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ABSTRACT 

In the field of Bio-informatics, exact predicting the regions that code for proteins in a deoxyribonucleic acid 

(DNA) sequence is a challenging and vital task. Analyzing the exon regions is a major phenomenon which 

helps in drug design and disease identification. The sections of DNA that contain protein coding information are 

known as exons. Hence predicting the exons in a DNA sequence is a crucial task in genomics. Nucleotides 

serve as the basic structural unit of a DNA. Three base periodicity (TBP) has been practical in the protein 

coding regions of DNA sequences for nucleotides. By applying Signal processing techniques, TBP can be easily 

predicted. Adaptive signal processing techniques found to be likely due to their distinct capability, with the 

ability to change weight coefficients depending on the gene sequence. In this paper, we propose an efficient 

adaptive exon predictor (AEP) based on these considerations using error normalization. To increase the tracking 

ability of the adaptive algorithm for exon regions, we develop AEPs using ELMS algorithm and its variants. 

These proposed AEPs prominently reduces computational complexity and offers superior performance in terms 

of performance measures like sensitivity, specificity, and precision, so that the AEPs are attractive in nano 

devices. It was shown that maximum error normalized sign regressor LMS (MESRLMS) based AEP is better in 

exon prediction applications based on performance measures with Sensitivity 0.7198, Specificity 0.7203 and 

Precision 0.6906 at a threshold of 0.8. Also, this algorithm performs better with respect to convergence because 

of error normalization. Computational complexity wise also MESRLMS needs only one multiplication 

operation because of sign regressor operation and using a maximum value in normalization. Finally the ability 

of various AEPs in prediction of exons is tested using different DNA sequences obtained from National Center 

for Biotechnology Information (NCBI) database. 

 

Keywords: adaptive exon predictor, computational complexity, deoxyribonucleic acid, disease identification, 

exons, three base periodicity  

 

1. INTRODUCTION 

 

Prediction of exon regions is a substantial area of 

research in the field of genomics. Essential genes 

form a subset in organisms which are needed for 

development, survival or fertility [1]-[2]. Therefore, 

prediction of exons has practical significance to 

identify human diseases [3] and discover drug targets 

in novel pathogens [4]-[5]. Regions which code for 

proteins and non-coding regions are present in a DNA 

sequence. The Subarea of genomics that deals with 

spotting the exon locations in a DNA sequence is 

known as gene prediction. The study of primary 

protein region structure helps the secondary and 

tertiary structure of exon region for detection of all 

anomalies, design drugs and cure diseases, as soon as 

the complete structure of protein regions is analyzed. 

These studies support in knowing the evaluation of 

phylogenic trees [6] - [7]. Based on the fundamental 

molecular structure, the living organisms are divided 

into two classifications termed as eukaryotes and 

prokaryotes. The protein coding genes are continuous 

and long in prokaryotes; examples of prokaryotes are 

bacteria and archaea. The genes are a combination of 

coding regions separated by long non-coding regions 

in eukaryotes.  These regions which code for proteins 

are also called as exons, whereas the non-protein 

coding regions are termed as introns. All living 

organisms other than archaea and bacteria come under 

this category. The coding regions present in human 

eukaryotes are only 3% of the sequence and the 

residual 97% are non-coding regions. Hence the 

identification of protein coding regions is a vital task 

[8]-[9]. Almost in all DNA sequences, a three base 

periodicity (TBP) is exhibited by the protein coding 

regions. This is obvious by a sharp peak at a 

frequency f=1/3 in the power spectral density (PSD) 

plot [10].  Several techniques for predicting exon 
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regions are presented in literature based on various 

signal processing techniques [11] - [14]. But, the 

length of the sequence in real-time gene sequence is 

extremely long and also the location of exons varies 

from sequence to sequence. Existing signal 

processing techniques are not so accurate in 

prediction of protein coding regions. Adaptive signal 

processing algorithms are found to be favorable 

techniques to process such genomic sequences. 3-base 

periodicity property is applied to find the protein 

coding segments accurately in a DNA sequence [15]. 

Adaptive algorithms are able to process very long 

sequences in several iterations and can change weight 

coefficients in accordance to the statistical behavior 

of the input sequence. In this paper, we propose to 

develop several Adaptive Exon Predictors (AEPs) 

using adaptive algorithms for finding protein coding 

regions. Least mean square (LMS) algorithm is the 

fundamental adaptive technique. This algorithm is 

popular because of its simplicity in implementation. 

