
Journal of Theoretical and Applied Information Technology
 30

th
November 2016. Vol.93. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

402

3D PLANE-BASED MAPS SIMPLIFICATION FOR RGB-D

SLAM SYSTEMS

1,2
Hakim ELCHAOUI ELGHOR,

 1
David ROUSSEL,

1
Fakhreddine ABABSA

and
 2
El-Houssine BOUYAKHF

1
IBISC Lab, Evry Val d'Essonne University, Evry, France

2
LIMIARF Lab, Mohammed V University Rabat, Faculty of Sciences Rabat, Morocco

E-mail:
1
{Hakim.ElChaoui, David.Roussel, Fakhr-Eddine.Ababsa}@ibisc.univ-evry.fr,

2
bouyakhf@fsr.ac.ma

ABSTRACT

RGB-D sensors offer new prospects to significantly develop robotic navigation and interaction capabilities.

For applications requiring a high level of precision such as Simultaneous Localization and Mapping

(SLAM), using the observed geometry can be a good solution to better constrain the problem and help

improve indoor 3D reconstruction. This paper describes an RGB-D SLAM system benefiting from planes

segmentation to generate lightweight 3D plane-based maps. Our aim here is to produce global 3D maps

composed only by 3D planes unlike existing representations with millions of 3D points. Besides real-time

trajectory estimation, the proposed method segments each input depth image into several planes, and then

merges the obtained planes into a 3D plane-based reconstruction. This allows to avoid the high cost 3D

point-based maps as RGB-D data contain a large number of points and significant redundant information.

Our algorithm guarantees a geometric representation of the environment so these kinds of maps can be

useful for indoor robot navigation as well as augmented reality applications.

Keywords: RGB-D SLAM systems, Pose Estimation, 3D Planar Features, 3D Planar Maps.

1. INTRODUCTION AND BACKGROUND

The problem of Simultaneous Localization and

Mapping (SLAM) describes the process of a robot

simultaneously building a map of its unknown

environment and localizing within this map while

exploring the environment. This problem has been a

highly active field of robotics research in the last

two decades. Depending on used sensors and

desired world representation, several approaches

have been proposed. Thus, it continues to receive

further interest especially since the emergence of

low-cost RGB-D Cameras. Due to dual information

that it records (color and depth images), these

sensors have been a topic of intensive research.

Proposed works using RGB-D sensors to resolve

the SLAM problem have taken two main

approaches: Sparse point-based SLAM systems as

in [1, 2] and dense visual SLAM methods like

KinectFusion and related methods [3, 4, 5].

Although the purpose is the same, the two

approaches diverge in the modeling and processing.

Dense RGB-D SLAM systems, commonly based on

sophisticated equipment, such as high performance

graphics hardware, were introduced by Newcombe

et al. in the well-known Kinect Fusion [3, 6]. It is a

real-time dense mapping voxel-based system which

integrates all depth measurements into a volumetric

data structure to create highly detailed maps.

However, high memory consumption restricts the

system to small workspaces and the algorithm

presents failures in environments with poor

structure. To overcome these limitations, Whelan et

al. proposed a moving volume method [4] as an

extension to KinectFusion. By moving the voxel

grid with the current camera pose, they overcome

the restricted area problem in real-time. Keller et al.

[5] proposed a more efficient solution supporting

spatially extended reconstructions with a fused

surfel-based model of the environment. Unlike

voxel-based reconstruction, they proposed a point-

based fusion representation. To estimate camera

poses, all these dense systems use an iterative

closest point (ICP) [7] algorithm by tracking only

live depth data. Fully dense methods enable good

pose estimation and high quality scene

representation. However, they tend to drift over

time and are unable to track the sensor against

scenes with poor geometric structure. To overcome

high computational costs, these approaches use

Journal of Theoretical and Applied Information Technology
 30

th
November 2016. Vol.93. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

403

specialized hardware such as GPU which may not

be available on the chosen platform.

Unlike previous systems, sparse feature-based

SLAM approaches are based on visual odometry.

