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ABSTRACT 

 

RGB-D sensors offer new prospects to significantly develop robotic navigation and interaction capabilities. 

For applications requiring a high level of precision such as Simultaneous Localization and Mapping 

(SLAM), using the observed geometry can be a good solution to better constrain the problem and help 

improve indoor 3D reconstruction. This paper describes an RGB-D SLAM system benefiting from planes 

segmentation to generate lightweight 3D plane-based maps. Our aim here is to produce global 3D maps 

composed only by 3D planes unlike existing representations with millions of 3D points. Besides real-time 

trajectory estimation, the proposed method segments each input depth image into several planes, and then 

merges the obtained planes into a 3D plane-based reconstruction. This allows to avoid the high cost 3D 

point-based maps as RGB-D data contain a large number of points and significant redundant information. 

Our algorithm guarantees a geometric representation of the environment so these kinds of maps can be 

useful for indoor robot navigation as well as augmented reality applications. 

Keywords: RGB-D SLAM systems, Pose Estimation, 3D Planar Features, 3D Planar Maps. 

 

1. INTRODUCTION AND BACKGROUND 

 

The problem of Simultaneous Localization and 

Mapping (SLAM) describes the process of a robot 

simultaneously building a map of its unknown 

environment and localizing within this map while 

exploring the environment. This problem has been a 

highly active field of robotics research in the last 

two decades. Depending on used sensors and 

desired world representation, several approaches 

have been proposed. Thus, it continues to receive 

further interest especially since the emergence of 

low-cost RGB-D Cameras. Due to dual information 

that it records (color and depth images), these 

sensors have been a topic of intensive research. 

Proposed works using RGB-D sensors to resolve 

the SLAM problem have taken two main 

approaches: Sparse point-based SLAM systems as 

in [1, 2] and dense visual SLAM methods like 

KinectFusion and related methods [3, 4, 5]. 

Although the purpose is the same, the two 

approaches diverge in the modeling and processing. 

Dense RGB-D SLAM systems, commonly based on 

sophisticated equipment, such as high performance 

graphics hardware, were introduced by Newcombe 

et al. in the well-known Kinect Fusion [3, 6]. It is a 

real-time dense mapping voxel-based system which 

integrates all depth measurements into a volumetric 

data structure to create highly detailed maps. 

However, high memory consumption restricts the 

system to small workspaces and the algorithm 

presents failures in environments with poor 

structure. To overcome these limitations, Whelan et 

al. proposed a moving volume method [4] as an 

extension to KinectFusion. By moving the voxel 

grid with the current camera pose, they overcome 

the restricted area problem in real-time. Keller et al. 

[5] proposed a more efficient solution supporting 

spatially extended reconstructions with a fused 

surfel-based model of the environment. Unlike 

voxel-based reconstruction, they proposed a point-

based fusion representation. To estimate camera 

poses, all these dense systems use an iterative 

closest point (ICP) [7] algorithm by tracking only 

live depth data. Fully dense methods enable good 

pose estimation and high quality scene 

representation. However, they tend to drift over 

time and are unable to track the sensor against 

scenes with poor geometric structure. To overcome 

high computational costs, these approaches use 
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specialized hardware such as GPU which may not 

be available on the chosen platform. 

Unlike previous systems, sparse feature-based 

SLAM approaches are based on visual odometry. 

To estimate transformations between poses, these 

systems use visual features correspondences with a 

registration algorithm as RANSAC [8] or ICP. The 

algorithm developed by Henry et al. [1] was one of 

the first RGB-D systems which use visual features 

in combination with GICP [9] to create and 

optimize a pose graph SLAM and represent the 

environment by surfels [10]. A Graph-Based SLAM 

modeling [11] consists in constructing a graph 

which nodes are sensors poses and where edge 

between two nodes represents the transformation 

(egomotion) between these poses. This formulation 

enables a graph optimization step which aims to 

find the best nodes configuration that produces a 

correct topological trajectory and easier loop-

closures detection when revisiting the same areas. 

Following the same path, Endres et al. [2] proposed 

a graph-based RGB-D SLAM which became very 

popular among Robotic Operating System (ROS) 

users due to its availability (wiki.ros.org/rgbdslam). 

