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ABSTRACT

Inflation is one of the indicators to see the economic stability of a region. The value of inflation in
Semarang district on January 2014 - April 2016 unstable. Inflation which unstable will impede the
economic development in Semarang district, therefore need to be undertaken against the value of the
modeling inflation in the future with a method of ARIMA. The purpose of this study is to find a model
ARIMA which appropriate to forecasting inflation in Semarang district and to know the forecasting
inflation in Semarang district on May 2016 - April 2017 using Minitab and Eviews software. Minitab and
Eviews are two statistical packages programs that both can be used to analyze the time series data. The
next, the authors wanted to know which of these programs is more accurate than the other in estimating the
value of inflation. The methods used in this study is a literature method i.e. authors collect, select and
analyze readings related to the issues examined and methods documentation i.e. the author collected data in
inflation on January 2010 - April 2016 in Semarang district. Based on the research obtained, the model
appropriate to forecasting inflation in Semarang district is a model ARMA(2,1) or ARIMA(2,0,1). The
results of the forecasting inflation at Semarang district using Minitab and Eviews software on May 2016 –
April 2017 is stable enough. The best model to foresee the next period is ARMA(2,1) or ARIMA(2,0,1)
model with software Eviews namely with the following equation := 1,3551 − 0,5756 + − 0,9789 .
The highest inflation occurred on September, October, and November 2016 and lowest Inflation occurred
on May and June 2016.
Keywords: ARIMA, Minitab, Eviews, Forecast, Inflation

1. INTRODUCTION

In the economy of a region, inflation became an
important thing that made the benchmark for
economic growth, a factor of consideration in
selecting the type of investment the investor, as
well as the deciding factor for the Government in
formulating fiscal policy, monetary or non-
monetary.

Inflation is symptoms indicating the increase in
the level to the general price lasting continuously
(Mishkin, 2001). According to BPS, as quoted by
Berlian, Wilandari & Yasin (2014), inflation is one
of the indicators to see the economic stability of a
region or an area that shows the development of

prices of goods and services in general are
calculated from the consumer price index.

Figure 1. The graph of the Monthly Inflation in
Semarang District 2014-2016



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

62

Source: http://semarangkab.bps.go.id

On the graph to see that the value of the monthly
inflation in Semarang District in January 2014 until
April 2016 is fluctuation. This shows that inflation
in Semarang District is unstable. The stability of
inflation is a prerequisite for sustainable economic
growth, which in turn provide benefits to an
increase in welfare of society. The importance of
controlling inflation is based on the consideration
that the high inflation and unstable give negative
effects to the socio-economic condition of the
community (http://www.bi.go.id).

Because inflation give impact on the economy in
Semarang district, then it needs to be done against
the inflation rate modeling in the future so as to
determine the steps that need to be prepared in the
face of economic conditions ahead are influenced
by inflation with ARIMA method.

A general model of time series Autoregressive
(AR), the Moving Average (MA) and
Autoregressive Moving Average (ARMA) is often
used to model the financial and economic data
assuming stationarity against range
(homokedastisitas). Therefore, it takes a time series
model that can model the most economic and
financial data by retaining data heteroskedastisitas
(Engle, 2001).

Along with the advancement of information
technology with use some help computers allow
activities forecasting at the time of this can be
conducted easily. The advance of software the
thriving now create many software applications
specifically applied for the forecasting (Santoso,
2009).

At the moment there are a variety of computer
applications software that can help in the process of
forecasting data easily, quickly and accurately,
especially if using analysis of time series
(Dwitanto, 2011). Technology computer software
that can be used to analyse the forecasting using
method time series is Minitab and Eviews software.
Minitab and Eviews is software that can be used to
analyze economic forecasting with complete and
easy enough, for example, inflation forecasting,
macroeconomic forecasting and sales forecasting.

EViews (Econometric Views) is a statistical
package for Windows, used mainly for time-series
oriented macro-econometric analysis. EViews can
be used for general statistical analysis and
econometric analyses, such as time series
estimation and forecasting, cross-section and panel

data analysis. EViews combines spreadsheet and

relational database technology found in statistical
software, and uses a Windows GUI. EViews relies
heavily on a proprietary and undocumented file
format for data storage. However, for input and
output it supports numerous formats, including
databank format, Excel formats, PSPP/SPSS,
DAP/SAS, Stata, RATS, and TSP. EViews can
access ODBC databases. EViews file formats can
be partially opened by gretl.
(https://en.wikipedia.org/wiki/EViews)

According to Simarmata, as quoted by Hadijah
(2013), Minitab is a computer program that is
designed to perform processing of statistics.
Minitab also provides regression analysis (simple
regression analysis as well as multiple regression),
multivariate analysis (factor analysis, discriminan
analysis, cluster analysis, principal component),
qualitative data analysis, time series analysis, and
some nonparametric analysis (Iriawan, 2006).

There are some differences of ability Eviews and
Minitab in frame of statistical analysis
(https://en.wikipedia.org) , ie :

Table 1. Differences Of Ability Eviews And Minitab In
Frame Of Statistical Analysis

ANOVA
Product One-

way
Two-
way

MAN
OVA GLM Post-

hoc
Latin

squares
EViews Yes
Minitab Yes Yes Yes Yes Yes Yes

REGRESSION

Product OLS WLS 2SLS NLLS Logis
tic GLM

EViews Yes Yes Yes Yes Yes Yes
Minitab Yes Yes No Yes Yes No

TIME SERIES ANALYSIS

Product LAD Step
wise

Quan
tile Probit Poiss

on MLR

EViews Yes Yes Yes Yes Yes Yes
Minitab No Yes No

TIME SERIES ANALYSIS

Product ARI
MA

GARC
H

Unit
root
test

Cointe
gratio
n test

VAR
Multi-
variate
GARC

H
EViews Yes Yes Yes Yes Yes Yes
Minitab Yes No No No No

CHARTS AND DIAGRAMS

Product Bar
chart

Box
plot

Correl
ogram

Histog
ram

Line
chart

Scatter
plot

EViews Yes Yes Yes Yes Yes Yes
Minitab Yes Yes Yes Yes Yes Yes

There are some advantages and disadvantages of
both programming packages (see Table 1), this



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

63

paper will discuss the accuracy of them (Eviews 8.1
and Minitab 16 packages) in forecasting using
ARIMA. Minitab and Eviews are two statistical
packages programs that both can be used to analyze
the time series data. The next, the authors wanted to
know which of these programs is more accurate
than the other in estimating the value of inflation.