To estimate transformations between poses, these

systems use visual features correspondences with a

registration algorithm as RANSAC [8] or ICP. The

algorithm developed by Henry et al. [1] was one of

the first RGB-D systems which use visual features

in combination with GICP [9] to create and

optimize a pose graph SLAM and represent the

environment by surfels [10]. A Graph-Based SLAM

modeling [11] consists in constructing a graph

which nodes are sensors poses and where edge

between two nodes represents the transformation

(egomotion) between these poses. This formulation

enables a graph optimization step which aims to

find the best nodes configuration that produces a

correct topological trajectory and easier loop-

closures detection when revisiting the same areas.

Following the same path, Endres et al. [2] proposed

a graph-based RGB-D SLAM which became very

popular among Robotic Operating System (ROS)

users due to its availability (wiki.ros.org/rgbdslam).

This system is also a graph-based SLAM. The

implementation and optimization of the pose-graph

is performed by the G
2
o framework [12], and to

represent the environment, 3D occupancy grid maps

are generated using the OctoMapping approach

[13]. This algorithm offers a good trade-off between

the quality of pose estimates and computational

cost. Typically, sparse SLAM approaches are fast

due to the sensor’s egomotion estimation based on

sparse points. In addition, such a lightweight

implementation can be embedded easily on mobile

robots and small devices such as a Turtlebot robot

(www.turtlebot.com). However, the reconstruction

quality is limited to a sparse set of 3D points. This

leads to many redundant and repeated points in the

map and lacks semantic description of the

environment.

Recently, perceiving the geometry of

environmental surrounding robots has become a

research field of great interest in computer vision.

Indeed, the use of some geometric assumptions is a

crucial prerequisite for robots applications

especially augmented and virtual reality or mobile

robot navigation. In such applications, the role of

SLAM systems progressed beyond pure localization

towards generating 3D models of the environment.

Current RGB-D SLAM systems begin to pay a

significant interest to geometric primitives in order

to build three-dimensional (3D) structure. As they

are extremely common for indoor environments and

easily deduced from point clouds, 3D planes can be

relevant. Thus, several works tend to use them as

primitives to improve localization and mapping

results. Indeed, using planes instead of raw point

clouds has several advantages including data

reduction, fast matching, and fast rendering in

visualization.

One of the earliest RGB-D SLAM approaches

incorporating planes has been developed by Trevor

et al. [14]. They combined a Kinect sensor with a

large 2D planar laser scanner to generate both lines

and planes as features in a graph based

representation. Data association is performed by

evaluating the joint probability over a set of

interpretation trees of the measurements seen by the

robot at one pose. Taguchi et al. [15] presented a

real-time bundle adjustment system combining both

3D point-to-point and 3D plane-to-plane

correspondences. Their system shows a compact

representation but a slow camera tracking. This

work was extended by Ataer-Cansizoglu et al. [16]

to find point and plane correspondences using

camera motion prediction. However, the constant

velocity assumption used to predict the pose seems

to be difficult to satisfy when using handheld

camera. The RGB-D SLAM system [5] was

extended by Salas-Moreno et al. [17] to enforce

planarity on the dense reconstruction with

application to augmented reality. In a recent work,

G. Xiang and T. Zhang [18] proposed an RGB-D

SLAM system based on planar features. From each

detected 3D plane, they generate a 2D image and

try to extract its 2D features points. These extracted

points are back-projected on the depth to generate

3D features points used to estimate the egomotion

with ICP. More recently, Whelan et al. [19]

performed incremental planar segmentations on

point clouds to generate a global mesh model

consisting of planar and non-planar triangulated

surfaces. In [20], the full representation of infinite

planes is reduced to a point representation in the

unit sphere �3. This allows parameterizing the

plane as a unit quaternion and formulating the

problem as a least-squares optimization of a graph

of infinite planes.

Likewise, we focused on searching alternative

3D primitives in our works and obviously planes

can be relevant in structured indoor scenes.

Previous approaches used the detected planes to

build 3D maps using compressed or raw point

clouds. Unlike these works, we use 3D planes to

deal with sensor noise and to avoid redundant

representation in a sparse RGB-D SLAM system.