But this algorithm suffers problems like gradient 

noise amplification, weight drift and poor 

convergence. So, we put forward to use error 

normalized and maximum error normalized adaptive 

algorithms to improve the performance of AEP. Error 

normalized version of LMS is called as error 

normalized LMS (ELMS) algorithm. ELMS 

algorithm overcomes the hitches of LMS and 

improves tracking ability and convergence speed. 

This also leads to reduced excess mean square error 

(EMSE) in the process of exon prediction. In real time 

applications, the computational complexity of an 

adaptive algorithm plays a key role. Especially when 

the sequence length is very large, if the computational 

complexity of the signal processing technique is large 

the samples overlap on each other at the input of the 

exon predictor. These leads to inaccuracy in 

prediction and causes inter symbol interference (ISI). 

Also, the large computational complexity tends to 

bigger circuit size and large operations, if the AEP is 

implemented on VLSI circuit or nano device. Hence, 

to cope up the computational complexity of an AEP 

in real time applications we combine the adaptive 

algorithms with sign based algorithms. Sign based 

algorithms apply signum function and minimizes the 

number of multiplication operations [16]. The three 

signum based simplified algorithms are sign regressor 

algorithm (SRA), sign algorithm (SA) and sign sign 

algorithm (SSA). Therefore, in order to minimize the 

computational complexity we combine the three 

Signum algorithms with the error normalized LMS 

algorithm. The resulting algorithms are error 

normalized sign regressor LMS (ESRLMS) 

algorithm, error normalized sign LMS (ESLMS) 

algorithm and error normalized sign sign LMS 

(ESSLMS) algorithm. In these algorithms due to 

normalization, the denominator of the weight update 

equation has to compute multiplications equal to the 

numeric value of tap length of the algorithm. When 

the tap length is larger, which is common in real time 

applications the large tap length causes an additional 

computational burden on the AEP. This can be 

minimized to one, irrespective of tap length by using 

an approach called maximum normalization [17].  

The resultant algorithms are maximum error 

normalized sign regressor LMS (MESRLMS) 

algorithm, maximum error normalized sign LMS 

(MESLMS) algorithm and maximum error 

normalized sign sign LMS (MESSLMS) algorithm. In 

error normalized algorithms the step size is 

normalized with reference to error, the time-varying 

step-size is inversely proportional to the squared norm 

of the error vector rather than the input data vector as 

in the data normalized LMS. ELMS algorithm 

provides significant improvements in minimizing 

signal distortion.  The advantage of the ELMS 

algorithm is that the step size can be chosen 

independent of the input signal power and the number 

of tap weights. Hence the ELMS algorithm has a 

convergence rate and a steady state error better than 

LMS algorithm. Based on these error normalized 

algorithms, we develop various AEPs and the 

performance is tested using real genomic sequences 

obtained from National Center for Biotechnology 

Information (NCBI) data base [18]. We consider 

sensitivity (sn), specificity (sp), precision (pr), 

convergence characteristics, and computational 

complexity (O)  as performance characteristics to 

evaluate the performance of the various AEPs. The 

theory of the adaptive algorithms, discussion on the 

performance of various AEPs and results of AEPs are 

presented in the following sections. 

2. ADAPTIVE ALGORITHMS FOR EXON 

PREDICTION 

In proposing AEP, the input genomic 

sequence is converted into binary representation. This 

is a vital task in genomic processing since signal 

processing techniques can be applied only on discrete 

or digital signals. At this point, we use the binary 

mapping to convert the input DNA sequence into 

binary data [14]. This mapping method is used to 

represent an input DNA sequence as four binary 

indicator sequences. Using this binary mapping, the 

nucleotide occurrence at a location is indicated by 1 

and absence by 0. Now the resulting sequence is 

appropriate to give as an input to an adaptive 

algorithm. Four binary indicator sequences are used 

as input to the adaptive filter [15]. Now, we consider 
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an adaptive exon predictor (AEP) to be applied on 

converted binary sequences. Let G(n) be the DNA 

sequence, B (n) is the binary mapped sequence, R(n) 

is the TBP obeyed genomic sequence, Y(n) is the 

output from the adaptive algorithm and F(n) is the 

feedback signal to update weight coefficients of the 

algorithm.  Consider an LMS adaptive algorithm of 

length ‘M’. In this algorithm, the next weight 

coefficient can be predicted based on the current 

weight coefficient, step size parameter ‘S’, input 

sequence sample value G(n) at the instance and the 

feedback signal F(n) generated in the feedback loop. 

