
Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1

SOFTWARE CONFIGURATION MANAGEMENT PRACTICE
IN MALAYSIA

1SYAHRUL FAHMY, 2AZIZ DERAMAN, 3JAMAIAH H. YAHAYA
1Faculty of Computer, Media & Technology Management, TATI University College, MALAYSIA

2School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, MALAYSIA
3Faculty of Information Science and Technolgy, Universiti Kebangsaan Malaysia, MALAYSIA

E-mail: 1fahmy@tatiuc.edu.my, 2a.d@umt.edu.my, 3jhy@ukm.edu.my

ABSTRACT

This study investigates the practice of Software Configuration Management (SCM) in Malaysia. A survey
was carried out involving three types of software organizations namely the Government, IT Companies and
Institutes of Higher Learning to identify the approach for SCM implementation the aspects of: Process,
People and Documentation. Results revealed that Malaysian organizations are adopting key SCM Process
where versioning of artifacts and releasing of baselines are highly exercised; policy and procedures for
change control exist; audits are carried out periodically; and software libraries are used in software projects.
In terms of tools, commercial tools are dominantly used which include Serena Dimensions, Borland Calibre
and Oracle Discoverer. Documentation efforts are carried out comprising of internal and external
conformances; software quality factors; controlled artifacts; and audit results. Main project reports
generated include software development, audits and change requests. Among the issues observed are the
exclusion of some artifacts as controlled artifacts; the lack of effort to document software quality evaluation
techniques; and little effort to include SCM and software quality documentations in software delivery.

Keywords: Software Engineering, Software Configuration Management, Software Quality

1. INTRODUCTION

The Malaysian Information and Communication
Technology market has strong growth fundamentals
with key sectors that include the government,
telecommunications, and education. Malaysia has
more than 20 million Internet users (2015
statistics), and as such, the demand for enabling
technologies for Malaysia’s 1.1 million registered
businesses into the new economy are high. The
Malaysia Digital Economy Corporation (MDEC) is
tasked to drive the nation’s digital economy agenda,
capitalizing on the 3,800 tech companies and
150,000 knowledge workers across the country [1].

The National Transformation Programme is
undertaken to stimulate the development of the
nation's digital economy by 2020. This programme
will create an ecosystem that promotes the use of
ICT in all aspects of the economy to increase the
Gross National Income. The contribution of digital
economy towards the Gross Domestic Product rose
from 16.38% in 2013 to 17% in 2014, resulting in
over RM295 billion in revenue to the Malaysian
economy, RM283 billion worth of investments, and
more than 147,000 jobs since 1996 [2].

The Malaysian Government is aggressively
promoting the use of ICT in all industries with the
development of critical software applications such
as customer relations management, enterprise
resource planning, human resource management,
and financial management. In order to ensure
timely delivery of such applications, it is crucial
that a formal approach for Software Configuration
Management (SCM) is adapted and appropriate
supporting tools are used.

SCM is an area in software engineering that
tracks and controls changes in the software life-
cycle. SCM ensures that the current design and
build state of a software product is known. Accurate
historical record is useful not only for management
and audit purposes, but also for development
activities. Effective use of SCM enables developers
to formally record all change details. One of the
strength of SCM is the ability to rebuild software
applications in the event of failure.

This study aims to investigate SCM
implementation in Malaysia from the aspects of
Process, People and Documentation. This paper is
organized as follows: a brief review of SCM will be



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2

presented in Section 2. Section 3 presents the tool
used in this study and Section 4 presents the results
of the survey carried out. Finally, discussion and
conclusion will be made in Section 5.

2. SOFTWARE CONFIGURATION
MANAGEMENT

SCM is a discipline in software engineering for
controlling and managing changes to software
products using standard processes and tools. IEEE
[3] defines SCM as:

“a supporting-software life cycle process that
benefits project management, development
and maintenance activities, quality assurance
activities, as well as the customers and users
of the end product”.

SCM is a ‘supporting process’ in the software
product life-cycle. It support ‘primary processes’
such as development and maintenance, and carried
out continuously throughout the life-cycle.

Typical SCM implementation comprises of
Process, Tools and Documentation (Fig. 1).