Rokhaniyah and Nugroho , in their  study which
aims to identify the occurrenceof fly paper on
the city and county government spending in
Indonesia, in 2012-2014. In this case, the
dependent variable used is the shopping
area while the independent variable is revenue
(R), the General Allocation Fund (GAF) , the
Special Allocation Fund (SAF) and a dummy,
to distinguish the city /county Java and Outside
Java. This research uses software Eviews 6. The
objective  of  the study (Ikrima and Muharam,2014)
was  to  analyze  the  Greece’s  crisis  impacts
toward  the movement of Islamic stock prices in
Indonesia, Malaysia, USA, and Europe. Moreover,
this study also analyzed co-integration and
contagion effect which occurred during the  period.
VAR  (Vector  Auto  Regressive)  and  VECM
(Vector  Error  Correction Model) with eviews 6
were used to test the hypothesis as the statistical
analysis tools. Syahnur’s Research (2013) aims to:
determine the extent of inflation, economic growth,
and investments against unemployment in the
province of Central Java. Data analysis technique
used is the panel data regression analysis and path
analysis with the help of a computer program
Eviwes 6.0.

This article (Waryanto and Millafati,2006) will
discuss the improvement, which has been made in
the tranformation of ordinal data to an interval data
at least with data scale. In order to perform that
task, a transformation program, this program is
designed by using the makro Minitab. This program
is able to transform ordinal data in Likert scale to
an interval data, at least with scale 3 category. In
addition, this program is also capable in
transforming data wich is not completely filled out.
Syafii and Noveri (2013) conducted a study of
short-term or daily electricity load curve
forecasting use ARIMA through the stages:
checking the data patterns, identifying models of
stationary test variance and mean, parameter
estimation and measurement of the accuracy of the
model using MAPE.

Based on it, the formulation of problems in this
final project is a model of ARIMA where
appropriate for forecasting inflation in Semarang
using Minitab and Eviews software? and what is

the result of inflation forecasting in Semarang in
may 2016 – April 2017 using Minitab and Eviews
software?. The purpose of this study is to find out
which exact model of ARIMA for forecasting
inflation in Semarang and to know the results of the
forecasting inflation at Semarang in may 2016 –
April 2017 using Minitab and Eviews software.

2. RELEVANT STUDIES

2.1 Inflation
According to Sukirno (2008), inflation is defined

as a process of rising prices in an economy.
According to Sunariyah (2006), inflation is the
increase in the prices of goods and services on an
ongoing basis. According to Tandelilin (2010),
inflation is the trend of increased prices of products
as a whole.

Inflation according to the condition of the
Puthong (2002), based on their nature is divided
into four main categories of: Creeping Inflation,
Galloping Inflation, High Inflation, and Hyper
Inflation.

Inflation is the tendency of prices to rise in
general and continuously. Low inflation rate will
reduce price variability and increase efficiency in
the economy (Ball and Mankiw, 1994a, 1994b,
1995) but based on the model of nominal wage
rigidity is obtained that efficiency in the economy
will be reduced if inflation is too low (Akerlof,
Dickens and Perry, 1996) , Therefore the optimal
inflation rate should be made so that it will lead to
economic stability. Based on research Muhson, A.
(1999), with the regression analysis method enter
obtained model the relationship between the rate of
inflation with the money supply, exchange rate,
interest rate and national income are together there
is a significant relationship between the amount of
money in circulation , exchange rate, interest rate
and national income and the inflation rate in
Indonesia.

The importance of inflation control based on the
consideration that the high inflation and unstable
negative impacts on socio-economic conditions of
society. First, high inflation will cause real income
people will continue to fall so that the standard of
living of the people down and eventually make
everyone, especially the poor, poorer. Second,
unstable inflation will create uncertainty
(uncertainty) for economic actors in decision
making. Empirical experience shows that unstable
inflation will make it difficult for the public in
making decisions of consumption, investment and
production, which in turn will reduce economic
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growth. Third, the domestic inflation rate higher
than the rate of inflation in neighboring countries
make real domestic interest rates become
uncompetitive so as to put pressure on the rupiah.

Low and stable inflation in the long term will
support sustainable economic growth (suistanable
growth) because the inflation rate is positively
correlated with the fluctuation. When inflation is
high, fluctuation also increased, so that people feel
uncertain with the inflation rate will occur in the
future. As a result, long-term interest rates will rise
because of the high risk premium due to inflation.

2.2 Forecasting

Forecasting is a estimated that will occur in the
future, while the plan is the determination of what
will be done in the time to come (Subagyo, 1986).
In making forecasts to be able to have minimised
the influence of uncertainty. In other words,
forecasting the forecasts can get aim at minimising
mistakes predict (Forecast error) which is typically
measured by the Mean Square Error (MSE), the
Mean Absolute Error (MAE) and so (Subagyo,
1986).

2.3 Time Series Analysis

Time series analysis is a quantitative method to
determine the pattern of past data that has been
collected on a regular basis, for forecasting the
future. While time series data is a statistical data
compiled on the basis of the time of the incident.
Could be the year, quarter, month, week, and so on
(Soejoeti, 1987). Time series data i.e. data collected
from time to time to see the development of an
activity, where when the data described will show
fluctuations and can be used for the base
withdrawal trends that can be used for basic
forecasting is useful for basic planning and
withdrawal of the conclusions (Supranto, 2001).

According to Makridakis, & Wheelwrigt McGee
(1995) time series data pattern can be differentiated
into four types, namely the pattern of horizontal
(H), the seasonal Pattern (S), (C) cyclical Pattern,
and the pattern of trend (T). According to Soejoeti
(1987) based on the historical value of his
observation time runtun is distinguished into two,
namely determninastic time series and stochastic
time series. According to Spiegel & Stephens
(2007), based on movement or variation time series
consists of three kinds of patterns, namely: the
long-term movement or trend, movement/ cyclical
variation and movement/seasonal variations.

Many empirical time series behave as though
they have no fix mean. Even so, they exhibit

homogeneity in the sense that, apart from local
level, or perhaps local level and trend, one part of
the series behaves much like any other part. Model
which describe such homogeneous nonstationary
behavior can be obtained by supposing some
suitable difference of the process to be stationary.
The properties of the important class of models for
which the th difference is a stationary mixed
autoregressive-moving average (ARIMA) process.

2.4. Autoregressive (AR) processes

A time series { } is said to be an autoregressive
process of order (abbreviated AR( )) if it is a
weighted linear sum of the past values plus a
random shock so that := + +⋯+ + (1)
where { } denotes a purely random process with
zero mean and variance . Using the backward
shift operator , such that = , the AR( )
model may be written more succinctly in the form( ) = (2)
where ( ) = 1 − − −⋯− is a
polynomial in of order . The properties of AR
processes defined by (1) can be examined by
looking at the properties of the function . As is
an operator, the algebraic properties of have to be
investigated by examining the properties of ( ),
say, where denotes a complex variable, rather
than by looking at ( ). It can be shown that (2)
has a unique causal stationary solution provided
that the roots of ( ) = 0 lie outside the unit
circle. This solution may be expressed in the form

= (3)
for some constants such that ∑ < ∞.