As human living environments are mostly

Journal of Theoretical and Applied Information Technology
 30

th
November 2016. Vol.93. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

404

composed of planar features (floor, walls,

desks...etc.), such techniques are suitable to

overcome the sensor's weakness without using a

dense approach. Indeed, the low-cost sensor suffers

from noisy data especially noise in depth values and

missing depth data which makes pose estimation

difficult in SLAM systems. Moreover, each

registered point cloud from an RGB-D sensor

contains 307200 points and requires 3.4 Megabytes

in memory. Due to the large number of points and

significant redundant information, resulting maps

assembling several point clouds are featureless and

require a heavy rendering process for visualization

which leads to memory inefficiency. In this paper,

we address these problems based on our previous

work introduced in [21]. Using planar assumptions

on the observed geometry, we will generate a

minimal significant representation of the

environment based on planes.

Our contributions in this paper are three-fold:

i.We support the use of 3D planar features as an

alternative to simple 3D points. ii.We propose a

simple formulation to generate structured and

reduced plane-based maps. iii.We show

experimental results for localization and mapping

using RGB-D data.

The reminder of this paper is organized as

follows: In the following section we detail the core

of our system. Section 3 contains experiments and

results. Finally, Section 4 reports the conclusion

and future works.

2. SYSTEM OVERVIEW

The schematic representation of our

system is shown in Figure 1. Our starting point was

inspired by RGB-D SLAM system introduced by

Endres et al. [2]. It's a real-time graph-based SLAM

using visual features. In our approach, we focus on

improving RGB-D SLAM quality by taking

maximum advantage of RGB-D data. We

introduced 3D planar features and surfaces into the

process. Our system detects 3D planes from the

input data and generates a planar model of the

environment by merging planes into a global map.

System inputs are color images and depth maps

(RGB-D data). The front end is responsible for data

acquisition and association. It consists in extracting

primitives from raw data and generates estimated

transformations between frames. To estimate

transformations here we use 3D planar features

which are the projection of 2D feature points onto

3D planes. In the backend, the graph is constructed

by adding new nodes whenever a transformation

between two frames exists. This transformation

represents an edge between the new node and the

previous one in the graph. Then, a graph

optimization occurs to reduce pose estimation

errors on each node. Instead of the usual map

construction, we generate a global 3D planar map

into which all correspondent planes will be merged.

2.1 Planes Measurements

We start by introducing planes detection and

representation. Then, we discuss our 3D planar

features formulation.

2.1.1 detection and representation

Planes detection is performed using only

depth information by the Point Cloud

Library (PCL) which extracts co-planar

points sets. In our case, we are looking for

planes into the full point cloud, so we

perform a multi-plane segmentation with

an iterative RANSAC to find the k most

prominent planes. At each stage we detect

the plane containing the maximum number

of inliers points. Then, we remove these

inliers from the point cloud and extract the

next plane while the number of inliers of

the new plane is still significant.

Detected planes are parameterized by

�= (��,	��,	��,	�)
Т
 where � =(��,	��,	��,)

Т
 is the normal vector and d is the distance

from the origin.

A 3D point 	 = (
, �, �) lying on a plane

satisfy the familiar plane equation

 ��
 + ��� + ��� = -	�, otherwise written

as:

�	 = -	� (1)

This equation will be used to generate our

3D planar features detailed in the next

section. We also denote N the number of

inliers points to a plane.

In the sequel, each detected plane will be

defined by �[�, �, N]. These parameters

will be useful during planes matching and

merging on the global map construction.

Journal of Theoretical and Applied Information Technology
 30

th
November 2016. Vol.93. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

405

2.1.2 planar features

3D planar features are an alternative to the

usual 3D feature points as they are

projected on detected 3D planes rather

than the raw depth map. The generation of

these 3D planar features begins with 3D

planes detection from point clouds and

visual 2D feature point’s extraction from

RGB images concurrently. For each 2D

feature points we retrieve the depth value

and check them against registered planes.

3D feature points belonging to a plane are

kept and others are rejected. In addition,

we performed a regularization step by

projecting all kept features points

satisfying a plane equation into their

respective plane model.