Fig. 1 Traditional SCM Model

Process refers to SCM policy and procedures that
are adapted by organizations in software projects.
Tools are used to support SCM implementation.
Organizations usually use a set of tools, as opposed
to a single tool, for SCM purposes. Documentation
provides traceability and proof of conformance to
requirements and standards. Process determines the
type of Tools to be used and the type of
Documentation to be generated.

2.1 Process
There are 3 major views on the process

involved in SCM from the Institute of Electrical
and Electronics Engineers (IEEE) [3], the Software
Engineering Institute (SEI) [4] and the
International Organization for Standardization

(ISO) [5]. IEEE stipulates 6 processes in SCM; SEI
outlines 7; while ISO specifies 5 processes.
Although the number of process varies, the
outcomes are similar as illustrated in Table 1.

Table 1: Comparison of SCM Process and Outcomes

IEEE SEI ISO OUTCOME

1. Management
and Planning of

the SCM Process

1. Configuration
Management

Planning

Software
Configuration
Management

Plan

2. Software
Configuration
Identification

1. Identify
Configuration

Items

2. Configuration
Identification

List of items to
be controlled

3. Software
Configuration

Control

2. Establish a
Configuration
Management

System 3. Change
Control

Policy and
procedure for

change process3. Create or
Release

Baselines

4. Software
Configuration

Status
Accounting

4. Track Change
Requests

4. Configuration
Status

Accounting

Record/ Reports
on the approved

configuration
identification;
status of new
release and

configuration;
implementation
of change, etc.

5. Control
Configuration

Items

6. Establish
Configuration
Management

Records

5. Software
Configuration

Auditing

7. Perform
Configuration

Audits

5. Configuration
Audit

Formal and
informal audit
reports. Pre-

requisite for the
establishment of
product baseline

6. Software
Release

Management and
Delivery

Packaging and
delivery of the
elements of a

software product

2.2 Tools
There is a wealth of tools for supporting the

SCM process found in the industry (commercially)
and literature (theoretically). Some of the notable
tools in SCM include the Source Code Control
System [6]; Revision Control System [7]; Adele [8];
ClearCase [9]; SourceSafe [10]; SunForte [11];
Subversion [12]; Make [13]; and CCM [14]. Tools
that are applicable to SCM based on the processes
identified in the previous section can be classified
into 4 categories: Versioning; Conflict Detection



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3

and Resolution; Change Tracking; and Software
Build.

2.2.1 Versioning
Versioning tools are used to maintain software
artifacts including source codes, configuration files
and documentation. Changes are identified by a
number or letter (revision number) and each
revision is associated with a timestamp and the
person making the change. Revisions can be
compared, restored, and merged, depending on the
type of files involved. Examples version tools
include Gitless, a version control system that covers
common Git use cases [15]; Phoca, a system to
support to fine-grained and flexible version control
[16]; EMFStore, for versioning models based on the
Eclipse Modeling Framework [17]; Performance-
Aware Revision Control Support (PARCS), a
service that provides feedback to developers how a
change that they have committed affects the
behavior and performance of the overall application
[18]; and Odyssey-VCS for fine-grained UML
model elements [19].

2.2.2 Conflict Detection and Resolution
Conflict detection and resolution tools are used to
manage changes in a collaborative development
environment were concurrent access to artifacts are
made. Examples of these type of tools include
FSTMERGE for semi-structured merge [20];
WeCode, a client and server plug-in, to automate
the detection of conflicts as they emerge [21];
Palantir, a workspace awareness tool for SCM to
assist developers in detecting and resolving
conflicts [22]; CASI, a tool that informs developers
of changes that are taking place in a software
project and the source code influenced by them
[23]; and Semantic Conflict Analyzer (SCA) to
detect semantic interference between parallel
changes [24]. Branching and merging strategies are
usually taken into consideration when using these
tools.

2.2.3 Change Tracking
Change tracking tools are used to monitor the
project status and implementation progress.
Depending on the type of artifacts, normal project
management tools can also be used as tracking tools
i.e. word documents or excel workbook. Tracking
technical changes would require specialized tools
for example tracking changes to single line of code
as opposed to entire files [25]; detecting changes
between versions of source code [26]; mechanism
for history-based changes [27]; personalizing
change notification feed [28]; expressing fine-

grained changes [29]; scoping change impact
analysis technique [30]; and automatically
identifying a minimal number of code
modifications across revisions [31].

