
Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

159

TEST SUITE MINIMIZATION AND EMPIRICAL ANALYSIS
OF OPTIMIZATION ALGORITHMS

1 SRIVIDHYA. J, 2 DR. R. GUNASUNDARI
1 Research Scholar, Department of Computer Science, Karpagam University.

2 Associate Professor & Head, Department of Information Technology, Karpagam University.
E-mail: 1jsrividhya.ku2011@gmail.com, 2gunasoundar04@gmail.com

ABSTRACT

Test suite minimization approaches attempt to minimize the huge number of test suites, time and cost.
Some of the methods are additionally considered for reusing the test suites at the time of software
maintenance which is done by avoiding the redundant test suites from available test suites. Main drawback
of these methods are time consuming processes which directs to fault software testing process. The
previous studies have presented that in sometime this test suite minimization process reduction is severe.
This paper presents three different kinds of test suite minimization approaches such as Gravitational Bee
Search Algorithm with Fuzzy Logic (GCSAFL), Non-dominated Sorting Genetic Algorithm (NSGAII) and
Ant Colony Optimization (ACO) with Particle Swarm Optimization (PSO). These approaches initially
investigate the minimization process and then shows the comparison results in terms of efficiency, time,
cost, path coverage, and fault coverage. The experimental results show that a combination of algorithms
presents the better results.

Keywords: Test Suite Minimization, Gravitational Bee Search Algorithm with Fuzzy Logic (GCSAFL),
Non-dominated Sorting Genetic Algorithm (NSGAII), Ant Colony Optimization (ACO) with Particle Swarm
Optimization (PSO).

1. INTRODUCTION

Software testing is most essential as well as
expensive work in software development process.
For software testing process, the test suites are used
which is also known as test cases and it can run on
the software system to identify the errors. These
kinds of test suites are required to define with their
specification of requirement. The structure of the
test cases is well-defined in IEEE standard [1]. A
set of given test cases execution, inputs and
expected results are implemented for a specific
objective, for example to use a specific program
path or to validate the compliance with a particular
requirement [2].

Basically, the test suite contains all the test cases
which needs to satisfy the all kinds of test
requirement. In that case, the software is fully
developed but test suite raises greater. This
situation becomes unfeasible to run all the test
cases which direct to high testing cost. Thus, the
test suite minimization approaches are utilized to
minimize the test suite and this process directs to
reduce the testing cost respectively. The test suite
minimization approaches create a representative set
from the given original test suite which satisfy the

given requirements as original test suite, however,
it comprises less number of test cases. Here, the
redundant test cases are eliminated from the given
test suite [3]. The redundant test case is defined as
to satisfy the same requirements used by other test
cases.

Therefore, the many researchers have examined the
notion that when the number of test cases in the
same test suite perform the same components of
program, that test suite can be minimized to a
reduced test suite that assures the equivalent test
suite coverage [4]. The main motivation for this test
suite reduction is straightforward which means by
minimize the test suite size and it can be used for
reducing the cost of managing, validating and
executing those test suites over the upcoming
releases of the software. A probable drawback of
test suite minimization, however, which processes
significantly alter the test suite’s fault-detection
capabilities. This tradeoff between the time
required, managing, validating test suites and the
fault. It shows that the effectiveness of test suite’s
fault detection process is central to any kind of
decision to apply test suite minimization.

Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

160

Modern studies about test suite minimization
process suggest, that the previously proposed test
suite minimization processes might create dramatic
reduction in test suite size, at minimum cost with
the effectiveness of fault-detection process. But
they also have some of drawbacks, for example
time consuming process. This paper presents new
three different kinds of test suite minimization
approaches such as Gravitational Bee Search
Algorithm with Fuzzy Logic (GCSAFL), Non-
dominated Sorting Genetic Algorithm (NSGAII)
and Ant Colony Optimization (ACO) with Particle
Swarm Optimization (PSO). These approaches
initially investigate the minimization process and
then show the comparison results of efficiency.
This experimental results show that they are unique
and quite different from previous researches on
comparing five efficiency parameters as objective
criteria such as Number of iterations, Execution
time, Path coverage, fault coverage and statement
coverage, whereas the most of the other researches
only compares maximum two or three objective
criteria on their results.

Also most of the other researches focus on either
test suite minimization or the test-suites
prioritization. This proposed method uniquely
applies both minimization and prioritization
techniques to achieve the most efficient minimized
test suite.