The mathematical expression and analysis of LMS 

algorithm is presented in [16]. A typical block 

diagram of proposed AEP is shown in Figure 1.  

Figure 1. Block diagram of an adaptive exon predictor.

Because of its simplicity and robustness, the 

conventional LMS algorithm may be used in exon 

prediction applications. For Stability and 

convergence, the LMS filter needs a prior knowledge 

of the input power level to select the step size 

parameter for stability and convergence. Since the 

input power level is usually one of the statistical 

unknowns, it is normally estimated from the data 

before beginning the adaptation process. But the LMS 

algorithm suffers with two drawbacks in practical 

situations. It is clear that the input data vector is 

directly proportional to the weight update mechanism, 

by observing the weight update recursion of LMS 

algorithm. Another one is the fixed step size. In 

practice, an algorithm has to be designed such that, it 

has to tackle both strong and weak signals. Hence, the 

tap coefficients should be adjusted accordingly 

depending upon the filter input and output 

fluctuations. Therefore, LMS algorithm suffers from a 

gradient noise amplification problem, when the input 

data vector is large. To avoid this problem 

normalization has to be applied. With this, the 

adjustment applied to filter weight vector coefficient 

is normalized with respect to a squared Euclidian 

norm of the input vector at each iteration. Due to 

normalization, the step size varies iteratively and it is 

proportional to the inverse of the total expected 

energy of the instantaneous values of the coefficients 

of the input data vector.  

 

The weight update relation of the LMS adaptive 

algorithm is given by 

��� � 1� � ���� � �	
�������																		�1� 
Less computational complexity of the 

adaptive algorithm is highly desirable in exon 

prediction applications for developing nano devices. 

This reduction is generally obtainable by clipping 

either the input data or feedback signal or both. The 

algorithms based on clipping of error or data are 

presented in [19]. Among the adaptive algorithms, the 

signed algorithms have a convergence rate and a 

steady-state error that is slightly inferior to those of 

the LMS algorithm for the same parameter setting. 

The signum function is written as follows.  

 

������ � � 1: ���� � 00: ���� � 0�1: ���� � 0�																								(2) 

To reduce the computational complexity compared 

with an adaptive LMS algorithm, sign regressor 

algorithm (SRA), sign algorithm (SA) and sign sign 

algorithm (SSA) algorithms are considered. The 

advantage of here is that the step size can be chosen 

independent of the input signal power and the number 

of tap weights. On the other hand, some additional 

computations are required to compute F(n). 

The weight update equations of SRA, SA and SSA 

algorithms are given by 
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��� � 1� � ���� � �	
����������									�3� 
 ��� � 1� � ���� � �	��
��������										�4� 
 ��� � 1� � ���� � �	��
�����������				�5� 
 

Further, to reduce the computational complexity of 

the algorithms we apply data error normalization and 

maximum error normalization. In this approach, 

instead of using instantaneous data vector for 

normalization squared norm of the error vector can be 

used. The length of the error vector is the 

instantaneous number of iterations. Because the step 

size is normalized with reference to error, the 

resulting adaptive algorithm is called as ELMS 

algorithm. In the ELMS algorithm, the time-varying 

step-size is inversely proportional to the squared norm 

of the error vector rather than the input data vector as 

in the normalized LMS algorithm. This algorithm 

provides significant improvements in minimizing 

signal distortion.  The advantage of the ELMS 

algorithm is that the step size can be chosen 

independent of the input signal power and the number 

of tap weights. Hence the ELMS algorithm has a 

convergence rate and a steady state error better than 

LMS algorithm. Compared with other normalized 

algorithms, the ELMS algorithm requires a small 

number of computations. 