2.2.4 Building
Software building tools are used to manage the
selection and compilation of source codes into
standalone software artifact(s). There are a number
of commercial tools for supporting this process
including Make (including derivations), Apache Ant
(non-Make-based), GNU Build system (script-
based), and Microsoft’s Team Foundation Server
(integration tool). Specialized tools include the
integration of security checks to enhance system’s
usability and software quality [32]; and definition
of reusable, parameterized and interconnected
builders [33].

In addition to these tools, there are also SCM
tools based on the type of software project for
example SCM for Software Product Line [34]; for
Model-Driven Engineering through MOD2 SCM, a
configuration tool based on features from a
comprehensive feature model [35]; for Component-
Based Systems through a framework for managing
life-cycle evolution of heterogeneous component
systems [36]; for Open-Source Systems through
TRICA, an open source framework consisting of
Subversion, Trac, and Hudson [37]; for Unified
Models through Sysiphus, a tool for collaborating
over software engineering artifacts following the
RUSE model [38]; for Clone Management through
Clever, a clone-aware SCM system [39]; and for
the Cloud through Cored, a collaborative
development environment using social media [40].

2.3 Documentation
The ultimate result of the SCM process is the

SCM Plan (SCMP), a “living document” which
serves as a reference for the project and updated
throughout the software life-cycle [3,41]. A typical
SCMP would include 4 types of documentation:
Management, Activities, Schedules and Resources.

2.3.1 SCM Management
SCM Management explicitly defines, among other
things, the organization, responsibilities,
authorities, policies and procedures that need to be
observed throughout the SCM project. Examples of
documentation include SCM organization chart,
life-cycle process, tool selection, and branching/
merging strategies.



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4

2.3.2 SCM Activities
SCM activities record the progress as well as
executive decisions made throughout the project.
These include the identification and selection of
configuration items; the Change Control Board;
change implementation status; audits; software
building and others.

2.3.3 SCM Schedules
SCM Schedules coordinates activities and records
key milestones in the project. Examples include
version and baselines releases, audits, and change
implementation.

2.3.4 SCM Resources
SCM Resources records the use of resources
throughout the project including tools, physical
assets, and human capitals.

2.4 Status of SCM
SCM can be seen as a mature area in software

engineering with a solid theoretical foundation and
a wealth of professional tools to support its
implementation. The Process is well established
and documented in international standards whilst
Tools are commercially available. Documentations
too are evolving based on the process adapted as
reported by the industry and academia.

With that in mind, this study is interested to
answer the material question of “does the practice
of SCM (in the industry) agrees with SCM best
practices?”. Specifically, this study hopes to (1)
identify the Process involved in SCM; (2) to
identify the tools used to support SCM
implementation; and (3) to identify of the types of
Documentation used in software projects in
Malaysia.

3. RESEARCH TOOL

Questionnaire was selected as the tool for this
study. The questionnaire was sent to group of 4
experts representing the target respondents
(Government, IT Company, IHLs), asking them to
evaluate the suitability, consistency of term, and the
measurement used in the questionnaire. These
experts include software development team senior
managers and technical group leaders in their
organization. Two significant comments by this
group were the language used and length of the
questionnaire. The questionnaire was re-drafted, the
length revised, and a Malay version was included.

3.1 Questionnaire
The final version has 40 questions in 6

sections: Organization Background; Conformance;
Control; Audit; Delivery; and Software
Configuration Management (Appendix 1).

3.1.1 Organization Background
This section identifies the background of
respondents (organizations). There are 5 questions
in this section and the information sought includes:
type of organization; nature of business; number of
employees; location of organization; and the
number of software projects undertaken in the past
12 months.

3.1.2 Conformance
This section concerns the conformance issues faced
by organizations in software projects. There are 7
questions in this section and the information sought
includes: type of conformance requirements by
external and internal stakeholders; type of software
quality factors used in software projects; and
documentation of conformance requirements and
software quality factors.

3.1.3 Control
This section concerns the change control process in
software projects. There are 9 questions in this
section and the information sought includes: type of
tools used in software projects; changes to software
artifacts; procedure for change request; and
documentation of project tools and artifacts.

3.1.4 Audit
This section concerns the audit process in software
projects. There are 5 questions in this section and
the information sought includes: type of audits;
frequency of audits; software quality audits; and
documentation of audit results.