This system is also a graph-based SLAM. The 

implementation and optimization of the pose-graph 

is performed by the G
2
o framework [12], and to 

represent the environment, 3D occupancy grid maps 

are generated using the OctoMapping approach 

[13]. This algorithm offers a good trade-off between 

the quality of pose estimates and computational 

cost. Typically, sparse SLAM approaches are fast 

due to the sensor’s egomotion estimation based on 

sparse points. In addition, such a lightweight 

implementation can be embedded easily on mobile 

robots and small devices such as a Turtlebot robot 

(www.turtlebot.com). However, the reconstruction 

quality is limited to a sparse set of 3D points. This 

leads to many redundant and repeated points in the 

map and lacks semantic description of the 

environment. 

Recently, perceiving the geometry of 

environmental surrounding robots has become a 

research field of great interest in computer vision. 

Indeed, the use of some geometric assumptions is a 

crucial prerequisite for robots applications 

especially augmented and virtual reality or mobile 

robot navigation. In such applications, the role of 

SLAM systems progressed beyond pure localization 

towards generating 3D models of the environment. 

Current RGB-D SLAM systems begin to pay a 

significant interest to geometric primitives in order 

to build three-dimensional (3D) structure. As they 

are extremely common for indoor environments and 

easily deduced from point clouds, 3D planes can be 

relevant. Thus, several works tend to use them as 

primitives to improve localization and mapping 

results. Indeed, using planes instead of raw point 

clouds has several advantages including data 

reduction, fast matching, and fast rendering in 

visualization. 

One of the earliest RGB-D SLAM approaches 

incorporating planes has been developed by Trevor 

et al. [14]. They combined a Kinect sensor with a 

large 2D planar laser scanner to generate both lines 

and planes as features in a graph based 

representation. Data association is performed by 

evaluating the joint probability over a set of 

interpretation trees of the measurements seen by the 

robot at one pose. Taguchi et al. [15] presented a 

real-time bundle adjustment system combining both 

3D point-to-point and 3D plane-to-plane 

correspondences. Their system shows a compact 

representation but a slow camera tracking. This 

work was extended by Ataer-Cansizoglu et al. [16] 

to find point and plane correspondences using 

camera motion prediction. However, the constant 

velocity assumption used to predict the pose seems 

to be difficult to satisfy when using handheld 

camera. The RGB-D SLAM system [5] was 

extended by Salas-Moreno et al. [17] to enforce 

planarity on the dense reconstruction with 

application to augmented reality. In a recent work, 

G. Xiang and T. Zhang [18] proposed an RGB-D 

SLAM system based on planar features. From each 

detected 3D plane, they generate a 2D image and 

try to extract its 2D features points. These extracted 

points are back-projected on the depth to generate 

3D features points used to estimate the egomotion 

with ICP. More recently, Whelan et al. [19] 

performed incremental planar segmentations on 

point clouds to generate a global mesh model 

consisting of planar and non-planar triangulated 

surfaces. In [20], the full representation of infinite 

planes is reduced to a point representation in the 

unit sphere �3. This allows parameterizing the 

plane as a unit quaternion and formulating the 

problem as a least-squares optimization of a graph 

of infinite planes. 

Likewise, we focused on searching alternative 

3D primitives in our works and obviously planes 

can be relevant in structured indoor scenes. 

Previous approaches used the detected planes to 

build 3D maps using compressed or raw point 

clouds. Unlike these works, we use 3D planes to 

deal with sensor noise and to avoid redundant 

representation in a sparse RGB-D SLAM system. 

As human living environments are mostly 
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composed of planar features (floor, walls, 

desks...etc.), such techniques are suitable to 

overcome the sensor's weakness without using a 

dense approach. Indeed, the low-cost sensor suffers 

from noisy data especially noise in depth values and 

missing depth data which makes pose estimation 

difficult in SLAM systems. Moreover, each 

registered point cloud from an RGB-D sensor 

contains 307200 points and requires 3.4 Megabytes 

in memory. Due to the large number of points and 

significant redundant information, resulting maps 

assembling several point clouds are featureless and 

require a heavy rendering process for visualization 

which leads to memory inefficiency. In this paper, 

we address these problems based on our previous 

work introduced in [21]. Using planar assumptions 

on the observed geometry, we will generate a 

minimal significant representation of the 

environment based on planes.  