This paper is organized as follows. Section 2
explains the related works and research in this
specific area. Section 3 explains how the test suite
minimization process is achieved by Non-
Dominated Sorting Genetic Algorithm (NSGAII).
Section 4 talks about a hybrid Particle Swarm-Ant
Colony Optimization approach for minimizing the
test suites. Section 5 explains the new proposed
Gravitational Bee Search Algorithm with Fuzzy
Logic (GCSAFL). Section 6 discuss about the
comparison results of the above explained three
algorithms in terms of Number of iteration, Path
coverage, Execution Time, Fault coverage and
Statement Coverage and Assumptions and
Limitations. Finally the conclusion and future work
presented in section 7.

2. RELATED WORK

In [5] author presents a multi-objective test suite
minimization process with the consideration of
minimum execution time and maximum statement
coverage. This proposed work mainly concentrates
on including a multi objective minimization
approach utilizing clustering techniques and

minimal hitting set and also use the weighed
distance function for achieving appropriate clusters.
The minimal hitting set and mixed variable type are
extracted by Hitting Set Directed Acyclic Graph
(HS_DAG) algorithm. But it is not always
practically possible to compute specific weights for
all the objectives, particularly when there are many
objectives. Only a relation between objectives is
definite sometimes, than their weightage.

In [6] author uses the Extended Finite State
Machine (EFSM) model for test case minimization
process and in this work analyze the dynamic
dependencies such as control dependence and data
dependence along with their different interaction
patterns. This proposed approach is called as
dynamic interaction-based prioritization, modifies
the existing approach to improve the fault detection
capability and it also considers the optimization
process to minimize the resource cost. The
contribution of this work is towards prioritization,
whereas the minimization results in terms of most
common objectives like coverage and size of the
test suite were less efficient.

In [7] authors present a method, by modifying an
existing heuristic approach for test suite
minimization process. In this approach, the random
test data generation is done by Genetic algorithm
and this test data is given to the minimization
process, which is used for minimizing the total
number of generated test cases. This process is
named as Hybrid Algorithm (HA). In this work,
only two objectives size and time of execution are
taken into consideration for minimization, but there
are possibilities to lose the effectiveness in terms of
coverage.

In [8] authors present a novel approach to select a
subset of given test cases which uses the set of
requirements for data flow testing. To show the
effectiveness of the proposed algorithm, both the
Bi-Objective Greedy (BOG), and existing Harrold
Gupta and Soffa (HGS) algorithms are employed to
the create the test suites. This work concentrates on
minimization in terms of requirement coverage and
size, but there is possibility for lack of fault
detection.

In [9] author presents a two levels prioritization
method for selecting the test cases and their
particular sequence. Initially, analyze the modified
code blocks and then present the comparative
interaction with the other modules and analyzed.
Depends on the number of interacted modules, first
level of prioritization is processed. The prioritized

Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

161

modules are then examined in terms of their
criticality. The criticality is classified based on the
fault type or the error type in the particular module.
Depends on the criticality, the cost is examined to
prioritize test cases. At the end of this process, the
dynamic programming method is executed to find
the appropriate test sequence, thus the regression
testing cost is reduced. This work only employs the
test case prioritization as EFSM method, with less
contribution to minimization.

In [10] author presents the optimal test case
generation process which depends on the model
driven environment utilizing UML activity
diagrams. In the traditional test case generation
process, huge number of duplicate test cases are
created. This proposed work generates optimal test
suite and reduce the generated test suite by the
model driven testing process. In this proposed
design, the element like modified activity diagram
is used for finding the uncommon and common test
cases. It focuses on the uncommon test cases for
further filtering processes to efficiently utilize the
resources. This work focus on reducing the test
suites in the test case generation itself, however
there are always possibilities to minimize the test
suites post generation.

3. NON-DOMINATED SORTING GENETIC
ALGORITHM (NSGAII)

The NSGAII is different from traditional Genetic
Algorithm (GA) process. The proposed approach
implements the Pareto-ranking method in GA
process which provides the efficient test suite
minimization process. In this process initially the
test case are selected by traditional GA and then the
ranking process is done by dominance rule from a
Pareto front. This work has three different kinds of
steps as follows

 Producing test cases
 Formulating multiple objectives
 Finding optimal solution

The initial test suites are generated randomly (10
sample test suites are considered to-be-minimized)
and defined as T1, T2, T3,…T10. These test suites
are denoted as binary strings and each test case in a
binary string is represented as a bit (1 or 0). Each
test case has their own coverage X1, X2, X3,…Xn
as presented in figure 1. The length of a binary
string represents the maximum number of test cases
in that test suite. Each binary string creates a test
suite and any such test suite in the set can be a

possible solution. The initial test suites are then
sorted in non-dominated fronts.