3.1.5 Delivery
This section concerns the delivery of software.
There are 6 questions in this section and the
information sought includes: the use of software
library; artifacts included in software delivery;
number of overdue software projects; revised
software projects due to software quality issues;
and average completion time of overdue projects.

3.1.6 Software Configuration Management
This section concerns the versioning of artifacts and
report generation in software projects. It also
identifies the familiarity of respondents to SCM.
There are 8 questions in this section and the
information sought includes: versioning and



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5

baseline exercise; reporting tools; and the use of
specific SCM tools.

3.2 Respondents
This study aims to get a general view of SCM

practice in Malaysia and therefore, the Government
(Public Sector), IT Companies (Private Sector), and
Institutes of Higher Learning (IHLs) were selected
as the respondents of the survey.

3.2.1 Government
This group is represented by the Federal Ministries
of the Malaysian Government. The total number of
ministries identified was 25.

3.2.2 IT Companies
This group is represented by software development
companies registered with The National ICT
Association of Malaysia (PIKOM). PIKOM has
more than 1000 member companies, involved in a
wide spectrum of ICT products and services,
dominating 80% of the total ICT trade in Malaysia.
The total number of companies identified was 139.
These companies were directly involved in
software development projects.

3.2.3 Institutes of Higher Learning
This group is represented by the Public and Private
Institutions of Higher Education as listed by the
Ministry of Higher Education. The total number of
IHLs identified was 46.

3.3 Distribution
The survey was prepared using Google Forms

and distributed by e-mail (Google Mail). E-mail
addresses were obtained through the official
websites of respondents. The questionnaires were
accessible for 3 months before the links were
disabled and responses were no longer accepted.

4. RESULTS

A total of 23 responses were received from all
groups which is approximately 11.0% of the
population. The highest return rate was in from the
Government, followed by IHL and IT Companies at
12.0%, 10.9% and 10.8% respectively (Table 1).

Table 1: Survey Response Rate

GROUP SENT REPLIED %

Government 25 3 12.0

IT Companies 139 15 10.8

IHL 46 5 10.9

TOTAL 210 23 11.0

4.1 Organization Background
The respondents that took part in the survey

comprises of the Government (26%), IT Companies
(58%), and IHLs (16%). IT Companies are divided
into Public Limited Companies (16%), Private
Limited Companies (37%) and Sole Proprietorship
(5%) (Fig. 1).

Fig. 1 Organization Type

42.1% of the respondents have less than 30
full-time employees, 36.8% have between 30 to 75,
and 21.1% have more than 75. The respondents are
involved in Communication & Networking
(26.3%); Consultancy & Professional Services
(36.8%); Creative Design/ Content (21.1%); Data
Centre/ Web Hosting (21.1%); Distributor &
Retailer (21.1%); Education & Training (26.3%);
Internet-Based Business (5.3%); IT Outsourcing
(10.5%); Maintenance (15.8%); Mobile & Wireless
(31.6%); and Software Development/ System
Integrator (89.5%) (Fig. 2).

Fig. 2 Business Nature



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6

The average number of software projects
undertaken in the last 12 months is 24. At the group
level, the average number of software projects
undertaken by the Government is 9, 22 projects by
IT Companies and 37 projects by IHL.

4.2 Conformance
Conformance requirements imposed by

internal and external stakeholders are as follows:
Adherence to specific standards (68.4% and
57.9%); Use of specific resources (31.6% and
63.2%); Scheduling (94.7% and 84.2%); Software
development strategies (15.8% and 73.7%);
Software Configuration Management (10.5% and
57.9%); and Quality Assurance (84.2% and 89.5%)
(Fig. 3).

Fig. 3 Conformance Requirements in Software Projects

Internal and external conformances are
documented by 94.7% of the respondents and
52.6% do not explicitly identify software quality
factors in software projects. Quality factors that are
frequently used in software projects are Functional
Suitability (89%), Performance Efficiency (68.4%),
Reliability (80.5%), and Security (84.7%) (Fig. 4).

Fig. 4 Frequently Used Quality Factors in Software
Projects

Less used quality factors are Compatibility
(5.3%), Usability (5.3%), Maintainability (5.3%),
and Portability (21.1%). Software Quality Factors
are documented by 68.4% of the respondents but

73.7% does not document the techniques for
assessing them.