Thus, the weight update equation of the ELMS 

algorithm becomes 

 

��� � 1� � ���� � ���‖!�"�‖# 
�������						�6�		
The weight update relation of ESRLMS is obtained 

by clipping the input data in ELMS. Now, the weight 

recursion of ESRLMS becomes ��� � 1� � ���� � ���‖!�"�‖# ��
��������			�7�		
The weight update relation of ESLMS is obtained by 

clipping the error with variable step size and is given 

by 																					��� � 1� � ���� � ���‖!�"�‖# 
����������			�8�		
Similarly, the weight update relation of ESSLMS is 

obtained by clipping both the data and error and is 

free from multiplications which is given by 																													��� � 1� � ���� � ���‖!�"�‖# ��
�����������		�9�		
In order to cope up with both the complexity 

and convergence issues without any restrictive 

tradeoff, we propose various sign based adaptive 

algorithms using ELMS algorithm and their 

maximum error normalized variants in this paper. The 

corresponding Signum based adaptive algorithms 

using ELMS are Error Normalized Sign Regressor 

LMS (ESRLMS) algorithm, Error Normalized Sign 

LMS (ESLMS) algorithm and Error 

Normalized Sign-Sign LMS (ESSLMS) 

algorithm. In this paper, we have also considered 

maximum error normalized variants using ELMS 

which include Maximum Error Normalized Sign 

Regressor LMS (MESRLMS) algorithm, Maximum 

Error Normalized Sign LMS (MESLMS) algorithm 

and Maximum Error Normalized Sign-Sign LMS 

(MESSLMS) algorithm. These algorithms enjoy less 

computational complexity because of the sign present 

in the algorithm and good filtering capability because 

of the normalized term. The less computational 

complexity leads to simplified architecture for system 

on chip (SOC) or lab on chip (LOC).  

Here, we have considered error normalized ELMS 

algorithm and its signed versions in this paper. Due to 

consideration of the maximum normalization for 

ELMS algorithm, the weight update relation of 

Maximum Error Normalized LMS (MELMS) 

algorithm for e)* + 0 is written as, 

 ��� � 1� � ���� � �!,-# 
�������																						�10�	

where,	234 � 567|29|, : ∈ <4=� , <4= � >?, >? �1,… , >? �? � 1�, i ∈ Z 

Similarly the weight update relations of MESRLMS, 

MESLMS, and MESSLMS adaptive algorithms 

becomes 

��� � 1� � ���� � �!,-# ��
��������															�11�	��� � 1� � ���� � �!,-# 
����������															�12�	��� � 1� � ���� � �!,-# ��
�����������								�13�	
3. COMPUTATIONAL COMPLEXITY AND 

CONVERGENCE ISSUES 

In general, to estimate and compare 

algorithm complexity, number of multiplications 

required to complete the operation is taken as a 

measure. However, most of the DSP’s have a built in 

hardware support for multiplication and accumulation 

(MAC) operations. Usually they perform this 

operation in a single instruction cycle as well as 

addition or subtraction. In this paper, we concentrate 

on presenting a comparison between different 
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adaptive algorithms in terms of the computational 

complexities as summarized in Table 1. Further, as 

these sign based algorithms are largely free from 

multiplication operation, these algorithms provide an 

elegant means for adaptive exon prediction 

applications.  For example, LMS algorithm M+1 

MAC operations are required to compute the weight 

update equation. In case of error normalized signed 

regressor algorithm only one multiplication is 

required to compute ‘S.F(n)’. Whereas other 

ESSLMS, MESLMS and MESSLMS based 

algorithms does not require multiplications if we 

choose ‘S’ value a power of 2. In these cases 

multiplication becomes shift operation which is less 

complex in practical realizations. In SSA we apply 

signum to both data and vector, and then we add ‘S’ 

to weight vector with addition with sign check (ASC) 

operation. Among all the algorithms the ELMS 

adaptive algorithm is more complex, as they require 

2M+1 MACs and 1 division operations to implement 

the weight updating equation (6) on a DSP processor. 

Among the proposed AEPs, ESRLMS and 

MESRLMS algorithms provide less computational 

complexity with 1 MAC and 1 division operations. 

However, by using a maximum normalization 

approach, we can minimize multiplications in the 

denominator from ‘M’ to ‘1’.  

Compared with other normalized algorithms, 

the ELMS algorithm requires a small number of 

computations. To compute the variable step minimum 

computational complexity, the error value produced 

in the first iteration is squared and stored. The error 

value in the second iteration is squared and added to 

the previously stored value. Then, the result is stored 

in order to be used in the next iteration, and so on. 