The above statement about the unique stationary
solution of (2) may be unfamiliar to the reader who
is used to the more customary timeseries literature.
The latter typically says something like “an AR
process is stationary provided that the roots of( ) = 0 lie outside the unit circle”. This will be
good enough for most practical purposes but is not
strictly accurate; for further remarks on this point,
see Brockwell and Davis (1991).

The simplest example of an AR process is the
first-order case given by = + (4)
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The time-series literature typically says that an
AR(1) process is stationary provided that | | < 1.
It is more accurate to say that there is a unique
stationary solution of (4) which is causal, provided
that | | < 1. The ac.f. of a stationary AR(1)
process is given by= + +⋯+ (5)
for = 0,1,2, . ..., where = 0 . Notice that the
AR model is typically written in mean-corrected
form with no constant on the right-hand side of (1).

This makes the mathematics much easier to handle.

A useful property of an AR( ) process is that it
can be shown that the partial ac.f. is zero at all lags
greater than . This means that the sample partial
ac.f. can be used to help determine the order of an
AR process (assuming the order is unknown as is
usually the case) by looking for the lag value at
which the sample partial ac.f. ‘cuts off’ (meaning
that it should be approximately zero, or at least not
significantly different from zero, for higher lags).

2.5. Moving average (MA) processes

A time series { } is said to be a moving average
process of order (abbreviated MA( )) if it is a
weighted linear sum of the last random shocks so
that = + +⋯+ (6)
where { } denotes a purely random process with
zero mean and constant variance . (6) may
alternatively be written in the form= ( ) (7)
where ( ) = 1 − − −⋯− is a
polynomial in of order . Note that some authors
(including Box et al., 1994) parameterize an MA
process by replacing the plus signs in (6) with
minus signs, presumably so that ( ) has a similar
form to ( ) for AR processes, but this seems less
natural in regard to MA processes. There is no
difference in principle between the two notations
but the signs of the values are reversed and this
can cause confusion when comparing formulae
from different sources or examining computer
output.

It can be shown that a finite-order MA process is
stationary for all parameter values. However, it is
customary to impose a condition on the parameter
values of an MA model, called the invertibility
condition, in order to ensure that there is a unique
MA model for a given ac.f. This condition can be
explained as follows. Suppose that { } and { }

are independent purely random processes and that∈ (−1,1). Then it is straightforward to show that
the two MA(1) processes defined by= + and = + have
exactly the same autocorrelation function (ac.f.).
Thus the polynomial ( ) is not uniquely
determined by the ac.f. As a consequence, given a
sample ac.f., it is not possible to estimate a unique
MA process from a given set of data without
putting some constraint on what is allowed. To
resolve this ambiguity, it is usually required that the
polynomial ( ) has all its roots outside the unit
circle. It then follows that we can rewrite (6) in the
form − = (8)
for some constants such that | | < ∞. In other
words, we can invert the function taking the
sequence to the sequence and recover from
present and past values of by a convergent sum.
The negative sign of the -coefficients in (8) is
adopted by convention so that we are effectively
rewriting an MA process of finite order as an
AR(∞) process. The astute reader will notice that
the invertibility condition (roots of ( ) lie outside
unit circle) is the mirror image of the condition for
stationarity of an AR process (roots of ( ) lie
outside the unit circle).

The ac.f. of an MA( ) process can readily be
shown to be

= ⎩⎪⎨
⎪⎧ 1, = 0

∑ , = 1,2, … ,0, > (9)
where = 1. Thus the ac.f. ‘cuts off’ at lag .
This property may be used to try to assess
theorderof the process (i.e. What is the value of ?)
by looking for the lag beyond which the sample
ac.f. is not significantly different from zero.

The MA process is relevant to a mathematical
theorem called the Wold decomposition theorem–
see, for example, Priestley, 1981, Section 10.1.5. In
brief simplified form, this says that any stationary
process can be expressed as the sum of two types of
processes, one of which is non-deterministic while
the other is (linearly) deterministic. These terms are
defined as follows. If the process can be forecast
exactly by a linear regression on past values, even
if recent values are not available, then the process is
called deterministic(or singular). However, if linear
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regression on the remote past is useless for
prediction purposes, then the process is said to
benondeterministic(or purely indeterministic or
regular or stochastic).

The connection with MA processes is as follows.
It can be shown that the non-deterministic part of
the Wold decomposition can be expressed as an
MA process of possibly infinite order with the
requirement that successive values of the
sequence are uncorrelated rather than independent
as assumed by some authors when defining MA
processes. Formally, any stationary non-
deterministic time series can be expressed in the
form

= (10)
where = 1 and ∑ < ∞, and { } denotes
a purely random process (or uncorrelated white
noise) with zero mean and constant variance, ,
which is uncorrelated with the deterministic part of
the process (if any). The { } are sometimes called
innovations, as they are the one-step-ahead forecast
errors when the best linear predictor is used to
make one-step ahead forecasts. The formula in (10)
is an MA(∞) process, which is often called the
Wold representationof the process. However, note
that the latter terms are used by some writers when
the ’s are independent, rather than uncorrelated,
or when the summation in (10) is from −∞ to +∞,
rather than 0 to ∞. Of course, if the ’s are
normally distributed, then zero correlation implies
independence anyway and we have what is
sometimes called a Gaussian linear process.

MA(∞) representation of a stochastic process
involves an infinite number of parameters which
are impossible to estimate from a finite set of data.
Thus it is customary to search for a model that is a
parsimonious approximation to the data, by which
is meant using as few parameters as possible. One
common way to proceed is to consider the class of
mixed ARMA processes as described below.

2.6. ARMA processes

A mixed autoregressive moving average model with
autoregressive terms and moving average terms is

abbreviated ( , )and may be written as :( ) = ( ) (11)
where ( ), ( ) are polynomials in of finite
order , , respectively. This combines (2) and (7).
Equation (11) has a unique causal stationary
solution provided that the roots of ( ) = 0 lie

outside the unit circle. The process is invertible
provided that the roots of ( ) = 0 lie outside
the unit circle. In the stationary case, the ac.f. will
generally be a mixture of damped exponentials or
sinusoids.