Our contributions in this paper are three-fold: 

i.We support the use of 3D planar features as an 

alternative to simple 3D points. ii.We propose a 

simple formulation to generate structured and 

reduced plane-based maps. iii.We show 

experimental results for localization and mapping 

using RGB-D data. 

The reminder of this paper is organized as 

follows: In the following section we detail the core 

of our system. Section 3 contains experiments and 

results. Finally, Section 4 reports the conclusion 

and future works. 

2. SYSTEM OVERVIEW 

 

The schematic representation of our 

system is shown in Figure 1. Our starting point was 

inspired by RGB-D SLAM system introduced by 

Endres et al. [2]. It's a real-time graph-based SLAM 

using visual features. In our approach, we focus on 

improving RGB-D SLAM quality by taking 

maximum advantage of RGB-D data. We 

introduced 3D planar features and surfaces into the 

process. Our system detects 3D planes from the 

input data and generates a planar model of the 

environment by merging planes into a global map. 

System inputs are color images and depth maps 

(RGB-D data). The front end is responsible for data 

acquisition and association. It consists in extracting 

primitives from raw data and generates estimated 

transformations between frames. To estimate 

transformations here we use 3D planar features 

which are the projection of 2D feature points onto 

3D planes. In the backend, the graph is constructed 

by adding new nodes whenever a transformation 

between two frames exists. This transformation 

represents an edge between the new node and the 

previous one in the graph. Then, a graph 

optimization occurs to reduce pose estimation 

errors on each node. Instead of the usual map 

construction, we generate a global 3D planar map 

into which all correspondent planes will be merged. 

2.1 Planes Measurements 

 

We start by introducing planes detection and 

representation. Then, we discuss our 3D planar 

features formulation. 

2.1.1 detection and representation 

 

Planes detection is performed using only 

depth information by the Point Cloud 

Library (PCL) which extracts co-planar 

points sets. In our case, we are looking for 

planes into the full point cloud, so we 

perform a multi-plane segmentation with 

an iterative RANSAC to find the k most 

prominent planes. At each stage we detect 

the plane containing the maximum number 

of inliers points. Then, we remove these 

inliers from the point cloud and extract the 

next plane while the number of inliers of 

the new plane is still significant. 

Detected planes are parameterized by  

�= (��,	��,	��,	�)
Т
 where � =( ��,	��,	��,)

 

Т
 is the normal vector and d is the distance 

from the origin.  

A 3D point 	 = (
, �, �) lying on a plane 

satisfy the familiar plane equation 

 ��
 + ��� + ��� = -	�, otherwise written 

as: 

�	 = -	� (1) 

 

This equation will be used to generate our 

3D planar features detailed in the next 

section. We also denote N the number of 

inliers points to a plane.  

In the sequel, each detected plane will be 

defined by �[�, �, N]. These parameters 

will be useful during planes matching and 

merging on the global map construction. 
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2.1.2 planar features 

 

3D planar features are an alternative to the 

usual 3D feature points as they are 

projected on detected 3D planes rather 

than the raw depth map. The generation of 

these 3D planar features begins with 3D 

planes detection from point clouds and 

visual 2D feature point’s extraction from 

RGB images concurrently. For each 2D 

feature points we retrieve the depth value 

and check them against registered planes. 

3D feature points belonging to a plane are 

kept and others are rejected. In addition, 

we performed a regularization step by 

projecting all kept features points 

satisfying a plane equation into their 

respective plane model. 

This choice is relevant since depth maps 

provided by the Kinect sensor are noisy 

and contain missing depth values. The idea 

here is to benefit from 3D planes detection 

which could minimize 3D points 

measurement errors. Studies conducted in 

[18] and [15] agree that the planar 

primitives are more robust to noise. Hence, 

planar features are safer than the usual 

ones which leads to more accurate pose 

estimation while preserving robustness and 

processing time by using fewer features 

than raw depth maps. 

 

 

 

 

2.2 Egomotion Estimation and Graph 

Construction 

 

Following the original method of Endres et al.  