This choice is relevant since depth maps

provided by the Kinect sensor are noisy

and contain missing depth values. The idea

here is to benefit from 3D planes detection

which could minimize 3D points

measurement errors. Studies conducted in

[18] and [15] agree that the planar

primitives are more robust to noise. Hence,

planar features are safer than the usual

ones which leads to more accurate pose

estimation while preserving robustness and

processing time by using fewer features

than raw depth maps.

2.2 Egomotion Estimation and Graph

Construction

Following the original method of Endres et al.

[2], our system uses RGB-D data provided by

the sensor to estimate camera's egomotion. The

aim is to exploit these data efficiently while

keeping the process fast and robust. Here we

use the introduced 3D planar features for

frame-to-frame transformation estimation.

First of all, current frame's 2D features points

descriptors are matched against already

existing frames. Then, corresponding 3D

planar features to the matched 2D features

points in each frame are stored in two separate

sets. An initial rigid transformation is

estimated using these sets by a Singular Value

Decomposition method [22] and refined with

an iterative RANSAC. The pose graph SLAM

construction begins by adding a first node

when the first received frame contains enough

features. Starting from this first node, a new

node is added to the graph every time a

transformation between two frames exists.

Once the new node is added, the edge linking

it to the previous one represents the estimated

transformation. The constructed graph can be

modeled as a nonlinear least-squares problem.

This allows optimizing the graph and then

finding the optimal trajectory by minimizing

an error function.

Figure 1: Overview of our RGB-D SLAM system. The system extracts 3D planes and 2D features points separately

as measurements from Depth and RGB data. 2D features points belonging to detected planes are projected onto

these planes as 3D planar features points. Then, we generate an estimated transformation between two camera's

poses using these 3D features points. The graph optimization step tries to find the best poses configuration and then

generate an optimized trajectory. Global planar map's update either merges the newly registered planes to the

existing ones, or by adds them as new planes.

Journal of Theoretical and Applied Information Technology
 30

th
November 2016. Vol.93. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

406

2.3 Planes merging and Map Representation

As mentioned before, the goal is to produce

lightweight 3D planar maps which can be

useful for indoor robot navigation and

augmented reality applications. This can be a

very efficient choice for low-cost applications

to avoid existing 3D point clouds

representations which are highly redundant

and require memory resources. Our system

detects planar regions in the scene and grows

planar structure in the map over time. Based

on the detected planes and the estimated

transformation in each added pose, this map

will be constructed and updated. This is done

by adding new 3D planes but also by merging

the matched ones to the already mapped

planes. To construct the global map, planes

must be represented in the same 3D

coordinates system. Let the global coordinates

system be the first node added into the graph.

In each node addition, we store the

transformation leading to this node. As the

planes detection is performed in local frames,

registered planes can be transformed from the

camera to world coordinates system using the

egomotion obtained during the registration

step. If the matrix M (Rotation R and

Translation t) represents this transformation, a

3D point pw into the world coordinates can be

found easily using its correspondent point in

the camera pc by the well-known equation:

	�= �	�+ � and conversely 	�= �	�- � 	�.

If pc lies in a plane (1):

��
	�� 		� �	�

 	�� � 	���

�	��
 	��	� � 	���� �	��

� 	��
����

		� � 	���

With ��= ���and ��= ��- ��
�	�

Then, a plane in world coordinates is defined

by its normal vector and distance �� (��, ��).

Once these parameters are defined, we proceed

to the matching step in order to merge the

corresponding planes or add new ones in the

global map. Whenever new parts of the same

plane are detected and matched, we generate a

new resulting plane by merging the new parts

to the existing plane. If no correspondence can

be found, the detected part is added to the map

as a new plane. To check planes

correspondence, we use a simple method. We

perform a plane-to-plane comparison against

all planes in the map. A detected plane is

matched to an existing one if the angle and

distance between them don't exceed a

threshold set successively to 10 degrees and

5cm. If a new plane ��matches to an already

registered one	��, they are merged together in

a new resulting plane according to their

respective 3D inliers points populations Ni and

Nj by a simple linear interpolation.