The importance of ARMA processes is that
many real data sets may be approximated in a more
parsimonious way (meaning fewer parameters are
needed) by a mixed ARMA model rather than by a
pure AR or pure MA process. We know from the
Wold representation that any stationary process can
be represented as a MA(∞) model, but this may
involve an infinite number of parameters and so
does not help much in modelling. The ARMA
model can be seen as a model in its own right or as
an approximation to the Wold representation in
(10). In the latter case, the generating polynomial in
B ,which gives (10) , namely

( ) =
may be of infinite order, and so we try to
approximate it by a rational polynomial of the
form ( ) = ( )( )
which effectively gives the ARMA model.

This subsection takes a more thorough look at
some theoretical aspects of ARMA processes
(and hence of pure AR and MA processes by
putting or equal to one). Time-series analysts
typically say that this equation is an ARMA( , )
process. However, strictly speaking, the above
equation is just that - an equation and not a process.
In contrast, the definition of a process should
uniquely define the sequence of random
variables { }. Like other difference equations,
(11) will have infinitely many solutions (except
for pure MA processes) and so, although it is
possible to say that any solution of (11) is an
ARMA( , ) process, this does not of itself
uniquely define the process.

Consider, for example, the AR(1) process, for
which : = + (12)
for = 0, ±1, ±2, …. As noted earlier, it  is
customary for the time-series literature to say
that an AR(1) process is stationary provided
that |φ|  <  1. However, the first-order difference
equation defined by (12) has infinitely many
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solutions. For example, the reader may check that
the following process is a solution to (12) := +
where denotes a constant.If we take to be
zero, then we obtain the unique stationary
solution, but for any other value of , the
process will not be stationary. However, it is
readily apparent that the general solution will tend
to the stationary solution as → ∞. In this regard
the question of whether or not the equation is
stable becomes important. The property of
stability is linked to stationarity. If we regard (12)
as a linear filter for changing an input process{ } to an output process { }, then it can be
shown that the system is stable provided that| | < 1. This means that the effect of any
perturbation to the input will eventually die
away.This can be used to demonstrate that any
deviation from the stationary solution will also die
away.Thus the general solution tends to the
stationary solution as increases.

A stationary ARMA process may be written as an
MA(∞) process by rewriting (11) in the form= ( )( )
and expanding / as a power series in . For a
causal process, the resulting representation may
be written in the same form as the Wold
representation in (10), or (3), namely

= (14)
or as = ( ) (15)
where ( ) = + + +⋯. A finite
MA process is always stationary as there is a finite
sum of ’s. However, for an infinite sequence, such
as that in (14), the weighted sum of Z ’s does not
necessarily converge. From (14), it can readily be
shown that Variance( ) = (16)
and so we clearly require ∑ < ∞ for the
variance to be finite.

It may not be immediately obvious why it may be
helpful to re-express the ARMA process in (11) as
an MA(∞) process in the form (14). In fact, the

MA(∞) representation is generally the easiest way
to find the variance of forecast errors. For
computing point forecasts, it may also be helpful to
try to re-express the process as an AR(∞) process.It
turns out that, if  the process is invertible, then it is
possible to rewrite (11) in the form of (8) as( ) = (17)
where, by convention, we take ( ) = 1 −∑ , and where ∑ < ∞ so that the ’s are
summable.

The ARMA process in (11) has ( ) and ( )
of finite order, whereas when a mixed model is
expressed in pure MA or AR form, the polynomials( ) and ( ) will be of infinite order.We have
seen that an ARMA process is stationary if the
roots of ( ) = 0 lie outside the unit circle and
invertible if the roots of ( ) lie outside the unit
circle.We can find corresponding conditions in
terms of ( ) or ( ) .

2.7. ARIMA processes

We now reach the more general class of models
which is the title of the whole of this section. In
practice many (most?) time series are nonstationary
and so we cannot apply stationary AR, MA or
ARMA processes directly. One possible way of
handling non-stationary series is to apply
differencing so as to make them stationary. The
first differences, namely ( − ) = (1 − )
may themselves be differenced to give second
differences, and so on. Thedth differences may be
written as (1 − ) . If the original data series is
differenceddtimes before fitting an ARMA( , )
process, then the model for the original
undifferenced series is said to be an
ARIMA( , , ) process where the letter ‘I’ in the
acronym stands for integrated and denotes the
number of differences taken.

Mathematically, (11) is generalized to give:( )(1 − ) = ( ) (18)
The combined AR operator is now (1 − ) . If

we replace the operator in this expression with a
variable , it can be seen straight away that the
function ( )(1 − ) has roots on the unit
circle (as (1 − ) = 0 when = 1) indicating that
the process is non-stationary – which is why
differencing is needed.

Note that when ( ) and ( ) are both just
equal to unity (so that and are both zero) and
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equals one, then the model reduces to an
ARIMA(0,1,0) model, given by− = (19)
This is obviously the same as the random walk
model which can therefore be regarded as an
ARIMA(0,1,0) model.

When fitting AR and MA models, the main
difficulty is assessing the order of the process rather
than estimating the coefficients (the ’s and ’s).
With ARIMA models, there is an additional
problem in choosing the required order of
differencing. Some formal procedures are available,
including testing for the presence of a unit root, but
many analysts simply difference the series until the
correlogram comes down to zero ‘fairly quickly’.
First-order differencing is usually adequate for non-
seasonal series, though second-order differencing is
occasionally needed. Once the series has been made
stationary, an ARMA model can be fitted to the
differenced data in the usual way.

2.8. Determining The Best Model

To determine the best model of several models of
ARIMA can be used several criteria, among others:
criteria for Mean Square Error (MSE), Akaike's
Information Criterion (AIC) and Schwartz's
Bayesian Criterion (SBC). The best model was
chosen that the value of the smallest message (Aswi
& Sukarna, 2006). Some of the ways used to
measure i.e. forecasting errors as follows: Mean
Square Error (MSE), the Root Mean Square Error
(RMSE), the Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE). In
addition, the accuracy of a forecast also needs to be
based on: the bias proportion variance proportion
covariance, and proportion. The value of
forecasting will say "good/accurate approach" If the
bias proportion variance proportion, and fairly
small but relatively high proportion covariance
(Pindyck Rubinfeld &, 1991).

3. METHOD
The scope of the research in this study is the data

of inflation in January of 2010 to April 2016 in
Semarang district. The inflation data will be made
the value of forecasting in May 2016 until April
2017. In this study, data retrieved from website
BPS Semarang district that address of the site that
is as follows: http://semarangkab.bps.go.id.

The methods used in this study consists of
several stages, namely, methods of literature and
methods of documentation. The methods of the
literature is one method of finding the information

obtained from the book module, reference books,
scientific journals, and scientific essay. This is done
to provide the Foundation of teroritis and solving
problems posed in this study. Method
documentation is a method of data collection
conducted in institutions or establishments that
present the data in question. In this study, data
obtained from the website of the Central Bureau of
Statistics (BPS), that the general inflation in
Semarang in January 2010 until April 2016. The
inflation data is data ready to use so that authors do
not do a calculation of inflation. This data is then
processed using the most suitable forecasting
method based on the pattern of the data because the
data time series. The data will be analyzed using
the method of ARIMA using  Minitab 16 and
Eviews 8.1 software.