 
Table 1: Computational Complexities of various algorithms used for the development of AEPs. 

S.No. Algorithm MACs ASC Divisions Shifts 

1 LMS M+1 Nil Nil Nil 

2 ELMS 2M+1 Nil 1 Nil 

3 ESRLMS M Nil 1 Nil 

4 ESLMS 2M Nil 1 Nil 

5 ESSLMS Nil M 1 2M 

6 MELMS M+1 Nil 1 Nil 

7 MESRLMS 1 Nil 1 Nil 

8 MESLMS Nil M 1 M 

9 MESSLMS Nil M 1 M 

 

The ELMS algorithm provides significant 

improvements in minimizing signal distortion. The 

advantage of this algorithm is that the step size can be 

chosen independent of the input signal power and the 

number of tap weights. Hence the ELMS algorithm 

has a convergence rate and a steady state error better 

than LMS algorithm. In order to cope up with both 

the complexity and convergence issues without any 

restrictive tradeoff, the corresponding signum based 

adaptive algorithms using ELMS is Error Normalized 

Sign Regressor LMS (ESRLMS) algorithm, Error 

Normalized Sign LMS (ESLMS) algorithm and Error 

Normalized Sign-Sign LMS (ESSLMS) algorithm. 

These algorithms provide less computational 

complexity because of the sign present in the 

algorithm and good filtering capability because of the 

normalized term. By applying maximum 

normalization, we have also considered maximum 

error normalized variants using ELMS which include 

Maximum Error Normalized Sign Regressor LMS 

(MESRLMS) algorithm, Maximum Error Normalized 

Sign LMS (MESLMS) algorithm and Maximum Error 

Normalized Sign-Sign LMS (MESSLMS) algorithm 

for low computational complexity and good filtering 

capability. The convergence characteristics of the 

error normalized and maximum error normalized 

adaptive algorithms are shown in Figure 2.  From 

these characteristics, it is clear that ESRLMS is just 

inferior to its non-sign regressor version. Hence, 

among the algorithms considered for the 

implementation of the AEPs MESRLMS algorithm is 

found to be better with reference to computational 

complexity and convergence characteristics.  
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Figure 2: Convergence characteristics of error normalized LMS with its signed based variants. 

4. RESULTS AND DISCUSSIONS  

In this section, the performances are compared for 

various AEPs. The structure of AEP is shown in 

Figure 1. The maximum data normalized LMS 

algorithm and its sign based versions are used to 

develop various AEPs. For comparison purpose, we 

also develop an LMS based AEP.  For evaluation 

purpose, we obtained ten DNA sequences from NCBI 

database [14]. For consistency of results, to evaluate 

the performance of various algorithms we considered 

ten DNA sequences as our data set. The description of 

the dataset considered is shown in Table 2.  The 

performance measure is carried using parameters like 

sensitivity (Sn), specificity (Sp) and precision (Pr). 

The theory and expressions for these parameters are 

given in [11].  The exon prediction results for 

sequence 1 are shown in Figure 3. The performance 

measures Sn, Sp and Pr are measured at threshold 

values from 0.4 to 0.9 with an interval of 0.05. At 

threshold 0.8 the exon prediction seems to be better. 

Hence at threshold 0.8 the values are shown in Table 

3.   

Table 2:Dataset of DNA sequences from NCBI database. 

Seq. No. Accession No. Sequence Definition 

1 E15270.1 Human gene for osteoclastogenesis inhibitory factor (OCIF) gene 

2 X77471.1 Homo sapiens human tyrosine aminotransferase(tat) gene 

3 AB035346.2 Homo sapiens T-cell leukemia/lymphoma 6(TCL6) gene 

4 AJ225085.1 Homo sapiens Fanconi anemia group A(FAA) gene 

5 AF009962 Homo sapiens CC-chemokine receptor (CCR-5) gene 

6 X59065.1 H.sapiens human acidic fibroblast growth factor(FGF) gene 

7 AJ223321.1 Homo sapiens transcriptional repressor(RP58) gene 

8 X92412.1 H.sapiens titin(TTN) gene 

9 U01317.1 Human beta globin sequence on chromosome 11 

10 X51502.1 H.sapiens gene for prolactin-inducible protein (GPIPI) 

The steps in adaptive exon prediction are as follows:  

1. DNA sequences are chosen for genome data 

base [18]. Binary mapping technique is used 

to convert the DNA sequence to binary data.  