To represent a plane in the map, we also need

its bounding box as well as its equation. When

detected in the local frame, a point cloud of

inliers points to the plane is stored and then

projected into the world coordinates after the

egomotion estimation. Then, we proceed to a

Singular Value Decomposition (SVD) of this

point cloud to find its main axis vectors and

consequently the bounding box according to

these vectors. Once known, these bounding

boxes will be used to represent the plane in the

3D global map. When the merging step

happens, the bounding boxes of concerned

planes are compared and the extremes are used

to update the merged plane model. Even more

than planes models, our map contains

theoretical intersections between these planes.

Planes intersections are generated using an

adjacency criterion. We represent this

intersection by lines and points when two or

three planes intersect. This makes our map

more significant and workable for other

applications, and represents a first step towards

a more semantic map.

3. RESULTS AND DISCUSSION

This section presents online experimental

results using data acquired with a Kinect v1.

Experiments were performed on a PC with Intel

Core i5-2400 CPU at 3.10GHz×4. As mentioned

before, planes are detected on depth maps using

PCL 1.7 stable version with plane thickness

threshold set to 1.5cm. All points exceeding this

threshold are then rejected. The three mains planes

containing at least 700 inliers points are detected on

each point cloud. Detecting further planes may

introduce a lot of irrelevant small planar patches.

To evaluate the performances of our system we

used a limited office scene mostly composed of

planes. A series of experiments performed in this

scene are shown in the three following subsections.

3.1 Planes quality

We began by evaluating planes detection

quality against 3D point clouds size in order to

determine the influence of this parameter on

the overall performance of our system.

Journal of Theoretical and Applied Information Technology
 30

th
November 2016. Vol.93. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

407

By default the resolution of Kinect images is

640×480. The resulting point cloud contains

307200 points which requires several seconds

for planes detection. Hence, a subsampling step

seems essential to allow online data acquisition

and processing with the Kinect 30Hz update

rate. This is often used by sparse systems to

overcome computational time. So we used a

subsampling factor λ when creating a point

cloud. This subsampling factor reduces the

depth image dimensions. Then, we studied the

impact of subsampled data on the quality and

speed of planes detection over effective

distances. We performed specific experiments

on a plane placed in front of the Kinect. For

each distance we changed the subsampling

factor λ and observed the detected planes.

Table 1 details results of these experiments.

First, for each experiment, we considered

runtimes for planes detection, estimated

distances and the number of erroneous detected

extra planes. An initial conclusion from these

three columns can lead to favor the

subsampling factor λ=4 considering the trade-

off between runtime and planes estimation

quality.

Second, we checked the impact of the number

of inliers points on each detected planes. To

provide more information about the quality of a

plane, the average and standard deviation of

the distance of its inliers points to the estimated

plane model are shown. Obviously, from the

Table 1: Impact Of Subsampled Data On Planes Detection.

Effective

Distance (m)

Subsampling

Factor λ

Estimation

Runtime (s)

Distance to the model

Avg ± Std. Dev

Estimated

Distance (m)

Number of Erroneous

detected planes

1.5

1 2.37 0.004m ± 0.003m 1.49 0

2 0.23 0.004m ± 0.003m 1.48 0

4 0.07 0.004m ± 0.003m 1.49 0

2.5

1 7.26 0.006m ± 0.004m 2.44 1

2 1.78 0.006m ± 0.004m 2.41 2

4 0.40 0.006m ± 0.004m 2.41 0

3.5

1 7.57 0.006m ± 0.003m 3.32 2

2 1.72 0.006m ± 0.004m 3.37 1

4 0.40 0.007m ± 0.004m 3.36 0

Figure 2: Variations In The Number Of Inliers Points

(Of The Detected Plane) According To The Factor Λ

And Distance From The Camera.

Figure 3: Variations In The Number Of Planar

Features According To The Factor Λ And Planes

Distances.

Journal of Theoretical and Applied Information Technology
 30

th
November 2016. Vol.93. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

408

same distance, results are similar for all

detected planes even if the number of inliers

decreases over subsampling (Figure 2).

Moreover, this number doesn't affect the

estimated distance.

