
Journal of Theoretical and Applied Information Technology
 15

th
November 2016. Vol.93. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

215

 CONVERSION OF AN XML SCHEMA TO OBJECT
RELATIONAL DATABASES USING A CANONICAL DATA

MODEL

1
ADIL JOUNAIDI,

 2
DOHA MALKI,

3
MOHAMED BAHAJ,

4
ILIAS CHERTI

1Phd, Department of Mathematics and Computer Sciences, University Hassan I Settat, Morocco
2Phd, Department of Mathematics and Computer Sciences, University Hassan I Settat, Morocco

3Prof., Department of Mathematics and Computer Sciences, University Hassan I Settat, Morocco
4Prof., Department of Mathematics and Computer Sciences, University Hassan I Settat, Morocco

E-mail: 1jounaidiadil@gmail.com, 2doha.malki@uhp.ac.ma, 3mohamedbahaj@gmail.com,

4iliascherti@gmail.com

ABSTRACT

To describe or define the content of an XML file there is two main ways: either use a DTD or an XML
Schema also called an XSD file. This last is the most recommended, however it lacks the object-oriented
aspect. And also all the XML data flowing in the web are badly managed. So our paper came to resolve this
problem by converting automatically XML Schemas to an Object-Relational Databases (ORDBs), which
will allow us to manage XML data easily through SQL query. To do that we’re going to use the CDM
(canonical data modeling) by giving an algorithm that’s going to conserve all type of relationships such as
association, composition, aggregation and inheritance…, our prototype algorithm will be able to extract the
schema metadata from the XML file and convert them into information represented as classes and
relationships that are mentioned before. Simplicity and efficiency, those are the strength of our approach to
come up with a system that generates a set of User-Defined-Types (UDTs) and a set of typed tables.

Keywords: XML Schema Definition (XSD), Object Relational Database (ORDB), Canonical Data

Modeling (CDM), User-Defined-Types (UDTs), Document Type Definition (DTD).

1. INTRODUCTION

XML (eXtensible Markup Language) is

emerging as a standard format of data and
documents on the Internet [1], that’s why every
XML document has to be stored to be reused later
in other applications, however, for effective
development of enterprise applications in different
environments, XML needs to have databases to
store all data. Therefore, it is certain to use ways
needed to describe the XML schema formats in the
object-relational data base (ORDB).

Several studies have proposed solutions to map a
DTD to a relational database [2, 3], which made us
lose the wealth of object-oriented.

This reason motivated us to propose the method
of transforming an XML schema to an object
relational database by classifying all Complex
Types of XML schema file in a CDM in order to
preserve its structure and semantics and also the
highlight of the OO modeling.

The purpose of this article, is to automate
transformation process of any XML schema file to
an object-relational database, to do this, we proceed
in three steps, the first one is to determine all the
relationships between the XML Schema Complex
Types, the second step is to classify all Complex
Types in a CDM to facilitate their transformation,
and the last one is to present their corresponding in
ORDB.

Figure 1: Mapping setps from XML schema to ORDB

Journal of Theoretical and Applied Information Technology
 15

th
November 2016. Vol.93. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

216

The rest of the paper is as follows. Section 2
provides an overview of related works, Section 3
provides an overview of the Semantic Enrichment
of XML Schema, Section 4 describes the generation
of CDM from XML schema, Section 5 proposes the
translation of CDM into Object-Relational Database
as a detailed algorithm for converting XML
schema, Section 6 validates the approach, section 7
demonstrates the validity of our method, and finally
section 8 concludes the paper.

2. RELATED WORK

There are several works that describe the

mapping from relational databases to XML [9], this
paper describes a way to map a Relational Data
Base to different targets using a CDM, and our
paper discusses a way from XML schema to ORDB
using a CDM.

[4] This approach allows storing and retrieving
any XML in a relational database fixed without
taking in consideration neither the XML schema
nor the DTD, this approach does not require the
extension of the database, on the other hand it does
not use the wealth of object-oriented modeling of
ORDB.

[5] This paper proposes an approach for
transforming a DTD to a relational database, based
on the DTD Graph which is a node tree of the XML
file and translating XML queries to SQL queries;
although this approach takes into account the
schema of the XML file, however, it does not take
into account the different types of relationships
(aggregation, composition, ...) between the Graph
DTD node.