2. The obtained binary data is given as input to 

AEP arrangement shown in Figure 1.  

3. A DNA sequence obeying three base 

periodicity is given as reference to the AEP. 

4. As shown in Figure 1, a generated feedback 

signal is used to update filter coefficients.  

5. When a minimum feedback signal is 

obtained, the adaptive algorithm accurately 

predicts the location of the protein coding 

region sequence 

6. The exon location is plotted using power 

spectral density. The performance measures 

like Sn, Sp and Pr are measured.  
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Figure 3: Locations of exons predicted using various adaptive algorithms (a). LMS based AEP, (b). ELMS based AEP, (c).  

ESRLMS based AEP, (d). ESLMS based AEP, (e).  ESSLMS based AEP, (f). MELMS based AEP (g). MESRLMS based AEP, 

(h). MESLMS based AEP and (i). MESSLMS based AEP 

Figure 3 shows the predicted exon locations of 

sequence 3 applying various adaptive algorithms. 

From this plots it is clear that the LMS based AEP not 

predicted the coding regions accurately. This 

algorithm causes some ambiguities in location 

prediction by identifying some non-coding regions. In 

Figure 3 (a) some unwanted peaks are identified at 

locations 1200
th

, 2300
th

 and 3700
th

 sample values 

using LMS based AEP. At the same time the actual 

exon location 4084-4268 is not predicted accurately. 

Similar kind of results using LMS based AEP and 

other signal processing methods have been presented 

in the literature [11]–[14]. But, using proposed error 

normalized and maximum error normalized based 

AEP versions, the ELMS, ESRLMS, ESSLMS, 

MELMS, MESRLMS and MESSLMS algorithms 

exactly predicted the exon locations at 4084-4268 

with good intensity of PSD. These PSDs are shown in 

Figure 3 (b), (c) and (d). Because of the normalization 

involved in these algorithms the tracking capability of 

these algorithms, sensitivity, specificity and accuracy 

are much better than LMS algorithm. Among these 

three algorithms ESRLMS is found to be better with 

reference to its convergence characteristics and 

computational complexity. This algorithm needs only 

two multiplications, the number of multiplications 

involved in this algorithm are independent of tap 

length of AEP. The convergence characteristics of 

ESRLMS are just inferior to ELMS, but due to a large 

number of reduced multiplications this inferior 

behavior in convergence can be tolerable. In case of 

MESSLMS, due to clipped input sequence and 

clipped feedback signal the performance of exon 

perdition is inferior to other signed versions. 

Therefore, based on computational complexity, 

convergence characteristics, exon prediction plots, Sn, 

Sp and Pr calculations, it is found that MESRLMS 

based AEP is found to be the better candidate in 

practical applications for the development of SOCs, 

LOCs and nano devices in future research.  
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Table 3: Performance measures of various AEPs with respect to Sn, Sp and Pr calculations. 

Seq. 