Nevertheless, the number of inliers 3D feature

points is inversely proportional to the distance

from the plane (Figure 3). Finally, we can

notice that planes detection quality decreases

with the distance as the depth noise becomes

greater than the plane thickness threshold. As

the depth noise increases with distance, planes

detection over 3.5m cannot be performed.

Analysis of these results allowed us to choose

subsampling data with factor 4 as it doesn't

degrade the detected planes quality and enables

real time processing. We also notice that angles

errors between detected planes do not exceed 6

degrees in any case.

3.2 Planar features and motion estimation

Accuracy of generated trajectories and

runtimes of our approach was evaluated against

benchmark data in our previous work [21]

(Section 4.1 Benchmark datasets). Evaluations

have shown that we significantly reduced the

egomotion run-time while keeping a good

accuracy of the estimated trajectories over the

compared approaches. Here we evaluated

rotational errors of our system over another

ground truth means provided by a graduated

tripod allowing rotations around three axes.

The Kinect camera was mounted on the tripod

and we proceeded to several rotations in front

of a plane. With each rotation we recovered the

estimated rotation and checked it over the

measured one. Notice that the tripod error is

about 1 degree. Table 2 shows the estimated

rotations against distances from the plane.
For each n-degrees effective rotation, we

performed 30×n-degrees deviations and

computed the average and standard deviation

of the estimated rotations. We also exchanged

the distance from the plane to define operating

conditions and limits of our system. For planes

close and slightly far from the camera, results

show a good estimation considering the tripod

error. For these planes the rotation limit is set

to 45 degrees to obtain at least 8 inliers in the

feature matching set in order to accurately

Figure 4: 3D Planar Map Resulting From Our System.

(A) Generated Planes And Their Corresponding In The Point Cloud. (B) Our Planar Map With Planes

Intersections. (C) Overhead View Comparison Between Point-Based Map (Top) And Plane-Based Map (Bottom).

Table 2: Results Of Estimated Rotations Obtained

With The Presented System According To The

Distance.

Rotation

(Degree)

Estimated Rotation (Avg ± Std. Dev.)

1.25(m) 2.1(m) 3.3(m)

05° ± 1° 05.1° ± 0.4° 04.8° ± 0.4° 04.7° ± 0.7°

10° ± 1° 09.3° ± 0.5° 10.7° ± 0.9° 10.4°± 0.9°

20° ± 1° 19.4° ± 0.3° 19.6° ± 0.6° 19.1° ± 1.2°

30° ± 1° 30.5° ± 0.7° 30.7° ± 1.1° 29.9° ± 2.3°

45° ± 1° 44.0° ± 0.3° 46.9° ± 1.9° *

Journal of Theoretical and Applied Information Technology
 30

th
November 2016. Vol.93. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

409

estimate the transformations. As expected,

errors of the estimated rotation increase with

the distance and effective rotation. Planes

located halfway to the detection distance limit

(Previously estimated at 3.5m) are sensitive to

camera rotations which shouldn't exceed 20

degrees. These rotations must be considerably

smaller for planes closer to the distance limit.

For very far planes, 45 degrees rotations cannot

be achieved because it leads to detect other

planes in the scene with features unmatchable

with the old ones. These experiments support

results obtained in our previous work

concerning motion estimation accuracy using

the planar features and show our system’s

limits to keep good performance.

3.3 Plane-based 3D Maps

Here we show qualitative results of our 3D

plane-based map for the office scene captured

in real time. The Kinect was mounted on a

movable support that enables it to be placed

everywhere within the scene. The office scene

contains 10 planes with various sizes set in

different locations and features several parallel

and intersecting planes. In order to compare

our planar representation to the point-based

maps, we kept all point clouds generated in

each pose and used them to produce a global

map with the SLAM RGB-D system [2].

Figure 4 shows our 3D structured planar map

with intersections between planes compared to

the raw point-based map.

The ratio of planar points in the whole captured

point cloud is 0.57. The average number of

observations for each plane is 7.1 while the

average number of features for each plane is

69. Except for the rotation limit (45°) between

frames, the reconstruction of this scene was not

subjected to any motion or speed constraints.