4.3 Control
Software Development (100.0%), Software

Configuration Management (57.9%), and Project
Management (52.6%) are the most used tools in
software projects. Project Reporting and Quality
Assessment tools are used by 26.3% and 21.1% of
the respondents; and Audit and Project Monitoring
tools are used by 5.3% of the respondents (Fig. 5).
The use of tools in software projects are
documented by 78.9% of the respondents.

Fig. 5 Tools Used in Software Projects

89.5% of the respondents control changes to
software artifacts particularly the Source Code
(84.2%), Requirements Specifications Documents
(78.9%), Tools (47.4%), Business/Process Logic
(36.8), Product Documentation (31.6%), and
Design Documents (10.5%). Audit
(plans/procedures/results/etc.) is not controlled
(Fig. 6).

Fig. 6 Types of Controlled Artifacts in Software Projects

68.4% of the respondents reported that
controlled artifacts are documented. The decision
for artifacts control lies primarily with the Internal
Stakeholders (73.7%). 94.7% have a specific policy
and/or procedure for Change Requests which is



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7

communicated using a standard form (73.7%). The
responsibility for accepting or rejecting Change
Requests lies in the Project Manager (68.4%) and
Other Internal Stakeholders (21.0%) (Fig. 7).
Change Requests usually come from the Internal
Stakeholders (63.2%).

Fig. 7 Change Requests Processing

4.4 Audit
Informal Audits are carried out in all software

projects, performed Periodically (47.4%) and As
Needed (47.4%). The Internal Stakeholders
determines the type of audit and when it will be
carried out (84.2%). 57.9% of the respondents
reported that a separate audit is carried out for
software quality using standard test including
Browser Compatibility Testing (63.2%), Load
Testing (21.1%), Mobile Device Testing (52.6%),
Network Testing (21.1%), Penetration Testing
(26.3%), Security Assessment (21.1%),
Vulnerability Scan (26.3%), Walkthrough (26.3%),
and Others (42.1%) (Fig. 8). Results of audits are
documented by 68.4% of the respondents.

Fig. 8 Types of Quality Audits in Software Projects

4.5 Delivery
84.2% of the respondents use software library

or central repository in software projects and 57.9%
can reproduce previous versions of a software
product easily. Among the artifacts that are
included in software delivery include Product
Documentation (89.5%), Executable Program

(73.7%), Release Notes (73.7%), and Change
Request Documentation (52.6%) (Fig. 9).

Fig. 9 Artifacts in Software Delivery

Overall, an average of 3 software projects
could not be delivered on time; 3 projects were
revised due to software quality issues; and average
time for completion (of overdue project) is 2.3
months. Group averages are 1 overdue project, 1
revised project and 2.7 months completion time for
Government; 3 overdue projects, 3 revised projects
and 2.0 months completion time for IT Companies;
and 4 overdue projects, 4 revised projects and 2.6
months completion time for IHLs.

4.6 Software Configuration Management
Versioning of artifacts are practiced by 94.7%

of the respondents while 78.9% releases baselines
in software projects. Reports that are used in
software projects include Artifacts Report (21.1%),
Audit Report (47.4%), Change Request Report
(31.6%), Conformance Report (10.5%), Software
Development Report (84.2%), Software Quality
Assurance Report (21.1%), Tools Report (21.1%),
and Others (10.5%) (Fig. 10). 57.9% of the
respondents reported that they do not use reporting
tools in software projects.

Fig. 10 Reports Generated in Software Projects

78.9% of the respondents are familiar with the
term “Software Configuration Management” and



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8

68.4% adopt specific SCM approaches and tools.
89.5% agree that SCM could improve the quality of
software products and the management of software
projects in their organization.

The results paint a generalized view of software
organizations in Malaysia with IT Companies
making up most of the industry, followed by IHLs
and Government. Apart from software development
and system integration activities, these
organizations are also involved in Consultancy &
Professional Services; Mobile & Wireless;
Communication & Networking; and Education &
Training. Only a small percentage of the
respondents are involved in Maintenance. The
average number of software projects undertaken is
24 and the percentage of overdue projects is
between 10.8% and 11.3%. Average completion
time for overdue projects is 2.3 months. IHLs have
the highest number of overdue projects which
requires an additional 2.6 months for completion.
Majority of the respondents agree that that SCM
could improve the quality of software products and
the management of software projects in their
organization.