[2], our system uses RGB-D data provided by 

the sensor to estimate camera's egomotion. The 

aim is to exploit these data efficiently while 

keeping the process fast and robust. Here we 

use the introduced 3D planar features for 

frame-to-frame transformation estimation. 

First of all, current frame's 2D features points 

descriptors are matched against already 

existing frames. Then, corresponding 3D 

planar features to the matched 2D features 

points in each frame are stored in two separate 

sets. An initial rigid transformation is 

estimated using these sets by a Singular Value 

Decomposition method [22] and refined with 

an iterative RANSAC. The pose graph SLAM 

construction begins by adding a first node 

when the first received frame contains enough 

features. Starting from this first node, a new 

node is added to the graph every time a 

transformation between two frames exists. 

Once the new node is added, the edge linking 

it to the previous one represents the estimated 

transformation. The constructed graph can be 

modeled as a nonlinear least-squares problem. 

This allows optimizing the graph and then 

finding the optimal trajectory by minimizing 

an error function. 

 

 

 

Figure 1: Overview of our RGB-D SLAM system. The system extracts 3D planes and 2D features points separately 

as measurements from Depth and RGB data. 2D features points belonging to detected planes are projected onto 

these planes as 3D planar features points. Then, we generate an estimated transformation between two camera's 

poses using these 3D features points. The graph optimization step tries to find the best poses configuration and then 

generate an optimized trajectory. Global planar map's update either merges the newly registered planes to the 

existing ones, or by adds them as new planes. 
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2.3 Planes merging and Map Representation 

 

As mentioned before, the goal is to produce 

lightweight 3D planar maps which can be 

useful for indoor robot navigation and 

augmented reality applications. This can be a 

very efficient choice for low-cost applications 

to avoid existing 3D point clouds 

representations which are highly redundant 

and require memory resources. Our system 

detects planar regions in the scene and grows 

planar structure in the map over time. Based 

on the detected planes and the estimated 

transformation in each added pose, this map 

will be constructed and updated. This is done 

by adding new 3D planes but also by merging 

the matched ones to the already mapped 

planes. To construct the global map, planes 

must be represented in the same 3D 

coordinates system. Let the global coordinates 

system be the first node added into the graph. 

In each node addition, we store the 

transformation leading to this node. As the 

planes detection is performed in local frames, 

registered planes can be transformed from the 

camera to world coordinates system using the 

egomotion obtained during the registration 

step. If the matrix M (Rotation R and 

Translation t) represents this transformation, a 

3D point pw into the world coordinates can be 

found easily using its correspondent point in 

the camera pc by the well-known equation: 

	�= �	�+ � and conversely 	�= �	�- � 	�. 

If pc lies in a plane (1): 

��
	�� 		� �	�

 	�� � 	��� 

�	��
 	��	� � 	���� �	��

� 	�� 
����

		� � 	��� 
 

With ��= ���and ��= ��- ��
�	� 

Then, a plane in world coordinates is defined 

by its normal vector and distance �� (��, ��). 

Once these parameters are defined, we proceed 

to the matching step in order to merge the 

corresponding planes or add new ones in the 

global map. Whenever new parts of the same 

plane are detected and matched, we generate a 

new resulting plane by merging the new parts 

to the existing plane. If no correspondence can 

be found, the detected part is added to the map 

as a new plane. To check planes 

correspondence, we use a simple method. We 

perform a plane-to-plane comparison against 

all planes in the map. A detected plane is 

matched to an existing one if the angle and 

distance between them don't exceed a 

threshold set successively to 10 degrees and 

5cm. If a new plane ��matches to an already 

registered one	��, they are merged together in 

a new resulting plane according to their 

respective 3D inliers points populations Ni and 

Nj by a simple linear interpolation.  

To represent a plane in the map, we also need 

its bounding box as well as its equation. When 

detected in the local frame, a point cloud of 

inliers points to the plane is stored and then 

projected into the world coordinates after the 

egomotion estimation. Then, we proceed to a 

Singular Value Decomposition (SVD) of this 

point cloud to find its main axis vectors and 

consequently the bounding box according to 

these vectors. Once known, these bounding 

boxes will be used to represent the plane in the 

3D global map. When the merging step 

happens, the bounding boxes of concerned 

planes are compared and the extremes are used 

to update the merged plane model. Even more 

than planes models, our map contains 

theoretical intersections between these planes. 