There are several stages in the runtun analysis
time: the first step that is the identification of the
model. At this stage we choose the right model that
can represent the series of observations. Model
identification is performed by making a plot runtun
time and uses the parameters a little might be called
the principle of parsimony. Steps to identify model
runtun time is as follows: create a plot, makes the
time ACF runtun (autocorrelation function) and the
PACF (partial autocorrelation function) and check
out the stationary data (Hendikawati, 2015).

The second step namely estimation model. At
this stage, after having obtained the results of the
model parameter estimation, conducted a test of the
significance of the parameters. This test is used to
determine whether a parameter AR (p), differencing
(d), MA (q), and constants are significant or not. If
these parameters are significant, then the model is
worth used. If the coefficients estimated from
model dipih does not meet the conditions of a
particular mathematical inequality, then the model
is rejected (Hendikawati, 2015).

The third step, namely diagnostic checking. On
diagnostic testing done checking to see if the
selected model is already pretty well statistically.
By looking at the results of fak and fakp plots of
residual model, can be known of the existence of
autokolerasi and partial correlation on the residual.
A good forecasting model is that there is no
autokolerasi and partial correlation on the residual.
Models that do not go beyond this diagnostic test
will be rejected (Hendikawati, 2015).

The fourth step that is forecasting. After a
diagnostic checking the next step is to do
forecasting by using models that have been
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selected. Forecasting is an activity to predict what
will happen in the future.

4. RESULTS AND DISCUSSION
The data analyzed are data on inflation in January

of 2010 to April 2016 in Semarang district. Data
analysis using Minitab and Eviews software.

Research results with Software Minitab i.e. the
first phase is the identification of the model. At this
stage identification model that is the first step is to
make a plot of the data graphically.
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Figure 2. Time Series Plot For Inflation

Based on Figure 2 is seen that data pattern
already formed stationary, the second Step is
making the ACF and PACF.
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Figure 3. The Graph Of The Autocorrelation Function
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Figure 4. The Graph Of The Partial Autocorrelation
Function

Based on Figure 3 looks that the graph is
disconnected at lag 1. This is because the value of
the lag 1 out from the boundary line and the value
of lag 2 is close to zero, so the estimated model
showed the process of MA(1). Figure 4 shows that
the knowable order autoregerssive which might
formed (significant). Seen that lag lag 1 and 2 only,
whereas the partial lag autokolerasi next tend to
approach zero or insignificant. Then the estimated
model is formed is the process of AR(2).

Based on the results from the model
identification charts ACF and PACF can be inferred
that the model while that form is AR(2) or
ARIMA(2,0,0), MA(1) or ARIMA(0,0,1) and
ARMA(2,1) or ARIMA (2,0,1). Final The second
stage i.e. the estimation model. Estimates of
Parameters

Table 2. Models Of ARMA(2,0,0) Or AR(2)

From Table 2 is obtained probability value AR(1)
in the table the Final Estimates of Parameters,
namely in the amount of 0.000. Because the
probability value = 0.000 < α = 0.05  then
parameter AR(1) significant. The obtained
probability value is also an AR(2) in the table the
Final Estimates of Parameters i.e. of 0.024. Because
the value of the probability = 0.024 < α = 0.05  then
parameter AR(2) significant. The obtained
probability value Constant also in the table of Final
Estimates of Parameters, namely in the amount of
0.000. Because the probability value = 0.000 α =
0.05 < then Constant parameter is significant.
Because the parameter of AR(1), AR(2) Constant
are significant then models ARIMA (2,0,0) or
AR(2) can be inserted into a likely model.

Table 3. Models Of ARIMA(0,0,1) Or MA(1)

From Table 3 probability values obtained MA(1)
in the table the Final Estimates of Parameters,
namely in the amount of 0.000. Because the
probability value = 0.000 < α = 0.05  then MA(1)
parameters significant. The obtained probability

Type Coef SE Coef T P
AR 1 0,5894 0,1148 5,13 0,000
AR 2 -0,2637 0,1148 -2,30 0,024
Constant 0,31450 0,0677 4,65 0,000
Mean 0,4664 0,1003

Type Coef SE Coef T P
MA 1 -0,5058 0,1040 -4,86 0,000
Constant 0,4641 0,1030 4,50 0,000
Mean 0,4641 0,1030
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value Constant also in the table of Final Estimates
of Parameters, namely in the amount of 0.000.
Because the probability value = 0.000 < α = 0.05

then Constant parameter is significant. Because
the parameters of the MA(1) Constant and
significant then models ARIMA (0,0,1) or MA(1) it
can be inserted into the possibility of a model. Final
Estimates of Parameters ie :

Table 4. Models Of ARIMA(2,0,1) Or ARMA(2,1)

From Table 4 is obtained probability value
AR(1) in the table the Final Estimates of
Parameters, namely in the amount of 0.000.
Because the probability value = 0.000 < α = 0.05
then parameter AR(1) significant. The obtained
probability value is also an AR(2) in the table the
Final Estimates of Parameters, namely in the
amount of 0.000. Because the probability value =
0.000 < α = 0.05  then parameter AR(2) significant.
Probability value also obtained an MA(1) in the
table the Final Estimates of Parameters, namely in
the amount of 0.000. Because the probability value
= 0.000 < α = 0.05  then MA(1) parameters
significant. The obtained probability value Constant
also in the table of Final Estimates of Parameters,
namely in the amount of 0.000. Because the
probability value = 0.000 < α = 0.05  then Constant
parameter is significant. Because the parameter of
AR(1), AR(2), MA(1) Constant and significant then
models ARIMA(2,0,1) or ARMA(2,1) it can be
inserted into the possibility of a model.

The next step is done best by doing a model
election overfitting. Following are the results of
overfitting some possible models of ARIMA.

Table 5. Overfitting Models Arima Using Software
Minitab

Model Significant SS MS
AR 2 Yes 25,3650 0,3475
MA 1 Yes 26,3912 0,3556

ARMA (2,1) Yes 22,1428 0,3075

Based on Table 5 shows that the best model is
obtained that is ARMA(2,1), due to the significant
parameter values and the value of the model SS and
MS are smaller than model AR(2) and MA(1).

The third stage i.e. diagnostic checking. Minitab
output showing test results Ljung-Box, Ljung-Box
test used to detect the existence of a correlation
between residual (Iriawan, 20016).