The average translations and rotations between

poses are respectively 0.1m and 15 degrees.

Planes shown in Figure 4-a (left) represent

their homologous on the point cloud

simultaneously generated by the system (right).

Each plane model in the map was generated

progressively by the merging process described

before. A plane model is represented by its

parameters along with its 3D bounding box.

When two planes are merged, the resulting 3D

bounding box is increased accordingly.

Theoretical intersections are also generated

between adjacent planes. Figure 4-b presents a

global view of our planar map with computed

intersections. These intersections are not used

yet but will ultimately be used to build a

topological map of the environment. Benefiting

from our minimal representation, we generated

a lightweight 3D global plane-based map.

Figure 4-c shows a top view of our map

(bottom) compared to the raw map (top) which

contains 1.363.200 3D points. In addition to its

heavyweight, the lack of semantic information

in such map makes it difficult to use in robotic

motion planning for instance. Unlike the point-

based map our structured map can be easily

exploited and reused by other applications such

as augmented reality and mobile navigation.

4. CONCSLUSION

In this paper we proposed a simple 3D planar

maps representation for RGB-D SLAM systems.

Our maps are composed of planar shapes basing on

detected 3D planes instead of the heavyweight

point-based representation. During the

reconstruction process, discovered planar areas on

the scene are appended to the plane-based map.

Moreover, all correspondent planes are

progressively merged together in this map to give a

compact representation and more information about

the scene. Thus, we generated dense planar maps

with significantly reduced sizes without relying on

a dense approach. In addition, we have evaluated

planes detection using subsampled data provided by

the Kinect camera and defined the best tradeoff

between planes quality and processing time.

Experimental results with real time processing

show accuracy of the method. However, our system

suffers from some limitations such as non-planar

areas which are not stored in the map and the

association of planes to objects. Hence, to

overcome these limitations we intend to combine

our approach with other methods as a form of

compression. The idea is to keep non-planar objects

while generating planar shapes wherever planes are

detected in the scene. Also, basing on these planar

maps the next step will consist in associating planes

to real objects in the scene (such as walls, furniture,

doors) in order to build a more structured map

which represents a first step towards semantic

maps.

Journal of Theoretical and Applied Information Technology
 30

th
November 2016. Vol.93. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

410

REFRENCES:

[1] P. Henry, M. Krainin, E. Herbst, X. Ren, and

D. Fox. RGB-D mapping: Using kinect-style

depth cameras for dense 3D modeling of

indoor environments. International Journal of

Robotics Research (IJRR), 31(5):647–663,

Apr. 2012.

[2] F. Endres, J. Hess, J. Sturm, D. Cremers, and

W. Burgard. 3D mapping with an RGB-D

camera. IEEE Transactions on Robotics,

30(1):177–187, Feb. 2014.

[3] R. A. Newcombe, S. Izadi, O. Hilliges, D.

Molyneaux, D. Kim, A. J. Davison, P. Kohi,

J. Shotton, S. Hodges, and A. Fitzgibbon.

Kinect-fusion: Real-time dense surface

mapping and tracking. In 10th IEEE

International Symposium on Mixed and

Augmented Reality (ISMAR 2011), ISMAR

’11, pages 127–136. IEEE Computer Society,

Oct. 2011.

[4] T. Whelan, M. Kaess, H. Johannsson, M.

Fallon, J. J. Leonard, and J. McDonald. Real-

time large-scale dense rgb-d slam with

volumetric fusion. The International Journal

of Robotics Research, 34(4-5):598–626, 2015.

[5] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T.

Weyrich, and A. Kolb. Real-time 3d

reconstruction in dynamic scenes using point-

based fusion. In Proceedings of the 2013

International Conference on 3D Vision,

DV’13, pages 1–8, Washington, DC, USA,

2013. IEEE Computer Society

[6] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R.

Newcombe, P. Kohli, J. Shotton, S. Hodges,

D. Freeman, A. Davison, and A. Fitzgibbon.

Kinectfusion: Real-time 3d reconstruction and

interaction using a moving depth camera. In

Proceedings of the 24th Annual ACM

Symposium on User Interface Software and

Technology, UIST ’11, pages 559–568, New

York, NY, USA, Oct. 2011. ACM.