[6] This work presents the mapping of an XML
schema to OO / OR, it does not propose the
transformation of all types of relationships such as
aggregation.

[7] Provides an overview of the mapping of the
OO conceptual model to XML schema, this work
proposes the mapping of the aggregation
relationship, it does not cover all relationships as
association.

[8] The paper proposes a method of mapping an
XML schema to an object relational database in
two stages, the first is used to transform an XML
schema to a conceptual model OO, and the second
is used to transform the conceptual model to an
object relational database (ORDB), however, this
work does not list all types of relationships such as
inheritance,

In addition to this work [8], we offer our own
classification method to classify all Complex Types
of an XML schema in a CDM (Canonical Data
Model) to simplify the automation of the
transformation to an object-relational database
(ORDB).

These related works don’t offer solutions that
will allow to convert all types of relationships
between an XSD complex types but only some of
them.

3. SEMANTIC ENRICHMENT OF XML

SCHEMA

To enrich the semantic of an XML Schema we
have to extract its data semantics, to be enriched
and converted into a CDM. To do this, we have
applied the approach in [9] to enrich semantically
our XML schema. The process starts by extracting
the basic information about an existing XML
Schema, including relation types and attribute
properties (i.e., attribute names, types, occurrence,
required or not). We assume that data dependencies
are represented by keys and KeyRefs as for each
keyref tag there is a reference to a key of a complex
Type, which can be considered as a value reference.
It is preferable that the process is applied to an
XML schema well Formed, and validated. The next
step is to identify the CDM constructs based on a
classification of complex types, attributes and
relationships, and then the CDM structure is
generated.

3.1 Definition OF CDM

A canonical data model (CDM) defines the
relevant entities for a specific domain, their
attributes, their associations and their semantics. As
a reference model, the CDM defines the
associations, and the types of attributes, it is a
method to extend and exchange the schema. The
CDM is a data reference model that is designed to
allow the sharing of information and data to reuse.

Our CDM is defined as a set of complex types
CDM: = {CT | CT: = [ctn, cls, EAcdm, RLcdm,
REFcdm]}, where each ComplexType C has a
name ctn, has a classification cls, a set of elements
and attributes EAcdm (Elements|Attributs cdm), a
set of relationship RLcdm (ReLations cdm), and
finally keys and keyrefs.

Journal of Theoretical and Applied Information Technology
 15

th
November 2016. Vol.93. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

217

3.1.1 Classification (cls)

We applied the approach in [8] to classify the
ComplexTypes, this approach offers five classes:

a) Shareable and Existence-Independent
Aggregation complex type (SEIA)

If a Complex Type can be shareable with others
complex Types and its existence is independent of
all of them we can classify this complex type as a
(SEIA): “cls=SEIA”.

b) Non-Shareable and Existence-dependent
Aggregation complex type (NSEDA)

If a Complex Type that cannot be shareable with
other Complex Types, and its existence depends to
that of the others, this complex type is classified as
“cls=NSEDA”.

c) Association 1 :N complex type (A1N)

In this case, if a complex Type contains a
reference which can be implemented inside another
Complex Type, as its element with maxOccurs
“unbounded” , therefore it is classified as
“cls=A1N”.

d) Association M :M complex type (AMM)

In the XML Schema for many-to-many
association relationship, each types in the
association has maxOccurs = « unbounded ». Each
element will be linked to another element by using
the attribute name that refers to another element ID.
In this case we classify the complex type as
(AMM).

e) Inheritance complex type (INHER)

If a complex type extends an existing
complexType element, it classified as (INHER) in
the CDM.

3.1.2 Elements|Attributs cdm (EAcdm)

Each complexType element has a set of attributes
and EAcdm:= {a | a: = [Ele, Type, MinO/MaxO,
Use]}, where each Element|Attribute belongs to a
class that we presented at the beginning of this
paragraph Cls = {SEIA, NSEDA, A1N, AMN,
INHER}, Ele is the name of the element or
attribute, type is the type of the element,
MinO/MaxO is the minimum/maximum of
occurrence, Use is to say that this element or
attribute is mandatory or not.