Table 6. Summary Of Test Result Ljung-Box-
Pierce Models ARMA(2,0,1) Or ARMA(2,1)

Summary of the results in Table 6 shows that in
the lag 12 value statistics Ljung-Box-Pierce = 10.3
< ( %, )= 15,507 means that until the lag 12,
the conclusions that can be drawn is no correlation
between residual at lag q with residual at lag 12.
Similarly, for lag 24, 36 and 48 value statistics
Ljung-Box-Pierce < ( %, ), ( %, ), and( %, ). This means that the residual on residual
t with lag on (until) 48, no lag between mutually
correlated lag. This means that the residual
ARMA(2,1) are qualified white noise.

Based on the results of a test of the independence
of the ARMA(2,1) model, residual residual model
has independent, then the model ARMA(2,1) has
been used to perform divination.

The fourth stage that is forecasting. After a
diagnostic checking the next step is to do
forecasting by using models that have been chosen,
namely ARMA(2,1) or ARIMA(2,0,1).

Forecasts from period 76 95% Limits
Table 7. Inflation Data Forecast Results In Semarang

District

Period Forecast Lower Upper
Actual

77 -0.14958 -1.23674 0.93758
78 0.15257 -1.00898 1.31412
79 0.39486 -0.76890 1.55861
80 0.54926 -0.66103 1.75955
81 0.61903 -0.65858 1.89664
82 0.62470 -0.70355 1.95295
83 0.59223 -0.76060 1.94506
84 0.54495 -0.81498 1.90488
85 0.49958 -0.86094 1.86010
86 0.46531 -0.89545 1.82607
87 0.44499 -0.91698 1.80696
88 0.43717 -0.92627 1.80061

Lag ( ) df (K-k) Statistik
Ljung-

Box-Pierce

( , ) P-Value

12 8  (12-4) 10,3 15,507 0,247
24 20 (24-4) 21,2 31,410 0,388
36 32 (36-4) 32,7 46,194 0,434
48 44 (48-4) 37 60,481 0,762

Type Coef SE Coef T P
AR 1 1.3551 0.0989 13.70 0.000
AR 2 -0.5756 0.0984 -5.85 0.000
MA 1 0.9789 0.0503 19.47 0.000
Constant 0.101996 0.004030 25.31 0.000
Mean 0.46260 0.01828
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Based on the Table 7 shows that inflation data
forecast results in Semarang in may 2016, i.e.-0.14,
June 2016, i.e. 0.15, July 2016, i.e. 0.39, August
2016, i.e. 0.55, September 2016, 0.62, i.e. October
2016, 0.62, i.e. November 2016, i.e. 0.60, in
December 2016, i.e. 0.54 in January, 2017, that is
0.50, February 2017 i.e. 0.47, March 2017, i.e. 0.44
and April 2017, i.e. 0.44.

Research results with Software Eviews i.e. the
first phase is the identification of the model. At this
stage identification model that is the first step is to
create the chart.

Figure 5. Inflation Chart

Based on Figure 5 above seen that indication data
stationary. It is visible from its graph is around the
average or in other words the average and variance
is constant. The second step of the test, namely
stasionerity.

Figure 6. Correlogram Of Data

Based on the appearance of the Figure 6 shows
that the autocorrelation graph shows disconnected
immediately headed to zero after a lag of 1. This is

also indicated by the third column, whose value
starts from 0.454 and next value tends to be close to
zero. This shows indication data stationary. The
third step, namely unit root test.

Figure 7. Unit Root Test Results

Based on the Figur 7 shows that value at α = 5%
is -2.9012 smaller than the value of the statistic t of
the ADF Test statistics "i.e. -5.6055 (notice the
value used is the absolute value) this indicates that
the data is already stationary so no need for data
differencing.

The second stage i.e. the estimation model. At
this stage it will do a test of the significance of the
parameters.

Figure 8. The Results Of The Estimation Model Of
ARIMA(2,0,0) Or AR(2)

From Figure 8 probability values obtained AR(1)
in the table the Final Estimates of Parameters,
namely in the amount of 0.000. Because the
probability value = 0.000 < α = 0.05  then
parameter AR(1) significant. The obtained
probability value is also an AR(2) in the table the
Final Estimates of Parameters i.e. amounting to
0.0268. Because the value of the probability =
0.0268 < α = 0.05  then parameter AR (2)
significant. The obtained probability value Constant
also in the table of Final Estimates of Parameters,
namely in the amount of 0.000. Because the
probability value = 0.000 < α = 0.05  then Constant
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parameter is significant. Because the parameter of
AR AR (1), (2) Constant and significant then
models ARIMA(2,0,0) or AR(2) can be inserted
into a likely model.

Figure 9. The Results Of The Estimation Model Of
ARIMA(0,0,1) Or MA(1)

From the obtained probability value Figure 9
MA(1) in the table the Final Estimates of
Parameters, namely in the amount of 0.000.
Because the probability value = 0.000 < α = 0.05
then MA(1) parameters significant. The obtained
probability value Constant also in the table of Final
Estimates of Parameters, namely in the amount of
0.000. Because the probability value = 0.000 < α =
0.05  then Constant parameter is significant.
Because the parameters of the MA(1) Constant and
significant then models ARIMA(0,0,1) or MA(1)  it
can be inserted into the possibility of a model.

Figure 10. The Results Of The Estimation Model Of
ARIMA(2,0,1) Or ARMA(2,1)

From Figure 10 obtained value of the probability
of the AR(1) in the table the Final Estimates of
Parameters, namely in the amount of 0.000.
Because the probability value = 0.000 < α = 0.05

then parameter AR(1) significant. The obtained
probability value is also an AR(2) in the table the
Final Estimates of Parameters, namely in the
amount of 0.000. Because the probability value =
0.000 < α = 0.05  then parameter AR(2) significant.
Probability value also obtained an MA(1) in the
table the Final Estimates of Parameters, namely in
the amount of 0.000. Because the probability value
= 0.000 < α = 0.05  then MA(1) parameter
significant.

Table 8. Overfitting Models Arima Using Software
Eviews

The obtained probability value Constant also in
the Table 6 of Final Estimates of Parameters,
namely in the amount of 0.000. Because the
probability value = 0.000 < α = 0.05  then Constant
parameter is significant. Because the parameter of
AR(1), AR(2), MA(1) Constant and significant then
models ARIMA(2,0,1) or ARMA(2,1) it can be
inserted into the possibility of a model.

The next step is done best by doing a model
election overfitting. Following are the results of
overfitting some possible models of ARIMA.

Based on Table 8 shows that the best model is
obtained that is ARMA(2,1), due to the significant
parameter values and the value of SSE, AIC and the
SBC the smaller model from model AR(2) and
MA(1).