[7] S. Rusinkiewicz and M. Levoy. Efficient

variants of the ICP algorithm. In Proceedings

of the Third International Conference on 3D

Digital Imaging and Modeling, (3DIM 2001),

pages 145 152, May 2001.

[8] M. A. Fischler and R. C. Bolles. Random

sample consensus: a paradigm for model

fitting with applications to image analysis and

automated cartography. Communications of

the ACM, 24(6):381–395, June 1981.

[9] A. Segal, D. Haehnel, and S. Thrun.

Generalized-icp. In Proceedings of Robotics:

Science and Systems, Seattle, USA, June

2009.

[10] H. Pfister, M. Zwicker, J. van Baar, and M.

Gross. Surfels: Surface elements as rendering

primitives. In Proceedings of the 27th Annual

Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’00,

pages 335–342, New York, NY, USA, 2000.

ACM Press/Addison-Wesley Publishing Co.

[11] G. Grisetti, R. K¨ ummerle, C. Stachniss, and

W. Burgard. A tutorial on graph-based

SLAM. IEEE Intelligent Transportation

Systems Magazine, 2(4):31–43, winter 2010.

[12] R. K¨ ummerle, G. Grisetti, H. Strasdat, K.

Konolige, and W. Burgard. G2o: A general

framework for graph optimization. In IEEE

International Conference on Robotics and

Automation (ICRA 2011), pages 3607–3613.

IEEE, May 2011.

[13] A. Hornung, K. M. Wurm, M. Bennewitz, C.

Stachniss, and W. Burgard. Octomap: An

efficient probabilistic 3d mapping framework

based on octrees. Auton. Robots, 34(3):189–

206, Apr. 2013.

[14] A. J. B. Trevor, J. G. Rogers, and H. I.

Christensen. Planar surface slam with 3d and

2d sensors. In Robotics and Automation

(ICRA), 2012 IEEE International Conference

on, pages 3041–3048, May 2012.

[15] Y. Taguchi, Y.-D. Jian, S. Ramalingam, and C.

Feng. Point-plane SLAM for hand-held 3D

sensors. In IEEE International Conference on

Robotics and Automation (ICRA 2013), pages

5182–5189, May 2013.

[16] E. Ataer-Cansizoglu, Y. Taguchi, S.

Ramalingam, and T. Garaas. Tracking an rgb-

d camera using points and planes. In

Computer Vision Workshops (ICCVW), 2013

IEEE International Conference on, pages 51–

58, Dec 2013.

[17] R. F. Salas-Moreno, B. Glocken, P. H. J.

Kelly, and A. J. Davison. Dense planar slam.

In Mixed and Augmented Reality (ISMAR),

2014 IEEE International Symposium on,

pages 157–164, Sept 2014.

[18] X. Gao and T. Zhang. Robust rgb-d

simultaneous localization and mapping using

planar point features. Robotics and

Autonomous Systems, 72:1 – 14, 2015.

Journal of Theoretical and Applied Information Technology
 30

th
November 2016. Vol.93. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

411

[19] T. Whelan, L. Ma, E. Bondarev, P. de With,

and J. McDonald. Incremental and batch

planar simplification of dense point cloud

maps. Robotics and Autonomous Systems,

69:3 – 14, 2015.

[20] M. Kaess. Simultaneous localization and

mapping with infinite planes. In Robotics and

Automation (ICRA), 2015 IEEE International

Conference on, pages 4605–4611, May 2015.

[21] H. E. Elghor, D. Roussel, F. Ababsa, and E. H.

Bouyakhf. Planes detection for robust

localization and mapping in rgb-d slam

systems. In 3D Vision (3DV), 2015

International Conference on, pages 452–459,

Oct 2015.

[22] S. Umeyama. Least-squares estimation of

transformation parameters between two point

patterns. IEEE Transactions on Pattern

Analysis and Machine Intelligence,

13(4):376–380, Apr. 1991.

