
Journal of Theoretical and Applied Information Technology 
 31

st
 October 2016. Vol.92. No.2 

 © 2005 - 2016 JATIT & LLS. All rights reserved.   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
284 

 

 NEURAL NETWORK OPTIMIZATION USING 

SHUFFLEDFROG ALGORITHM FOR SOFTWARE DEFECT 

PREDICTION 

 

1
REDDI. KIRAN KUMAR,

 2
S.V.ACHUTA RAO 

1
Department of Computer Science, Krishna University, Machilipatnam, India- 521001 

 
2
Research Scholar, Krishna University, Machilipatnam, India- 521001 

E-mail:  
1 
kirankreddi@gmail.com, 

2
achutaraosv@gmail.com 

 

ABSTRACT 

 

Software Defect Prediction (SDP) focuses on the detection of system modules such as files, methods, 

classes, components and so on which could potentially consist of a great amount of errors. SDP models 

refer to those that attempt to anticipate possible defects through test data. A relation is present among 

software metrics and the error disposition of the software. To resolve issues of classification, for the past 

many years, Neural Networks (NN) have been in use. The efficacy   of    such networks rely on the pattern 

of hidden layers as well as in the computation of the weights which link various nodes. Structural 

optimization is performed in order to increase the quality of the network frameworks, in two separate cases: 

The first is the typically utilized approximation error for the present data, and the second is the capacity of 

the network to absorb various issues of a general class of issues in a rapid manner along with excellent 

precision. The notion of Back Propagation (BP) is quite elementary; the result of neural networks is tested 

against the desired outcome. Genetic algorithms (GA) are a type of search algorithms built, based on the 

idea of natural evolution. A neural network using Shuffled Frog Algorithm for improving SDP is proposed. 
Keywords: Software Defect Prediction (SDP), Neural Network (NN), Back Propagation (BP), Genetic    

Algorithm (GA) and Shuffled Frog Leaping Algorithm (SFLA) 

 

1. INTRODUCTION  

 

This Software Defect Prediction (SDP) 

holds an important place in the domain of software 

quality and dependability. Software faults may be 

defined as errors, mistakes or defects in computer 

programs or systems which lead to false or unusual 

outcomes, or leading the software to perform in 

unexpected ways. When a software module consists 

of too many flaws that gravely inhibit execution, it 

is said to be fault-prone. The procedure of 

identifying such faulty modules in a particular 

software is SDP. The conventional methods of 

discovering faults in a  software are code review, 

unit testing, integration testing and system testing. 

But, when a particular software’s dimensions 

increase by way of the number of coding statements 

and complexity, the process of discovering as well 

as repairing errors becomes harder as well as costly 

with regard to computation; through the usage of 

advanced testing and evaluatory processes. 

Furthermore, Boehm gleaned that the discovery and 

repair of issues once a particular software has been 

delivered, is costlier, money and effort-wise, when 

compared to repairing the fault in the initial phases 

of the life cycle of the software. Identification of 

fault-prone software modules allows professionals 

to focus their effort and capabilities on the 

problematic regions of the software under 

construction [1 & 2]. 

The NN framework focuses on the 

prediction of the quality of object oriented software 

through estimation of the amount of flaws as well 

as the amount of statements altered in each class. 

Object-oriented metrics along with conventional 

complexity metrics are both used here. Object-

oriented metrics includes inheritance related 

measures, cohesion measures, coupling measures, 

memory allocation measures as well as the usage of 

Ward Neural Network and General Regression 

Neural Network (GRNN) to increase the accuracy 

of predictions regarding the quality of software [3].  

Neural network consists of back 

propagation network with several activation 

functions. To achieve more accurate predictions, 

they are used on hidden layer slabs so as to identify 

dissimilar characteristics in a design analysed using 

a network. A Gaussian function is employed in a 
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hidden slab for the identification of features in the 

mid-range of the information and a Gaussian 

complement is employed in a different hidden slab 

for the identification of characteristics for the upper 

and lower limits of the data. Hence, the outcome 

layer will receive dissimilar “views of the data”. 

Compounding the two characteristics sets in the 

outcome layer points to more accurate predictions. 

The other structure picked is the GRNN, which is a 

memory-based network that gives an estimation of 

continuous variables and comes together at the base 

(linear or non-linear) regression surface. As it is a 

one-pass learning algorithm possessing a very 

parallel architecture, the barest minimum of 

information in a multidimensional measurement 

environment; the algorithm allows for seamless 

movement from one ascertained value to the next.  