The third stage i.e. diagnostic checking. At this
stage of the testing done to see if the selected model
is already pretty well statistically. The trick is to
test whether the residual estimation results already
are white noise. When residualnya already white
noise means the model is just right (Winarno,
2011).

Model Significant SSE AIC SBC
AR(2) Yes 0,597214 1,846614 1,940022
MA(1) Yes 0,597191 1,832804 1,894134
ARMA(2,1) Yes 0,563867 1,744541 1,869085



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

73

Figure 11. Correlogram Of Residual

ARIMA(2,0,1) Or ARMA(2,1)

On the basis of the Table 11 it appears that
residual already are random. This is shown by the
bar graph which are all located in Bartlett's line.
From the independence of the residual test results, a
model of ARMA(2,1) are qualified white noise.

Based on the results of a test of the independence
of the residual that has fulfilled i.e. models
ARMA(2,1).

The fourth stage that is forecasting. After a
diagnostic checking the next step is to do
forecasting by using models that have been chosen,
namely ARMA(2,1) or ARIMA(2,0,1).

Figure 12. The Results Of The Estimation Model Of
ARIMA(2,0,1) Or ARMA(2,1)

Based on the Figure 12 note that the value of the
Bias Proportion Variance Proportion, and relatively
small, and relatively higher Proportion Covariance,

which means that forecasting to be generated is said
to be good, hence this model can predict further.

Based on the Figure 13 shows that inflation data
forecast results in Semarang district in may 2016,
i.e. 0.03, June 2016, i.e. 0.22, July 2016, i.e. 0.38,
August 2016 0.49, i.e., September 2016, i.e. 0.55,
October 2016, i.e. 0.56, in November 2016, i.e.
0.55, in December 2016, i.e. 0.52 October 2017
0.49, i.e., February, 2017, i.e. 0.47, March 2017,
i.e. 0.45 and April 2017, i.e. 0.44.

Figure 13. Inflation Data Forecast Results In
Semarang District

The results of the forecasting inflation at
Semarang with model ARMA(2,1) or
ARIMA(2,0,1) using Minitab software and Eviews
in may 2016 – April 2017 is pretty stable. The
highest inflation occurred in September, October,
and November 2016. High inflation is happening
likely due on the third month of the increase in
price implied by the rise in the index in the Group
spending such as food group, a food group so,
drinking, smoking tobacco, group housing &,
water, electricity, gas, fuel & group health, group
education, recreation, sport group & transport,
communications financial services & or index
group clothing. Lowest inflation occurred in May
and June 2016. Low inflation is happening likely
due on both the month price decline shown by the
decline in the index in the Group spending such as
food group, a food group so, drinking, smoking
tobacco, group housing &, water, electricity, gas,
fuel & group health, group education, recreation,
sport group & transport, communications financial
services & or index group clothing.

According to Assistant II fields of Economy
Development of Semarang Regency Setda
Dwinanta, A (2016) in
www.jateng.tribunnews.com, Cheap Markets
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program 20th anniversary 495 Semarang and
pioneered 2016 as part of the efforts of the local
government in controlling the rate of inflation.
Cheap means market where price sells Semarang
Regency Government packages at bargain prices,
especially to underprivileged citizens, so as to
reduce their expenditure on everyday life.
According to coordinating Minister for the
economy in his Nasution, Darmin (1999) in
www.bankjateng.co.id, the Government seeks to
control prices of food commodities ahead of the
fasting which fall at the beginning of June 2016.
The Government's attempt to cause inflation in May
and June 2016 becomes low.

Table 9. The Value Of The Inflation In May And June
2016 With Minitab, Eviews And Actual

Month /
Year Minitab Eviews Actual

May / 2016 -0,15 0,03 0,1
June / 2016 0,15 0,22 0,3

Based on Table 9 shows that the results of
forecasting inflation at Semarang in May and June
2016 using Minitab software and Eviews, better
approach with an actual value is to use software
Eviews. This is because on software Eviews has a
small forecasting errors and the accuracy of
forecasting is good compared with the Minitab
software only has a small forecasting errors only.
This is shown with a small MSE value, Bias
Proportion Variance Proportion and relatively
smaller and relatively higher Proportion Covariance
obtained on output software Eviews.

5. CONCLUSION

From the explanation above can be taken to the
following conclusions:

(1) The right to ARIMA Model forecasting
inflation at Semarang using Minitab software and
Eviews is model ARMA(2,1) or ARIMA(2,0,1).
The model ARMA(2,1) or ARIMA(2,0,1) is a
better model when compared to the other models.
This is indicated by the parameters in the model are
already significant, the value of the SSE, MSE, AIC
and the SBC that model which is smaller in
compare to other models and already meets the test
of independence. To foresee the next period of
using model ARMA(2,1) or ARIMA(2,0,1)
software with Minitab namely with the following
equation:= 1,3551 − 0,5756 + −0,9789

and to foresee the next period of using model
ARMA(2,1) or ARIMA(2,0,1) with software
Eviews namely with the following equation:= 1,3551 − 0,5756 + −0,9789 .

(2) Results of forecasting inflation at Semarang
district in may 2016 – April 2017 with methods
ARIMA using Minitab and Eviews software is
served by the following table.

Table 10. The Results Of The Forecasting Inflation At
Semarang District With Methods ARIMA Using Minitab

Software

Table 11. The Results Of The Forecasting Inflation At
Semarang District With Methods ARIMA Using Eviews

Software

Eviews has a small forecasting errors and the
accuracy of forecasting is better than the Minitab,
because MSE value of Eviews is smaller than the

Month Year Forecasting
Results

May 2016 -0,15
June 2016 0,15
July 2016 0,4
August 2016 0,55
September 2016 0,62
October 2016 0,62
November 2016 0,59
December 2016 0,54
January 2017 0,5
February 2017 0,47
March 2017 0,44
April 2017 0,44

Month Year Forecasting
Results

May 2016 0,03
June 2016 0,22
July 2016 0,38
August 2016 0,49
September 2016 0,55
October 2016 0,56
November 2016 0,55
December 2016 0,52
January 2017 0,49
February 2017 0,47
March 2017 0,45
April 2017 0,44
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Minitab, Bias Proportion Variance Proportion and
relatively smaller and relatively higher Proportion
Covariance obtained on output software Eviews.

Limitations of this study include: yet continued
development and eviews Minitab macro program
for the improvement of the accuracy of statistical
and mathematical analysis. For further research,
could be developed include: analyzing the accuracy
of the statistical program packages in the case of
other capabilities, analyze the macro program in
such packages, developed a package of statistical
programs to be more accurate in the calculation.