3.1.3 Relations cdm (RLcdm)

Each complexType has a set of relationships with
other complexTypes, each relationship rl ? RLcdm
between complexTypes C1 and C2 is defined in C1,
and represents an association, aggregation,
composition, or inheritance. RLcdm = {rl | rl: =
[RlType, DirC]}, where RlType is the type of
relationship and DirC, is the name of the
complexType C2.

3.1.4 Keys and Keyrefs (REFcdm)

Data dependencies are represented by keys and
KeyRefs as for each keyref tag there is a reference
to a key of a complex Type. REFcdm= {keys:= [k,
kr]}.

4. GENERATION OF CDM FROM XML

SCHEMA

The CDM presents the starting point for the rest
of the migration process which, in the end,
generates the target schema.

Let consider the following example (see Figure
2), in this example, we describe an XML Schema
which models the purchase of order administration
in a business company.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns: xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="Customer_type">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="customerName" type="xsd:string"/>

 <xsd:element name="street" type="xsd:string"/>

 <xsd:element name="city" type="xsd:string"/>

Journal of Theoretical and Applied Information Technology
 15

th
November 2016. Vol.93. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

218

 <xsd:element name="zipCode" type="xsd:integer"/>

 <xsd:element name="phone" type="xsd:integer"/>

 <xsd:element name="order" type="xsd:integer" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="customerId" type="xsd:integer" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Customer_Association_Type">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="identification" type="xsd:string"/>

 <xsd:element name="description" type="xsd:string"/>

 <xsd:element name="percentage" type="xsd:integer"/>

 <xsd:element name="Customer" type="xsd:Customer_type" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Person_Type">

 <xsd:complexType>

 <xsd:complexcontent>

 <xsd:extension base="Customer_Type">

 <xsd:attribute name="personId" type="xsd:integer" use="required"/>

 <xsd:element name="discount" type="xsd:integer"/>

 </xsd:extension>

 </xsd:complexcontent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Company_Type">

 <xsd:complexType>

 <xsd:complexcontent>

 <xsd:extension base="Customer_Type"/>

 <xsd:element name="type" type="xsd:string"/>

 <xsd:element name="taxes" type="xsd:integer"/>

 </xsd:complexcontent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Purchase_Order_Type">

 <xsd:complexType>

 <xsd:sequence>

Journal of Theoretical and Applied Information Technology
 15

th
November 2016. Vol.93. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

219

 <xsd:element name="shipping" type="xsd:string"/>

 <xsd:element name="toCity" type="xsd:string"/>

 <xsd:element name="toStreet" type="xsd:string"/>

 <xsd:element name="toZip" type="xsd:integer"/>

 <xsd:element name="Orderlineitem " maxOccurs="unbounded"/>

 <xsd:element name="Orderlineitem_Type">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="quantity" type="xsd:integer"/>

 <xsd:element name="productId" type="xsd:integer" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="line" type="xsd:ID" use="required"/>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="order" type="xsd:integer" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="PRODUCTS_Type">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string"/>

 <xsd:attribute name="price" type="xsd:decimal"/>

 </xsd:sequence>

 <xsd:attribute name="ProductId" type="xsd:ID" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Store_Type">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="capacity" type="xsd:integer"/>

 <xsd:element name="street" type="xsd:string"/>

 <xsd:element name="city" type="xsd:string"/>

 <xsd:element name="zipCode" type="xsd: integer"/>

 <xsd:element name="Stock_Type" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="quantity" type="xsd: integer"/>

 <xsd:element name="date" type="xsd:string"/>

Journal of Theoretical and Applied Information Technology
 15

th
November 2016. Vol.93. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

220

 </xsd:sequence>

 <xsd:attribute name="productId" type="xsd:integer"/>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="location" type="xsd:ID" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <keyref name="PRODUCTS_productId_Ref" refer="PRODUCTS_productId">