Planes intersections are generated using an 

adjacency criterion. We represent this 

intersection by lines and points when two or 

three planes intersect. This makes our map 

more significant and workable for other 

applications, and represents a first step towards 

a more semantic map. 

 

3. RESULTS AND DISCUSSION 

 

This section presents online experimental 

results using data acquired with a Kinect v1. 

Experiments were performed on a PC with Intel 

Core i5-2400 CPU at 3.10GHz×4. As mentioned 

before, planes are detected on depth maps using 

PCL 1.7 stable version with plane thickness 

threshold set to 1.5cm. All points exceeding this 

threshold are then rejected. The three mains planes 

containing at least 700 inliers points are detected on 

each point cloud. Detecting further planes may 

introduce a lot of irrelevant small planar patches. 

To evaluate the performances of our system we 

used a limited office scene mostly composed of 

planes. A series of experiments performed in this 

scene are shown in the three following subsections. 

3.1 Planes quality 

 

We began by evaluating planes detection 

quality against 3D point clouds size in order to 

determine the influence of this parameter on 

the overall performance of our system. 
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By default the resolution of Kinect images is 

640×480. The resulting point cloud contains 

307200 points which requires several seconds 

for planes detection. Hence, a subsampling step 

seems essential to allow online data acquisition 

and processing with the Kinect 30Hz update 

rate. This is often used by sparse systems to 

overcome computational time. So we used a 

subsampling factor λ when creating a point 

cloud. This subsampling factor reduces the 

depth image dimensions. Then, we studied the 

impact of subsampled data on the quality and 

speed of planes detection over effective 

distances. We performed specific experiments 

on a plane placed in front of the Kinect. For 

each distance we changed the subsampling 

factor λ and observed the detected planes. 

Table 1 details results of these experiments. 

First, for each experiment, we considered 

runtimes for planes detection, estimated 

distances and the number of erroneous detected 

extra planes. An initial conclusion from these 

three columns can lead to favor the 

subsampling factor λ=4 considering the trade-

off between runtime and planes estimation 

quality. 

Second, we checked the impact of the number 

of inliers points on each detected planes. To 

provide more information about the quality of a 

plane, the average and standard deviation of 

the distance of its inliers points to the estimated 

plane model are shown. Obviously, from the 

Table 1: Impact Of Subsampled Data On Planes Detection. 
 

Effective 

Distance (m) 

Subsampling 

Factor λ 

Estimation 

Runtime (s) 

Distance to the model 

Avg ± Std. Dev 

Estimated 

Distance (m) 

Number of Erroneous 

detected planes 

1.5 

1 2.37 0.004m ± 0.003m 1.49 0 

2 0.23 0.004m ± 0.003m 1.48 0 

4 0.07 0.004m ± 0.003m 1.49 0 

2.5 

1 7.26 0.006m ± 0.004m 2.44 1 

2 1.78 0.006m ± 0.004m 2.41 2 

4 0.40 0.006m ± 0.004m 2.41 0 

3.5 

1 7.57 0.006m ± 0.003m 3.32 2 

2 1.72 0.006m ± 0.004m 3.37 1 

4 0.40 0.007m ± 0.004m 3.36 0 

 

 
 

Figure 2: Variations In The Number Of Inliers Points 

(Of The Detected Plane) According To The Factor Λ 

And Distance From The Camera. 

 
 

Figure 3: Variations In The Number Of Planar 

Features According To The Factor Λ And Planes 

Distances. 
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same distance, results are similar for all 

detected planes even if the number of inliers 

decreases over subsampling (Figure 2). 

Moreover, this number doesn't affect the 

estimated distance. 

Nevertheless, the number of inliers 3D feature 

points is inversely proportional to the distance 

from the plane (Figure 3). Finally, we can 

notice that planes detection quality decreases 

with the distance as the depth noise becomes 

greater than the plane thickness threshold. As 

the depth noise increases with distance, planes 

detection over 3.5m cannot be performed. 

Analysis of these results allowed us to choose 

subsampling data with factor 4 as it doesn't 

degrade the detected planes quality and enables 

real time processing. We also notice that angles 

errors between detected planes do not exceed 6 

degrees in any case. 

