikhonov, V.I., & Kharisov, V.N. (1991).

Statisticheskiy analiz i sintez

radiotekhnicheskikh ustroystv i system

[Statistical Analysis and Synthesis of radio

Engineering Devices and Systems]. Moscow:

Radio i svyaz'.

[20] MacKay, D.J.C., & Davey, M.C. (2000).

Evaluation of Gallager Codes for Short

BlockLength and High Rate Applications. In

B. Marcus, & J. Rosenthal (Eds.), Codes,

Systems and Graphical Models: Vol. 123 of

IMA Volumes in Mathematics and its

Applications (pp. 113-130). New York:

Springer.