 <selector xpath="STORE/STOCK">

 <field xpath="@productId"/>

 </selector>

 </keyref>

 <keyref name="ORDERLINEITEM_ProductId_Ref" refer="ORDERLINEITEM_ProductId">

 <selector xpath="PRODUCTS"/>

 <field xpath="@productId"/>

 </keyref>

 <key name="PRODUCTS_productId">

 <selector xpath="PRODUCTS"/>

 <field xpath="@productId"/>

 </key>

 <keyref name="PURCHASE_ORDER_order_Ref" refer="PURCHASE_ORDER_order">

 <selector xpath="CUSTOMER"/>

 <field xpath="@order"/>

 </keyref>

 <key name="CUSTOMER_customerId">

 <selector xpath="CUSTOMER"/>

 <field xpath="@customerId"/>

 </key> </xsd:schema>

Figure 2: XML Schema to be converted to ORDB

Journal of Theoretical and Applied Information Technology
 15

th
November 2016. Vol.93. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

221

Now we generate the CDM of the XML Schema
described in the example above (see Table 1)

Table 1: CDM generated from the XML Schema to be converted to ORDB

cn cls eacdm rlcdm k/kr

ele typ mino/max

o

use rltype dirc key keyr

ef

customer

seia customerid xsd:id required k

customernam
e

xsd:strin
g

orderid xsd:integ
er

unbounded asso purchase_ord
er

 kr

customer_ass
ociation

 identification xsd:strin
g

description xsd:strin
g

customer customer unbounded aggr customer

purchase_ord
er

a1n orderid xsd:id required k

shipping xsd:strin
g

orderlineitem

nseda line xsd:integ
er

 comp purchase_ord
er

k

productid xsd:integ
er

 comp purchase_ord
er

quantity xsd:integ
er

 comp purchase_ord
er

products

 productid xsd:id required k

description xsd:strin
g

price xsd:deci
mal

store
 location xsd:id required k

capacity xsd:integ
er

stock
amn productid xsd:integ

er
 asso store kr

quantity xsd:integ
er

 asso store

person
inher personid xsd:id required inherb

y
customer k

discount xsd:integ
er

 inherb
y

customer

company
inher type xsd:strin

g
 inherb

y
customer

taxes xsd:integ
er

 inherb
y

customer

The Complex Types are classified, their
Elements, and relationships between different
Complex Types are identified, and their
cardinalities are determined. All these are stored in
the CDM above.

5. TRANSLATING CDM INTO OBJECT-

RELATIONAL DATABASE

In this section we present an algorithm that

converts the CDM to ORDB (see figure 3).

public void buildOrdb(ArrayList<Cdm> cdm){

 // Initialization of SQL code
 Table t;

 for (Cdm c : cdm) {

 // Test on the name of the class in CDM
 switch (c.cls.toUpperCase()) {

 case "SEIA":
 // Creating a new UDT
 t = new Table(c.cn, "UDT", null);

 // Adding attributes of UDT
 for (EAcdm ea : c.a) {
 // Creating attributes of UDT
 Attribut attribut = ea.getAttribute();
 // Add attribute to UDT
 t.att.add(attribut);
 t.att.add(key);
 }
 // Add UDT
 tt.add(t);

 break;

Journal of Theoretical and Applied Information Technology
 15

th
November 2016. Vol.93. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

222

 case "AMN":
 case "NSEDA":

 // reset of attribut
 Attribut amr = new Attribut(c.cn, null,

true, false);
 // name of super table NSEDA
 String tableNameNseda = "";
 // Add list of attributes ROW
 for (EAcdm ea : c.a) {
 tableNameNseda = ea.rl.dirC;
 // Creating attributes of UDT
 Attribut attribut = ea.getAttribute();
 // add attributes to MULTISET ROW
 amr.attMultisetRow.add(attribut);
 }
 // link attribute to the table
 this.addMultisetRow(amr,

tableNameNseda, tt);
 break;

 case "A1N":

 // Create new UDT
 t = new Table(c.cn, "TABLE", null);
 // Ajout des attribut d'UDT
 for (EAcdm ea : c.a) {
 // Create attribute of UDT
 Attribut attribut = ea.getAttribute();
 // add attribute to UDT
 t.att.add(attribut);
 t.att.add(key);
 }
 // Add UDT
 tt.add(t);
 break;

 case "INHER":

 // reset super table name
 String tableExtendsParam = "";

 // Create new UDT
 t = new Table(c.cn, "TABLE", null);