 

3.2 Planar features and motion estimation 

 

Accuracy of generated trajectories and 

runtimes of our approach was evaluated against 

benchmark data in our previous work [21] 

(Section 4.1 Benchmark datasets). Evaluations 

have shown that we significantly reduced the 

egomotion run-time while keeping a good 

accuracy of the estimated trajectories over the 

compared approaches. Here we evaluated 

rotational errors of our system over another 

ground truth means provided by a graduated 

tripod allowing rotations around three axes. 

The Kinect camera was mounted on the tripod 

and we proceeded to several rotations in front 

of a plane. With each rotation we recovered the 

estimated rotation and checked it over the 

measured one. Notice that the tripod error is 

about 1 degree. Table 2 shows the estimated 

rotations against distances from the plane.  
For each n-degrees effective rotation, we 

performed 30×n-degrees deviations and 

computed the average and standard deviation 

of the estimated rotations. We also exchanged 

the distance from the plane to define operating 

conditions and limits of our system. For planes 

close and slightly far from the camera, results 

show a good estimation considering the tripod 

error. For these planes the rotation limit is set 

to 45 degrees to obtain at least 8 inliers in the 

feature matching set in order to accurately 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: 3D Planar Map Resulting From Our System.  

(A) Generated Planes And Their Corresponding In The Point Cloud. (B) Our Planar Map With Planes 

Intersections. (C) Overhead View Comparison Between Point-Based Map (Top) And Plane-Based Map (Bottom). 

Table 2: Results Of Estimated Rotations Obtained 

With The Presented System According To The 

Distance. 
 

Rotation 

(Degree) 

Estimated Rotation (Avg ± Std. Dev.) 

1.25(m) 2.1(m) 3.3(m) 

05° ± 1° 05.1° ± 0.4° 04.8° ± 0.4° 04.7° ± 0.7° 

10° ± 1° 09.3° ± 0.5° 10.7° ± 0.9° 10.4°± 0.9° 

20° ± 1° 19.4° ± 0.3° 19.6° ± 0.6° 19.1° ± 1.2° 

30° ± 1° 30.5° ± 0.7° 30.7° ± 1.1° 29.9° ± 2.3° 

45° ± 1° 44.0° ± 0.3° 46.9° ± 1.9° * 
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estimate the transformations. As expected, 

errors of the estimated rotation increase with 

the distance and effective rotation. Planes 

located halfway to the detection distance limit 

(Previously estimated at 3.5m) are sensitive to 

camera rotations which shouldn't exceed 20 

degrees. These rotations must be considerably 

smaller for planes closer to the distance limit. 

For very far planes, 45 degrees rotations cannot 

be achieved because it leads to detect other 

planes in the scene with features unmatchable 

with the old ones. These experiments support 

results obtained in our previous work 

concerning motion estimation accuracy using 

the planar features and show our system’s 

limits to keep good performance. 

 

3.3 Plane-based 3D Maps 

 

Here we show qualitative results of our 3D 

plane-based map for the office scene captured 

in real time. The Kinect was mounted on a 

movable support that enables it to be placed 

everywhere within the scene. The office scene 

contains 10 planes with various sizes set in 

different locations and features several parallel 

and intersecting planes. In order to compare 

our planar representation to the point-based 

maps, we kept all point clouds generated in 

each pose and used them to produce a global 

map with the SLAM RGB-D system [2]. 

Figure 4 shows our 3D structured planar map 

with intersections between planes compared to 

the raw point-based map. 

The ratio of planar points in the whole captured 

point cloud is 0.57. The average number of 

observations for each plane is 7.1 while the 

average number of features for each plane is 

69. Except for the rotation limit (45°) between 

frames, the reconstruction of this scene was not 

subjected to any motion or speed constraints. 

The average translations and rotations between 

poses are respectively 0.1m and 15 degrees. 

Planes shown in Figure 4-a (left) represent 

their homologous on the point cloud 

simultaneously generated by the system (right). 

Each plane model in the map was generated 

progressively by the merging process described 

before. A plane model is represented by its 

parameters along with its 3D bounding box. 

When two planes are merged, the resulting 3D 

bounding box is increased accordingly. 