REFFERENCES

[1]Akerlof, G., Dickens, W., and Perry, G., 1996,
The Macroeconomics of Low Inflation,
Brookongs Paper on Economics Acrtivity, vol
1: 1-76

[2]Aswi & Sukarna. Time Series Analysis.Analisis.
Theory and Application. Edited by Muhammad
Arif Tiro. Makassar: Andira Publisher, 2006.

[3]Ball,L. and Markiw, G., 1994b, Asymmetric
Price Adjusment and Economic Fluctuations,
Economic Journal, vol104(423):247-261

[4]Ball,L. and Markiw, G., 1995, Relative Price
Changes as Aggregate Supply Shocks,
Quarterly Journal of Economics, vol 110(1):
161-193

[5]Berlian, Wilandari, Yuciana, & Yasin, Hasbi.
Inflation forecasting by Group of Expenditure
Food , Beverages , Cigarettes and Tobacco Use
Variations Calendar Model (Case Study
Inflation Semarang Indonesia) Gaussian
Journal Statistics UNDIP, 3(4): 547 – 556.
Available in http://ejournal-
s1.undip.ac.id/index.php/gaussian (accessed
March 29, 2016), 2014.

[6]BPS Semarang Indonesia. Official Statistics of
Semarang : The development of the Consumer
Price Index / Inflation in Semarang District
Month April 2016. Available in
http://semarangkab.bps.go.id/ website/
brs_ind/brsInd-20160502115416.pdf (accessed
May 23, 2016), 2016.

[7]Brockwell, P.J.and Davis, R.A.(1991)Time
Series: Theory and Methods, 2nd edn. New
York: Springer-Verlag.

[8]Brockwell, P.J.and Davis,
R.A.(1996)Introduction to Time Series and
Forecasting. New York: Springer-Verlag.

[9]Dwinanta, A. Thrift So Efforts to Control
Inflation in Semarang regency . Available in
http://jateng.tribunnews.com/2016/04/15/pasar-
murah-jadi-upaya-kendalikan-inflasi-di-

kabupaten-semarang (accessed August 15,
2016), 2016.

[10]Dwitanto, Dimas Setyo.. Time Series Analysis
for Predicting the Total Patient Treated in
Blora Health Center Using Minitab Software
14. Semarang: FMIPA UNNES Publisher,
2011.

[11]Engle, Robert. GARCH 101: The Use of
ARCH/GARCH Models in Applied
Econometrics. Journal of Economics
Perspective, 15(4): 157-1, 2001.

[12]Hadijah. Forecasting of Operational Reserve
with Program Approach Using Minitab Arima.
PT Surindo Andalan Publisher. Journal THE
WINNERS, 14(1):13-19, 2013.

[13]Hendikawati, Putriaji. Forecasting Data Time
Series : Methods and Applications with
Minitab & Eviews. Semarang:  FMIPA
UNNES Publisher, 2015.

[14]http://www.bi.go.id/id/moneter/inflasi/pengenala
n/Contents/Pentingnya.aspx (accessed March
29, 2016).

[15]Iriawan, Nur & Puji Astuti, Septin. Processing
Data Statistics with Easy to Use Minitab 14.
Yogyakarta: CV ANDI OFFSET Publisher,
2006.

[16]Makridakis, S, Wheelwright., S.C, & McGee
V.E.. Forecasting Methods and Applications (
First Edition) . Translation by Untung Sus A &
Abdul Basith . Jakarta : Erlangga publisher,
1995.

[17]Mishkin, Frederic S & Savastono, Miguel A..
Monetary Policy Strategis for Latin America.
Journal of Development Economics,
Forthcoming: 1-6, 2001.

[18]Muhson,A., 1999, Faktor-faktor yang
Mempengaruhi Inflasi di Indonesia. Laporan
penelitian DIK FIS UNY

[19]Nasution, Darmin. Summary Economy Update
2 Juni 2016. Available in
http://bankjateng.co.id/content.php?query=new
s&kat=content&id_content=1000 (accessed
August 15, 2016}, 2016.

[20]Pindyck, R.S. & Rubinfeld, D.L.. Econometric
Models and Economic Forecasts. 3rd edition.
McGraw-Hill, 1991.

[21]Puthong, Iskandar. Introduction to Micro and
Macro Economics. Jakarta: Ghalia Indonesia
Publisher, 2002.

[22]Santoso, Singgih Buisness Forecasting
.Method of  Today's Business Forecasting  with
Minitab and SPSS. Jakarta: PT.Elex Media
Komputindo Publisher, 2009.

[23]Soejoeti, Zanzawi.. Time series analysis.
Jakarta: Karunika Publisher, 1987.



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

76

[24]Spiegel, M. R., Stephens, L. J. Schaum’s
Outliers of Theory Problems of Statistics
(3rdEdition). Translation by Kastawan, W &
Harmein, I. Jakarta: Erlangga Publisher , 2007.

[25]Subagyo, Pangestu . Forecasting concepts
and applications. Yogyakarta: BPFE Publisher,
1986.

[26]Sukirno, Sadono. Microeconomic  Introduction
Theory (3rd Edition). Jakarta: Rajawali Pers
Publisher, 2008.

[27]Sunariyah . Knowledge of Capital Market (5th
Edition). Yogyakarta: UPP STIM YKPN,
2006.

[28]Supranto. Statistical theory and applications..
Jakarta: Erlangga Publisher, 2001.

[29]Tandelilin, Eduardus. Portfolio and Investment
Theory and Applications ( first Edition).
Yogyakarta:  Kanisius Publisher, 2010.

[30]Winarno, Wing Wahyu. Analysis
Econometrics and Statistics with Eviews (3rd
Edition). Yogyakarta: UPP STIM YKPN
Publisher, 2011.

[31]Ikrima TN and Harjum Muharam. Co-
Integration And Contagion Effect Between
Stock Sharia Market In Indonesia, Malaysia,
Europe, America And When The Occurrence
Greek Crisis. Jurnal Dinamika Manajemen.
Universitas Diponegoro, Semarang, Indonesia.
JDM Vol. 5, No. 2, 2014, pp: 131-146

[32]Rokhaniyah and Muh Rudi Nugroho. Analysis
of Flypaper Effect on The City and Country
Government Expenditures in Indonesia 2012-
2014. Fokus Ekonomi (FE), Agustus 2015,
p.  100 – 113Vol. 10, No. 2 ISSN: 1412-3851.

[33]Syahnur TA . Analysis of Effects of Inflation,
Economic Growth and Investment Against
Unemployment in Central Java Province.
Essay. Department of Economic Development.
Faculty of Economics. Semarang State
University

[34]Waryanto B and and Yuan Astika Millafati.
The Transformation of Ordinal Data to Interval
Data Using Macros Minitab. Pusat Data dan
Informasi Pertanian Informatika Pertanian
Volume 15, 2006