 // Add attribute to UDT
 for (EAcdm ea : c.a) {
 tableExtendsParam = ea.rl.dirC;
 // Create attribute of UDT
 Attribut attribut = ea.getAttribute();
 // Add attribut to UDT
 t.att.add(attribut);
 t.att.add(key);
 }
 // retrieve super table name

 t.tableExtends = tableExtendsParam;
 // Add UDT
 tt.add(t);
 break;

 default:

 // Create new UDT
 t = new Table(c.cn, "TABLE", null);
 // Add attribute of UDT
 for (EAcdm ea : c.a) {
 // Create attribute of UDT
 Attribut attribut = ea.getAttribute();
 // add attribute to UDT
 t.att.add(attribut);
 t.att.add(key);
 }
 // Add UDT
 tt.add(t);
 break;
 }
 }
 this.getCodeSql();

}

Figure 3: Algorithm to convert the XML Schema to

ORDB

6. VALIDATION

After classifying the different Complex Types,
we ran our algorithm that automates the
transformation to ORDB which gave us the
following SQL script (see figure 4)

CREATE TYPE CUSTOMER AS OBJECT

(customerId NUMBER CONSTRAINT
customerId_pk PRIMARY KEY,

 customerName VARCHAR(250),

 orderId MUTISET(NUMBER)),

 NOT FINAL;

CREATE TABLE
CUSTOMER_ASSOCIATION

(identification VARCHAR(250),

 description VARCHAR(250),

 CUSTOMER MUTISET(CUSTOMER));

Journal of Theoretical and Applied Information Technology
 15

th
November 2016. Vol.93. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

223

CREATE TABLE PURCHASE_ORDER

(orderId NUMBER CONSTRAINT
orderId_pk PRIMARY KEY,

 shipping VARCHAR(250),

 ORDERLINEITEM MULTISET

 (ROW(line NUMBER,

 productId NUMBER,

 quantity NUMBER)));

CREATE TABLE PRODUCTS

(productId NUMBER CONSTRAINT
productId_pk PRIMARY KEY,

 description VARCHAR(250),

 price DECIMAL(10,2));

CREATE TABLE STORE

(location NUMBER CONSTRAINT
location_pk PRIMARY KEY,

 capacity NUMBER,

 STOCK MULTISET

 (ROW(productId NUMBER,

quantity NUMBER)));

CREATE TABLE PERSON UNDER
CUSTOMER

(personId NUMBER CONSTRAINT
personId_pk PRIMARY KEY,

 discount NUMBER);

CREATE TABLE COMPANY UNDER
CUSTOMER

(type VARCHAR(250),

 taxes NUMBER);

Figure 4: Results of CDM generation

7. EXPERIMENTAL STUDY

To demonstrate the validity of our method, a
prototype has been developed, realizing the
algorithm above. The algorithm was implemented
using Java and Oracle. To evaluate our approach
we examined the differences between source XML
schema and the ORDB schema generated by the
prototype, we test the query results provided by
SQL in Oracle, and XQUERY in stylus studios.
Queries returned the same results. The source XML
database is transformed into target Object
Relational database ORDB without loss of data.

This section presents queries applied on the
XML schema shown in section (4) and the
equivalent in SQL generated by the prototype.
Table below shows the description, and the result of
each query.

Journal of Theoretical and Applied Information Technology
 15

th
November 2016. Vol.93. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

224

Tableau 2: Experimental Study

Description SQL Xquery Result

Find the name of all
Customers of the
customer_association
Identified by “ASS1”
Ordered by name of
customer

Select customerId,

customerName, From

customer c

Where c.customer_Id in

(select ca.c.customerId

from customer_

associations ca)

And ca.identification =

”ASS1”

Order by c.name asc;

 for $ca in
doc('customer.xml')/NewDataSet/
Customerassociation ,
 $id in $ca/identification ,
 $c in $ca/Customer
 where
$ca/identification='ASS1'
 order by
$c/customerName
 return
 <customer>
 {$c}
 </customer>

12
Dupont
10
Scott
11
Smith

The first customer name
of the
customer_association
identified by “ASS1”