5. DICUSSION AND CONCLUSION
This survey has shed light to the SCM practice

in Malaysia. SCM implementation is quite strong
where the approach for SCM is based on
standardized process; SCM implementation is
supported by commercial tools; and crucial
documentation for project monitoring and
conformance verification are generated throughout
the project. Results indicate that Malaysia is in the
right track for creating a digital economy and
becoming a regional service hub with regards to the
development of critical software applications.

5.1 Process
The SCM practice in Malaysia is sound with

organizations adopting key SCM process.
Versioning of artifacts and releasing of baselines
are exercised; policy and procedures for change
control exist and communicated using standardized
forms; audits are carried out periodically and as
needed; and software libraries are used in software
projects. Decisions for artifacts control; accepting
or rejecting change requests; and type of audit and
schedule lies highly with the Internal Stakeholders.
A slight issue is noted where Design Documents are
not considered part of controlled artifacts. We argue
that these types of document should be controlled
in order to not re-inventing the wheel with prior
designs, hence adding more time to the project.

5.2 Tools
The appreciation and use of SCM support

tools are promising with the majority of the
respondents utilizing commercial tools such as
Serena Dimensions, Borland Calibre, Oracle
Discoverer and Microsoft Office. Although there is
a lack of specialized Project Reporting and Project
Monitoring tools used in software projects, this can
be justified by the use of integrated SCM tools for
project reporting and monitoring purposes.

5.3 Documentation
The documentation efforts in software projects

in general and in SCM in particular are extensively
carried out comprising of internal and external
conformances; software quality factors; controlled
artifacts; and audit results. Main reports generated
include software development, audits and change
requests. There is a minor issue of software quality
evaluation documentation. We argue that software
quality factors and corresponding evaluation
technique(s) should be dictated as early as possible
to guide the project and as proof of conformance of
the software product. We also note that there is
only little effort to include SCM and software
quality documentations in software delivery. We
argue that these artifacts should be included in
software delivery to (1) facilitate future
enhancements to the software product; and (2)
prove of conformance to specific quality standards.

This study has also revealed the possibility of
other influencing factor(s) in successful SCM
implementation. Although several organizations
surveyed have sound SCM process, tools, and
documentation, they too however, experience
project delays and revisions. Perhaps a factor worth
looking into is the role of People or Human in
SCM.

We would like to note that some respondents
have opted not to take the survey since it would
reveal their SCM process and tools. Although is
limits to response of the survey, we assume that a
standardized SCM process and appropriate support
tools are in use.

Directions for future research include the
investigation of Human factor in SCM; quantitative
study on the effects of SCM and software quality
documentations in software delivery; and the role
of controlled artifacts selection in ensuring timely
delivery of software products.



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9

REFRENCES:
[1] Malaysia Digital Economy Corporation

http://mdec.my/ Last accessed Sept 2016.
[2] MSC Malaysia http://www.mscmalaysia.my/

Last accessed Sept 2016.
[3] Bourque, P., and Fairley, R.E. (2014). Guide to

the Software Engineering Body of Knowledge
(SWEBOK Version 3.0). IEEE Computer
Society Press, Los Alamitos, CA, USA.

[4] CMMI Product Team. 2010. CMMI for
Development Version 1.3. Software
Engineering Institute.

[5] International Organization for Standardization.
2003. ISO 10007: Quality Management -
Guidelines for Configuration Management.

[6] Rochkind, M. J. (1975). The Source Code
Control System. IEEE Transactions on
Software Engineering, 1(4): 364–370.

[7] Tichy, W.F. (1982). Design, Implementation,
and Evaluation of a Revision Control System.
In Proceedings of the 6th International
Conference on Software Engineering (ICSE
'82). IEEE Computer Society Press, Los
Alamitos, CA, USA, 58-67.

[8] Estublier, J., Ghoul, S., & Krakowiak, S.
(1984). Preliminary Experience with a
Configuration Control System for Modular
Programs. In Proceedings of the 1st ACM
SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software
Development Environments. ACM, New York,
NY, USA, 149–156.

[9] Leblang, D.B. (1995). The CM Challenge:
Configuration Management that Works. In
Configuration Management, Walter F. Tichy
(Ed.). Wiley Trends in Software Series, Vol. 2.
John Wiley & Sons, Inc., New York, NY, USA
1-37.