Figure 1: Chromosome Structure

3.1. Non-dominated Fronts

The obtained test suites are ranked based on two
main objectives such as maximum branch coverage
and minimum test cases. These objectives are
examined by different metrics such as coverage and
size respectively. The size is defined as the number
of test cases and the coverage is defined as the
number of branches. Based on these two different
metrics, the non-dominated fronts are created which
Pseudo code presented in figure 2.

Figure 2: Sorting Test Suites

In the sorted set of test suites, the test suites in the
first front are more dominant than the other fronts,
the sample coverage of test cases are presented in
figure 3.

Figure 3: Sample Coverage

3.2 Test Suite Detection

Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

162

Detect the least qualified test suite from the
available test suites is equal to electing the
appropriate test suites. This approach uses the
crowding distance operator to select the appropriate
test suites. The coverage measure is used for
computing the crowding distance of the test suites
is defined as followcdcv =(cvs+1)- (cvs-1) (1)
Where is defined as the crowding distance and

is defined as the coverage, the test suite’s
measured size is computed by the follows equation.cdsz=(szs+1)-(szs-1) (2)
The overall crowding distance is defined as followscd=cdcv+cdsz (3)

Figure 4: Test Suite Minimization

The overall test suite minimization process is
presented in the form of Pseudo code in figure 4.
This proposed Non-dominated Sorting Genetic
Algorithm efficiently minimizes the test suite
respectively.

4. HYBRID PARTICLE SWARM-ANT
COLONY OPTIMIZATION

This section elaborates, how the test suite
minimization process is achieved by heuristic
hybrid algorithm named as Particle Swarm Ant
Colony Optimization Algorithm (PS-ACO). This
hybrid approach aims to remove or reduce the
redundant test cases and retain the efficient test
suite from the given test suite set. Initially, the
particles are randomly distributed to all over the
given test suites. The number of user requirements
that must be fulfilled is the test suite’s position and
the displacement between original test suite
position and actual test suite position, which is
defined as velocity. For instance, consider the test
suites having four different test cases which means

four requirements as in general is presented in
figure 5.

Figure 5: Test Suites Values based on Requirements
mapping

After this process, each and every test suite
(particle) is checked for the satisfaction of user
requirements. If test cases are not in a processed
test suite which means they does not satisfy the user
defined requirements. They have to be reassigned
to any other new test suites in that same position or
eliminate the specific test suite. After this process,
identify the local best () test suite and
subsequently find global best with their
objective function (). Considering the test cases
X1 and X3 satisfies all the requirements, the
corresponding test suites T1 and T3 are the locally
best.

The same process is executed for the ants. Consider
a particle’s current position which is associated
with ant’s current position. If the ant’s current
position is better than the particle’s, then set that
current position of ant as the current position of
particle and find the objective function ().
Repeating this process until all the given constrains
are satisfied, the resulted test suite is more efficient
than the original. It is proved that the resulted test
suite meets all the requirements during testing
which also shows it is more efficient on removing
redundant test cases and faults detection.

5. GRAVITATIONAL BEE SEARCH
ALGORITHM WITH FUZZY LOGIC
(GCSAFL)

This section focus on the GCSAFL system to
minimize the test suite by finding the optimal set of
test cases which should provide better or same
coverage as the original test suites. The test case
minimization process is done by Gravitational Bee
Search (GBS) algorithm which is integration of two
different algorithms such as artificial bee colony
and gravitational search algorithm. After finding

Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

163

the minimized test suites, the Fuzzy operation is
used for prioritization. This process is used for
efficiently running the optimum test cases at the
time of execution. In this approach, a set of test
suite is chosen from available test suites. The bees
are treated as agents, finds the minimum number of
test cases. The bees start the foraging operation on
randomly selected test cases and add new test cases.
However, after adding the newly discovered test
cases, the bees return to their hive and their
information is communicated by Gravitational
Search process. The proposed GCSAFL algorithm
is as follows