Theoretical intersections are also generated 

between adjacent planes. Figure 4-b presents a 

global view of our planar map with computed 

intersections. These intersections are not used 

yet but will ultimately be used to build a 

topological map of the environment. Benefiting 

from our minimal representation, we generated 

a lightweight 3D global plane-based map. 

Figure 4-c shows a top view of our map 

(bottom) compared to the raw map (top) which 

contains 1.363.200 3D points. In addition to its 

heavyweight, the lack of semantic information 

in such map makes it difficult to use in robotic 

motion planning for instance. Unlike the point-

based map our structured map can be easily 

exploited and reused by other applications such 

as augmented reality and mobile navigation. 

 

4. CONCSLUSION 

In this paper we proposed a simple 3D planar 

maps representation for RGB-D SLAM systems. 

Our maps are composed of planar shapes basing on 

detected 3D planes instead of the heavyweight 

point-based representation. During the 

reconstruction process, discovered planar areas on 

the scene are appended to the plane-based map. 

Moreover, all correspondent planes are 

progressively merged together in this map to give a 

compact representation and more information about 

the scene. Thus, we generated dense planar maps 

with significantly reduced sizes without relying on 

a dense approach. In addition, we have evaluated 

planes detection using subsampled data provided by 

the Kinect camera and defined the best tradeoff 

between planes quality and processing time. 

Experimental results with real time processing 

show accuracy of the method. However, our system 

suffers from some limitations such as non-planar 

areas which are not stored in the map and the 

association of planes to objects. Hence, to 

overcome these limitations we intend to combine 

our approach with other methods as a form of 

compression. The idea is to keep non-planar objects 

while generating planar shapes wherever planes are 

detected in the scene. Also, basing on these planar 

maps the next step will consist in associating planes 

to real objects in the scene (such as walls, furniture, 

doors) in order to build a more structured map 

which represents a first step towards semantic 

maps. 

 

 

 

 

 

 

 



Journal of Theoretical and Applied Information Technology 
 30

th 
November 2016. Vol.93. No.2 

 © 2005 - 2016 JATIT & LLS. All rights reserved.   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
410 

 

REFRENCES:  

 

[1]  P. Henry, M. Krainin, E. Herbst, X. Ren, and 

D. Fox. RGB-D mapping: Using kinect-style 

depth cameras for dense 3D modeling of 

indoor environments. International Journal of 

Robotics Research (IJRR), 31(5):647–663, 

Apr. 2012.   

[2]  F. Endres, J. Hess, J. Sturm, D. Cremers, and 

W. Burgard. 3D mapping with an RGB-D 

camera. IEEE Transactions on Robotics, 

30(1):177–187, Feb. 2014. 

[3] R. A. Newcombe, S. Izadi, O. Hilliges, D. 

Molyneaux, D. Kim, A. J. Davison, P. Kohi, 

J. Shotton, S. Hodges, and A. Fitzgibbon. 

Kinect-fusion: Real-time dense surface 

mapping and tracking. In 10th IEEE 

International Symposium on Mixed and 

Augmented Reality (ISMAR 2011), ISMAR 

’11, pages 127–136. IEEE Computer Society, 

Oct. 2011. 

[4]  T. Whelan, M. Kaess, H. Johannsson, M. 

Fallon, J. J. Leonard, and J. McDonald. Real-

time large-scale dense rgb-d slam with 

volumetric fusion. The International Journal 

of Robotics Research, 34(4-5):598–626, 2015. 

[5]  M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. 

Weyrich, and A. Kolb. Real-time 3d 

reconstruction in dynamic scenes using point-

based fusion. In Proceedings of the 2013 

International Conference on 3D Vision,  

DV’13, pages 1–8, Washington, DC, USA, 

2013. IEEE Computer Society 

[6]  S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. 

Newcombe, P. Kohli, J. Shotton, S. Hodges, 

D. Freeman, A. Davison, and A. Fitzgibbon. 

Kinectfusion: Real-time 3d reconstruction and 

interaction using a moving depth camera. In 

Proceedings of the 24th Annual ACM 

Symposium on User Interface Software and 

Technology, UIST ’11, pages 559–568, New 

York, NY, USA, Oct. 2011. ACM. 