[10] Microsoft. (2000). Sourcesafe Product
Documentation, Microsoft, Inc., Seattle, WA.

[11] Sun/Forte. 2000. Teamware Product
Documentation. Sun MicroSystems Inc,
Mountain View, CA.

[12] Pilato, M. (2004), Version Control with
Subversion. O'Reilly & Associates, Inc.,
Sebastopol, CA, USA.

[13] Feldman, S. I. (1979). Make - A program for
Maintaining Computer Programs. Software,
Practice and Experience, 9(3): 255–265.

[14] Wright, A. (1990). Requirements for a Modern
CM System. CaseWare, Inc.

[15] de Rosso, S.P., and Jackson, D. (2013). What's
Wrong with Git?: A Conceptual Design

Analysis. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New
Paradigms, and Reflections on Programming &
Software (Onward! 2013). ACM, New York,
NY, USA, 37-52.

[16] Junqueira, D.C., Bittar, T.J., and Fortes,
R.P.M. (2008). A Fine-Grained and Flexible
Version Control for Software Artifacts. In
Proceedings of the 26th annual ACM
international conference on Design of
communication (SIGDOC '08). ACM, New
York, NY, USA, 185-192.

[17] Koegel, M., and Helming, J. (2010).
EMFStore: A Model Repository for EMF
Models. In Proceedings of the 32nd ACM/IEEE
International Conference on Software
Engineering - Volume 2 (ICSE '10), Vol. 2.
ACM, New York, NY, USA, 307-308.

[18] Mostafa, N., and Krintz, C. (2009). Tracking
Performance Across Software Revisions. In
Proceedings of the 7th International Conference
on Principles and Practice of Programming in
Java (PPPJ '09). ACM, New York, NY, USA,
162-171.

[19] Murta, L., Correa, C., Prudencio, J.G., and
Werner, C. (2008). Towards Odyssey-VCS 2:
Improvements over a UML-Based Version
Control System. In Proceedings of the 2008
International Workshop on Comparison and
Versioning of Software Models (CVSM '08).
ACM, New York, NY, USA, 25-30.

[20] Apel, S., Liebig, J., Brandl, B., Lengauer, C.,
and Kastner, C. (2011). Semistructured Merge:
Rethinking Merge in Revision Control
Systems. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European
Conference on Foundations of Software
Engineering (ESEC/FSE '11). ACM, New
York, NY, USA, 190-200.

[21] Guimaraes, M.L., and Rito-Silva, A. (2010).
Towards Real-Time Integration. In
Proceedings of the 2010 ICSE Workshop on
Cooperative and Human Aspects of Software
Engineering (CHASE '10). ACM, New York,
NY, USA, 56-63.

[22] Sarma, A., Redmiles, D., and van der Hoek, A.
(2008). Empirical Evidence of the Benefits of
Workspace Awareness in Software
Configuration Management. In Proceedings of
the 16th ACM SIGSOFT International
Symposium on Foundations of Software
Engineering (SIGSOFT '08/FSE-16). ACM,
New York, NY, USA, 113-123.



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

10

[23] Servant, F., Jones, J.A., and van der Hoek, A.
(2010). CASI: Preventing Indirect Conflicts
Through A Live Visualization. In Proceedings
of the 2010 ICSE Workshop on Cooperative
and Human Aspects of Software Engineering
(CHASE '10). ACM, New York, NY, USA,
39-46.

[24] Shao, D., Khurshid, S., and Perry, D.E. (2009).
SCA: A Semantic Conflict Analyzer for
Parallel Changes. In Proceedings of the 7th

Joint Meeting of the European Software
Engineering Conference and the ACM
SIGSOFT Symposium on The foundations of
Software Engineering (ESEC/FSE '09). ACM,
New York, NY, USA, 291-292.

[25] Fontana, F.A., and Zanoni, M. (2014).
Tracking Line Changes in Source Code
Repositories. In Proceedings of the 8th

ACM/IEEE International Symposium on
Empirical Software Engineering and
Measurement (ESEM '14). ACM, New York,
NY, USA, Article 68, 1 pages.

[26] Li, Y., Wang, L., Li, X., and Cai, Y. (2012).
Detecting Source Code Changes to Maintain
the Consistence of Behavioral Model. In
Proceedings of the 4th Asia-Pacific Symposium
on Internetware (Internetware '12). ACM, New
York, NY, USA, Article 7, 6 pages.