No. 
Parameter LMS ELMS ESRLMS ESLMS ESSLMS MELMS MESRLMS MESLMS MESSLMS 

1 

Sn 0.6286 0.7017 0.6813 0.6625 0.6323 0.7337 0.7198 0.6931 0.6714 

Sp 0.6435 0.7106 0.6924 0.6897 0.6764 0.7456 0.7203 0.6922 0.6859 

Pr 0.5922 0.6797 0.6529 0.6307 0.6176 0.7131 0.6906 0.6767 0.6547 

2 

Sn 0.6384 0.6927 0.6743 0.6512 0.6363 0.7365 0.7131 0.6898 0.6622 

Sp 0.6628 0.7234 0.7106 0.6951 0.6732 0.7496 0.7203 0.7098 0.6819 

Pr 0.5894 0.6832 0.6565 0.6316 0.6024 0.7023 0.6694 0.6427 0.6225 

3 

Sn 0.6437 0.7027 0.6873 0.6635 0.6353 0.7295 0.7053 0.6896 0.6624 

Sp 0.6587 0.7224 0.7006 0.6824 0.6689 0.7456 0.7205 0.6912 0.6717 

Pr 0.5902 0.6734 0.6514 0.6322 0.6117 0.7031 0.6716 0.6574 0.6217 

4 

Sn 0.6273 0.7013 0.6837 0.6685 0.6396 0.7235 0.7021 0.6897 0.6618 

Sp 0.6405 0.7102 0.6923 0.6717 0.6575 0.7436 0.7202 0.7194 0.6827 

Pr 0.5858 0.6724 0.6578 0.6314 0.6127 0.7131 0.6912 0.6792 0.6524 

5 

Sn 0.6481 0.7038 0.6849 0.6645 0.6371 0.7365 0.7180 0.6847 0.6640 

Sp 0.6518 0.7110 0.6925 0.6669 0.6563 0.7435 0.7221 0.6942 0.6732 

Pr 0.5904 0.6722 0.6441 0.6246 0.6037 0.7045 0.6711 0.6544 0.6254 

6 

Sn 0.6162 0.7035 0.6897 0.6613 0.6475 0.7315 0.7163 0.6912 0.6716 

Sp 0.6324 0.7194 0.6912 0.6651 0.6483 0.7418 0.7103 0.6936 0.6643 

Pr 0.5786 0.6702 0.6559 0.6314 0.6136 0.7111 0.6926 0.6727 0.6537 

7 

Sn 0.6193 0.7027 0.6823 0.6615 0.6423 0.7327 0.7131 0.6894 0.6614 

Sp 0.6529 0.7214 0.7018 0.6841 0.6628 0.7446 0.7203 0.7014 0.6779 

Pr 0.5896 0.6734 0.6557 0.6332 0.6186 0.7121 0.6994 0.6747 0.6525 

8 

Sn 0.6241 0.7095 0.6823 0.6643 0.6435 0.7343 0.7125 0.6934 0.6718 

Sp 0.6289 0.7054 0.6918 0.6894 0.6342 0.7438 0.7242 0.7012 0.6617 

Pr 0.5856 0.6736 0.6539 0.6328 0.6186 0.7137 0.6902 0.6724 0.6515 

9 

Sn 0.6268 0.7019 0.6827 0.6647 0.6463 0.7397 0.7191 0.6997 0.6724 

Sp 0.6452 0.7207 0.6984 0.6807 0.6928 0.7428 0.7203 0.6927 0.6619 

Pr 0.5814 0.6722 0.6577 0.6324 0.6184 0.7113 0.6902 0.6756 0.6513 

10 

Sn 0.6202 0.7087 0.6853 0.6643 0.6423 0.7347 0.7131 0.6982 0.6702 

Sp 0.5965 0.6824 0.6526 0.6331 0.6213 0.7324 0.7013 0.6796 0.6443 

Pr 0.5761 0.6716 0.6569 0.6314 0.6176 0.7111 0.6906 0.6738 0.6515 

5. CONCLUSION 

In this paper, the problem of identifying exons in a 

DNA sequence is illustrated. The concept of finding 

exact location of exons has several applications in 

current health care technology such as disease 

diagnosis. At this point, we considered adaptive exon 

identification technique using novel AEPs. To fulfill 

this we considered error normalized adaptive 

algorithms. In order to reduce computational 

complexity of the proposed implementation, we 

introduced the concept of error adaptive 

normalization instead of data normalization. To 

further minimize the computational complexity, the 

proposed ELMS algorithm is combined with its sign 

based and maximum normalized algorithms. As a 

result seven new hybrid algorithms come into the 

scenario of exon prediction. The hybrid variants are 

ESRLMS, ESLMS, ESSLMS, MELMS, MESRLMS, 

MESLMS and MESSLMS are considered for present 

implementation. Different AEPs are developed and 

tested using these seven algorithms on real DNA 

sequences obtained from NCBI database. It is evident 

that MESRLMS based AEP is better in exon 

prediction applications, based on the convergence 

characteristics shown in Figure 2, computational 

complexities shown in Table 1, and based on 

performance measures with Sensitivity 0.7198, 

Specificity 0.7203 and precision 0.6906 obtained at a 

threshold value of 0.8. This is also clear from the 

performance measures tabulated in Table 3 and PSD 

of exon locations shown in Figure 3 where exactly 

predicted the exon locations at 4084-4268 using 

proposed AEPs. The limitation of presented work is 

that proposed AEPs may not be so accurate for 

finding very short length exons. Therefore, proposed 

AEP realizations are suitable for practical genomic 

applications for the development of SOCs, LOCs and 

nano devices for future research.
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