GCSAFL Algorithm

Step 1: Initialize the population of test cases_ [][] by following equation_ [][] = ∗ (−) +
Where is defined as the Upper bound and

is defined as the lower bound

Step 2: Initialize ℎ_ [] =0 , [] = 0 ∀
Step 3: = 0
Step 4: define the
(HV) = 100−1

Step 5: define the() = 1 / (HV + 1)1 + fabs(HV) > 0ℎ
Where HV is defined as hive

Step 6: ℎ_ []= 10 if covers any new pathℎ
Step7: ℎ =100
Step8: = 1 ,= ℎ
Step 9: Repeat steps 10 to 19 till either<

Employed Bee Phase

Step 10: Create new test cases, [], in the
neighborhood of _ [][] for the employed
bees utilizing the following equation:

Solution[k] = Test case [i][k] + (Test case[i][k] –
Test case[n][k]) * (r-0.5) *2

Where is defined as the any test case no. in the
given test suite, k is defined as the parameter to
change in _ [][].
Step 11: Compute fitness and Objective values for
the neighbor bee.

Step 12: Apply Gravitational Force process
between Test_case[i][j] and solution[i].

Step 13 : Increases the count + 1 with newly
discovered path

Step 14: If not Increased[] = [] + 1
End the Phase of Employed Bee

Step 15:Compute the test cases probability values
by the fitness values is as follows:= 1 − (/f)
Where values are standardized into [0, 1]
Onlooker Bee Phase

Step 16 : If >
Generate new test cases [] using
onlookers bees from the defined test cases_ [][] and update the

and of new
onlooker bees

Step 17: Else

Alter the test case _ [][]
Step 18: Repeat steps 11 to step 14.ℎ
Scout Bee Phase

Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

164

Step19: if [] >
Step 20: Alter the test case _ [][]
Step 21:
If

Altered test case does not cover any new path,
Then

Replace the new randomly produced test case
which is done by .ℎ
Step 22: = + 1
6. RESULTS AND DISCUSSIONS

This section presents the comparison analysis of the
proposed multi objective test suite minimization
method GCSAFL with other two existing
minimization methods such as NSGAII, and
PS_ACO. Here we consider, the number of
iterations, path coverage, fault coverage, statement
coverage, execution time as multiple objectives of
this problem and criteria for this analysis is that the
minimized test suites that are better in at least one
objective and not worse in any when compared
with the other approaches. The GCSAFL method’s
minimized test suite is compared with NSGAII,
PS_ACO’s minimized test suites in term of all the
above mentioned objectives.

Table 1 shows the Test Cases Results as below.

Table 1: Test Cases Results

Figure 6: Number of Iteration

It is evidently observed from the Figure 6, that the
proposed test case minimization methods GCSAFL,
NSGAII and PS_ACO give the promising results in
terms of number of iteration, but the GCSAFL
shows the efficient iteration results when compared
with other two proposed optimization methods such
as NSGAII, PS_ACO. The GCSAFL takes the
minimum iteration to process for all the test suites
respectively.

Figure 7: Time

It is evidently observed from the Figure 7, that the
proposed test case minimization methods GCSAFL,
NSGAII and PS_ACO give the promising results in
terms of processing time, but the GCSAFL shows
the minimum time when compared with other two
proposed optimization methods such asNSGAII,
PS_ACO. The GCSAFL takes the minimum time to
process for all the test suites respectively.

Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

165

Figure 8: Path Coverage

It is evidently observed from the Figure 8 that the
proposed test case minimization methods GCSAFL,
NSGAII and PS_ACO give the promising results in
term of path coverage, but the GCSAFL shows the
maximum path coverage when compared with other
two proposed optimization methods such as
NSGAII, PS_ACO. The GCSAFL takes the
maximum path coverage to process all the test
suites respectively. However other two algorithms
also show the granted results.

Figure 9: Fault Coverage

It is evidently observed from the Figure 9 that the
proposed test case minimization methods GCSAFL,
NSGAII and PS_ACO give the promising results in
terms of fault coverage, but the GCSAFL shows the
maximum fault coverage when compared with
other two proposed optimization methods such as
NSGAII, PS_ACO. The GCSAFL takes the
maximum fault coverage to process all the test
suites respectively. However other two algorithms
also show the granted results.

Figure 10: Statement Coverage

It is evidently observed from the Figure 10 that the
proposed test case minimization methods GCSAFL,
NSGAII and PS_ACO give the promising results in
terms of statement coverage, but the GCSAFL
shows the maximum statement coverage when
compared with other two proposed optimization
methods such as NSGAII, PS_ACO. The GCSAFL
takes the maximum statement coverage to process
all the test suites respectively. However other two
algorithms also show the granted results.