[7] S. Rusinkiewicz and M. Levoy. Efficient 

variants of the ICP algorithm. In Proceedings 

of the Third International Conference on 3D 

Digital Imaging and Modeling, (3DIM 2001), 

pages 145 152, May 2001. 

[8] M. A. Fischler and R. C. Bolles. Random 

sample consensus: a paradigm for model 

fitting with applications to image analysis and 

automated cartography. Communications of 

the ACM, 24(6):381–395, June 1981. 

 

 

[9] A. Segal, D. Haehnel, and S. Thrun. 

Generalized-icp. In Proceedings of Robotics: 

Science and Systems, Seattle, USA, June 

2009. 

[10] H. Pfister, M. Zwicker, J. van Baar, and M. 

Gross. Surfels: Surface elements as rendering 

primitives. In Proceedings of the 27th Annual 

Conference on Computer Graphics and 

Interactive Techniques, SIGGRAPH ’00, 

pages 335–342, New York, NY, USA, 2000. 

ACM Press/Addison-Wesley Publishing Co. 

[11] G. Grisetti, R. K¨ ummerle, C. Stachniss, and 

W. Burgard. A tutorial on graph-based 

SLAM. IEEE Intelligent Transportation 

Systems Magazine, 2(4):31–43, winter 2010. 

[12] R. K¨ ummerle, G. Grisetti, H. Strasdat, K. 

Konolige, and W. Burgard. G2o: A general 

framework for graph optimization. In IEEE 

International Conference on Robotics and 

Automation (ICRA 2011), pages 3607–3613. 

IEEE, May 2011. 

[13] A. Hornung, K. M. Wurm, M. Bennewitz, C. 

Stachniss, and W. Burgard. Octomap: An 

efficient probabilistic 3d mapping framework 

based on octrees. Auton. Robots, 34(3):189–

206, Apr. 2013. 

[14] A. J. B. Trevor, J. G. Rogers, and H. I. 

Christensen. Planar surface slam with 3d and 

2d sensors. In Robotics and Automation 

(ICRA), 2012 IEEE International Conference 

on, pages 3041–3048, May 2012. 

[15] Y. Taguchi, Y.-D. Jian, S. Ramalingam, and C. 

Feng. Point-plane SLAM for hand-held 3D 

sensors. In IEEE International Conference on 

Robotics and Automation (ICRA 2013), pages 

5182–5189, May 2013. 

[16] E. Ataer-Cansizoglu, Y. Taguchi, S. 

Ramalingam, and T. Garaas. Tracking an rgb-

d camera using points and planes. In 

Computer Vision Workshops (ICCVW), 2013 

IEEE International Conference on, pages 51–

58, Dec 2013. 

[17] R. F. Salas-Moreno, B. Glocken, P. H. J. 

Kelly, and A. J. Davison. Dense planar slam. 

In Mixed and Augmented Reality (ISMAR), 

2014 IEEE International Symposium on, 

pages 157–164, Sept 2014. 

[18] X. Gao and T. Zhang. Robust rgb-d 

simultaneous localization and mapping using 

planar point features. Robotics and 

Autonomous Systems, 72:1 – 14, 2015. 

 

 

 



Journal of Theoretical and Applied Information Technology 
 30

th 
November 2016. Vol.93. No.2 

 © 2005 - 2016 JATIT & LLS. All rights reserved.   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
411 

 

[19] T. Whelan, L. Ma, E. Bondarev, P. de With, 

and J. McDonald. Incremental and batch 

planar simplification of dense point cloud 

maps. Robotics and Autonomous Systems, 

69:3 – 14, 2015. 

[20] M. Kaess. Simultaneous localization and 

mapping with infinite planes. In Robotics and 

Automation (ICRA), 2015 IEEE International 

Conference on, pages 4605–4611, May 2015. 

[21] H. E. Elghor, D. Roussel, F. Ababsa, and E. H. 

Bouyakhf. Planes detection for robust 

localization and mapping in rgb-d slam 

systems. In 3D Vision (3DV), 2015 

International Conference on, pages 452–459, 

Oct 2015. 

[22] S. Umeyama. Least-squares estimation of 

transformation parameters between two point 

patterns. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 

13(4):376–380, Apr. 1991. 