SELECT TOP 1 * FROM

customer_ associations ca,

Where ca.identification =

”ASS1”

 for $ca in
doc('customer.xml')/NewDataSet/
Customerassociation,
 $id in $ca/identification ,
 $c in $ca/Customer[1]
 where
$ca/identification='ASS1'
 return
 <customer>
 {$c}
 </customer>

10
Scott
123456789

Compute the number of all
Customer of
customer_association

Select count(costumer)

from

customer_associations ca,

Group by ca.identification

for $x in
doc('customer.xml')/NewDataSet/
Customerassociation
return
{$x/identification }
 {number=count($x/Customer)}

ASS1 3

ASS2 2

ASS3 1

After demonstrating the validity of our method
technically, we can say that every XSD file can be
transformed to an ORDB, after that we count on
applying this method on applications that run on the
web such as heterogeneous applications that use the
XML files as a way of communication.

We mention as application examples the
pharmacy and the medicine that use XML files to
exchange data, where we can apply our method to
create an exchanged data backup in an ORDB in
order to use it in case of a communication failure
between two applications.

8. CONCLUSION

Our paper gave an automatic way to convert an
XML schema into an ORDB using a canonical data
modeling CDM this method will help to store

scattered web documents in a databases so users
can manage them more easily.

Our method to do that is by creating a CDM
from an XML schema and we use it as an input to a
java program, and this last generates an SQL script.
The java program was coded to respect all the
content of the xml schema and the different
relationships. At the end we applied some queries
to the XML schema and the SQL generated by the
program, these tests proved what we said earlier,
and also we noticed a resemblance between our
data in the OR and the one in the CDM and of
course the XML schema.

In the future we count on proposing an XSD
transformation method into OWL files for the
applications using ontologies.

Journal of Theoretical and Applied Information Technology
 15

th
November 2016. Vol.93. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

225

REFRENCES:

[1] World Wide Web Consortium. 1998. Extensible
Markup Language (XML) 1.0.
http://www.w3.org TR/1998/REC-xml-
19980210.W3C Recommendation 10-February-
1998.

[2] Jayavel Shanmugasundaram, Eugene J. Shekita,
Jerry Kiernan, Rajasekar Krishnamurthy, Stratis
Viglas, Jeffrey F. Naughton, Igor Tatarinov: “A
General Technique for Querying XML
Documents using a Relational Database
System“ SIGMOD Record 30(3): 20-26 (2001)

[3] Pensri Amornsinlaphachai, Nick Rossiter and
M. Akhtar Ali : “Storing linked XML
documents in object-relational DBMS“CIT.
Journal of computing and information
technology ISSN 1330-1136

[4] Fayed F. M. Ghaleb, Sameh S. Daoud, Ahmad
M. Hasnah, Jihad Mohamad Alja'am, Samir A.
El-Seoud and Hosam F. El-Sofany: “A DOM-
Based Approach of Storage and Retrieval of
XML Documents Using Relational Databases”.
In Proceedings of the International Conference
on Interactive Computer Aided Learning –
ICL2006, Villach, Austria, September 27–29,
2006.

[5] Jayavel Shanmugasundaram, Eugene J. Shekita,
Jerry Kiernan, Rajasekar Krishnamurthy, Stratis
Viglas, Jeffrey F. Naughton, Igor Tatarinov: “A
General Technique for Querying XML
Documents using a Relational Database
System“ SIGMOD Record 30(3): 20-26 (2001)

[6] Han, W-S., Lee, K-H. and Lee, B.S.“An XML
Storage System for Object-Oriented/Object-
Relational DBMSs”, Journal of Object
Technology 2(1), 2003, 113-126

[7] Xiou, R., Dillon, T.S., Chang, E., and, Feng, L.
“Modeling and Transformation of Object-
Oriented Conceptual Models into XML
Schema”, DEXA 2001, Springer-Verlag, 2001,
795-804

[8] Eric Pardede, J.Wenny Rahayu, David Taniar
“On Using Collection for Aggregation and
Association Relationships in XML Object-
Relational Storage”, 2004 ACM Symposium on
Applied Computing, 2004.

[9] Maatuk, A., Ali, M. A. and Rossiter, N.:
Semantic Enrichment: The First Phase of
Relational Database Migration. In CIS2E '08,
6pp, Bridgeport, USA, 2008.