Based on the comparison analysis above, the
proposed method is approximately 15% to 20%
more efficient than the existing test suite
minimization methods significant to the number of
test cases and execution time. Many times, by many
researchers, it is proven that the hybrid approaches
are more efficient than the base approaches,
likewise the proposed hybrid approach with the
secondary prioritization process layer provides
promising results. With that said, the current and
future researchers needs to focus on hybrid
approaches not only within minimization process
but also with test case generation and prioritization.

Besides that, there are assumptions and limitations
that, the proposed work needs a finalized
requirement collection in the Software Requirement
Specification document and a test data generator
tool or manual process available to create initial test
suite. And due to lack of quality of the sample
compositions, the research was conducted only on
few open source test samples like online booking
by using own proprietary testing automation tool
ECHO.

7. CONCLUSION AND FUTURE WORK

This paper presents three new different kinds of test
suite minimization approaches such as
Gravitational Bee Search Algorithm with Fuzzy

Journal of Theoretical and Applied Information Technology
15th December 2016. Vol.94. No.1

© 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

166

Logic (GCSAFL), Non-dominated Sorting Genetic
Algorithm (NSGAII) and Ant Colony Optimization
(ACO) with Particle Swarm Optimization (PSO)
for efficient test suite minimization process. These
approaches investigates the minimization process
and then the results are compared in terms of
efficiency, time, cost, path coverage, and fault
coverage. The proposed method gives the
promising results and it gives positive feedback in
the evaluation process. The GCSAFL gives the
promising results when compared with other two
algorithms.

The future work is to implement the proposed
algorithm and measure the accuracy and the
performance of different type of requirements and
applications with real data by using open source of
testing automation tools.

REFERENCES

[1] Saif-ur-Rehman Khan, Aamer Nadeem,
“TestFilter: A Statement-Coverage Based Test
Case ReductionTechnique”, IEEE International
Multitopic Conference, PP. 275 - 280, 2006.

[2] Shin Yoo, Mark Harman, “Using hybrid
algorithm for Pareto efficient multi-objective
test suite minimization”, The Journal of Systems
and Software, Vol.83, PP.689–701, 2010.

[3] Rajvir Singh, Mamta Santosh, “Test Case
Minimization Techniques: A Review”,
International Journal of Engineering Research &
Technology (IJERT), Vol. 2 Issue 12, 2013.

[4]Neetu Dabas, Kamna Solanki, “Comparison of
Code Coverage Analysis Tools: A Review”,
International Journal of Research in Computer
Applications & Information Technology
(IASTER), Vol.1, Issue 1, PP.94-99, 2013.

[5] R.Beena, S.Sarala, “Multi Objective Test Case
Minimization Collaborated With Clustering and
MinimalHitting Set”, Journal of Theoretical and
Applied Information Technology, Vol.69 No.1,
PP.200- 210, 2014.

[6] Chris Nitin Adonis Petrus, M.S. Razou, M.
Rajeev, M. Karthigesan, “Model-Based Test
Case Minimization and Prioritization for
Improved Early Fault Detection Capability”,
International Journal of Innovative Technology
and Exploring Engineering (IJITEE), Vol.2,
Issue-5, PP.205-210, 2013.

[7] P Maragathavalli, S. Kanmani, “Test Suite
Minimization using Hybrid Algorithm for GA
Generated Test Cases”, International Journal of
Computers & Technology,Vol. 6, No 1, PP.
279-286, 2013.

[8] Preethi Harris, Nedunchezhian Raju, “A Greedy
Approach for Coverage-Based Test Suite
Reduction”, The International Arab Journal of
Information Technology, Vol. 12, No.1, PP. 17-
23, 2015.

[9] Monika, Paramjit Singh, “A Dynamic
Programming Approach for Fault Optimized
Sequence Generation in Regression Testing”,
International Journal of Scientific &
Engineering Research, Vol.4, Issue 9, PP. 2580-
2586, 2013.

[10] Hetal J. Thanki, S.M.Shinde, “Test Case
Generation and Minimization using UML
Activity Diagram in Model Driven
Environment”, International Journal of
Computer & Organization Trends, Vol.9 No.1,
PP.41-44, 2014.