[27] Omori, T., and Maruyama, K. (2008). A
Change-Aware Development Environment by
Recording Editing Operations of Source Code.
In Proceedings of the 2008 International
Working Conference on Mining Software
Repositories (MSR '08). ACM, New York,
NY, USA, 31-34.

[28] Padhye, R., Mani, S., and Sinha, V.S. (2014).
NeedFeed: Taming Change Notifications by
Modeling Code Relevance. In Proceedings of
the 29th ACM/IEEE International Conference
on Automated Software Engineering (ASE
'14). ACM, New York, NY, USA, 665-676.

[29] Parnin, C., and Gorg, C. (2008). Improving
Change Descriptions with Change Contexts. In
Proceedings of the 2008 International Working
Conference on Mining Software Repositories
(MSR '08). ACM, New York, NY, USA, 51-
60.

[30] Sarma, S., Branchaud, J., Dwyer, M.B., Person,
S., and Rungta, N. (2014). Development
Context Driven Change Awareness and
Analysis Framework. In Companion
Proceedings of the 36th International
Conference on Software Engineering (ICSE

Companion 2014). ACM, New York, NY,
USA, 404-407.

[31] Servant, F., and Jones, J.A. (2012). History
Slicing: Assisting Code-Evolution Tasks. In
Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations
of Software Engineering (FSE '12). ACM, New
York, NY, USA, Article 43, 11 pages.

[32] Braun, B. (2008). SAVE: Static Analysis on
Versioning Entities. In Proceedings of the
Fourth International Workshop on Software
Engineering for Secure Systems (SESS '08).
ACM, New York, NY, USA, 25-32.

[33] Erdweg, S., Lichter, M., and Weiel, M. (2015).
A Sound and Optimal Incremental Build
System with Dynamic Dependencies.
SIGPLAN Not. 50, 10 (October 2015), 89-106.

[34] Anastasopoulos, M. (2009). Increasing
Efficiency and Effectiveness of Software
Product Line Evolution: An Infrastructure on
top of Configuration Management. In
Proceedings of the Joint International and
Annual ERCIM Workshops on Principles of
Software Evolution (IWPSE) and Software
Evolution (Evol) Workshops (IWPSE-Evol
'09). ACM, New York, NY, USA, 47-56.

[35] Buchmann, T., Dotor, A., and Westfechtel, B.
(2013). MOD2-SCM: A Model-Driven Product
Line for Software Configuration Management
Systems. Inf. Softw. Technol. 55, 3 (March
2013), 630-650.

[36] Kaur, P., and Singh, H. (2009). Version
Management and Composition of Software
Components in Different Phases of Software
Development Life Cycle. SIGSOFT Softw.
Eng. Notes 34, 4 (July 2009), 1-9.

[37] Ki, Y., and Song, M. (2009). An Open Source-
Based Approach to Software Development
Infrastructures. In Proceedings of the 2009
IEEE/ACM International Conference on
Automated Software Engineering (ASE '09).
IEEE Computer Society, Washington, DC,
USA, 525-529.

[38] Kogel, M. (2008). Towards Software
Configuration Management for Unified
Models. In Proceedings of the 2008
International Workshop on Comparison and
Versioning of Software Models (CVSM '08).
ACM, New York, NY, USA, 19-24.

[39] Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-
Kofahi, J.M.,and Nguyen, T.N. (2009). Clone-
Aware Configuration Management. In
Proceedings of the 2009 IEEE/ACM
International Conference on Automated



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

11

Software Engineering (ASE '09). IEEE
Computer Society, Washington, DC, USA,
123-134.

[40] Mikkonen T., and Nieminen, A. (2012).
Elements for a Cloud-Based Development
Environment: Online Collaboration, Revision
Control, and Continuous Integration. In
Proceedings of the WICSA/ECSA 2012
Companion Volume (WICSA/ECSA '12).
ACM, New York, NY, USA, 14-20.

[41] IEEE 828 - IEEE Standard for Configuration
Management in Systems and Software
Engineering. (2012). The Institute of Electrical
and Electronics Engineers. (71 pages).



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

12

Appendix 1: Questionnaire On Software Configuration Management Approaches In Malaysia



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

13



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

14



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16



Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

17