Discovering the appropriate algorithm for 

the modeling of software elements to various stages 

of error severity is a crucial task [4].A model 

grounded in the Biological Neural Network, is the 

Artificial Neural Network (ANN) and is typically 

referred to as merely Neural Network. Artificial 

neurons, described as nodes are interlinked for the 

purpose of constructing ANNs. The structure of 

neural networks is crucial for the performance of a 

specific operation. Certain neurons are placed 

specifically for obtaining input from the external 

environment. Because they are not linked to one 

another, the structure of the neurons is as a layer, 

referred to as an input layer. The neurons present in 

the input layer provide certain output which 

functions as the input for the adjacent layer [5]. 

Two types of NN structures that may be 

combined are feed-forward networks and 

recurrent/recursive networks. Networks that possess 

completely linked layers, like the multi-layer 

perceptron, and networks with   convolution   and 

pooling layers are feed-forward networks. Every 

single network acts as a classifier,   however each 

has a distinct strength of its own. Completely linked 

feed-forward NNs are non-linear learners which 

may, at the most, be utilized as an alternate to linear 

learners. 

Because the network is non-linear and has 

the capacity to incorporate previously trained word 

embeddings, it results in exceptional classification 

precision. A set of studies achieved better syntactic 

parsing outcomes through the mere replacement of 

the linear model of the parser with a completely 

linked feed-forward neural network[6].The 

networks are initially directed to simulate the 

behaviour of active and passive circuits. These 

networks, now trained are called as neural network 

models. These may now be utilized in high level 

simulation and designs, and are shown to produce 

the fastest and most precise responses to the task 

because of the information they acquired during the 

process of training 

When compared to traditional approaches; 

such as numerical modeling techniques, that are 

exceptionally costly with regard to computation, or 

analytical techniques that could be hard to attain for 

newly obtained gadgets, or empirical modeling 

techniques which possess a large range and poor 

precision, neural networks prove to be more 

efficient and may be employed for a great number 

of applications as well as modeling techniques [7]. 

A three-layer feed-forward NN is proven 

to be capable of approximating a non-linear 

continuous function to a random precision. They 

are employed in plenty of fields like prediction, 

system modeling and control. Because of the 

specific structure, NNs are excellent in absorbing 

learning algorithms like Genetic Algorithm (GA) as 

well as Back Propagation. Typically, there are two 

learning stages for an NN: Firstly, a  network 

architecture is determined with a specific set of 

inputs, hidden notes as well as outputs. Secondly, 

an algorithm is picked to execute the training 

procedure.  

But, it is not a must for a stable 

architecture to give its best results during the 

learning stage. A small network might be incapable 

of performing well due to the restrictive processing 

potential. A big network, though, might possess 

repetitive links and the execution cost remains 

heavy. Both constructive and destructive algorithms 

may be utilized in order to attain the network 

architecture. Constructive algorithms begin with the 

small networks while the destructive algorithm 

begins with the big networks. 

Hidden layers, nodes and links are later 

eliminated to compress the network in a dynamic 

manner. The pattern of a network architecture may 

be modeled as a search issue. Gas are used to 

achieve the results. Pattern-classification 

approaches may be seen designing networks 

[8].Fitness testing consumes too much time in 

various real-world applications of evolutionary 

calculation. A way to decrease the computation 

time is through the replacement of the fitness 

function with an approximate framework with 

lesser computational cost. These frameworks are 

called meta-models or substituted in optimization. 

A model for evolutionary optimization uses 

approximate models for applications in order to 

achieve optimization. 

In this model, the approximate model is 

compounded with the initial fitness function to 
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manipulate the evolutionary procedure; that is, to 

determine how frequently the approximate model 

ought to be utilized as opposed to the initial fitness 

function, to make sure of the merging of the 

evolutionary algorithm to the right optimum of the 

initial issue as well as to decrease calculation cost 

to the highest degree. The better the quality of the 

framework, it should replace the initial fitness 

function more frequently. The learning capacity of 

the NNs is especially crucial for the time online 

learning is required to be executed at the time of 

optimization.  

Optimization of the structure of NNs is 

performed before they are used for the purpose of 

fitness testing in evolutionary pattern optimizations 

[9]. GAs   are based on the evolution of people. In a 

certain environment, people who are more suited to 

it, are fit to survive and pass down their genes to 

future generations; and less adaptable humans die. 

The goal of GAs is to utilize basic representations 

to code complicated architectures and basic 

computations to better those architectures. GAs are 

hence, defined by their representations and 

operators.  

In a GA, a single chromosome is 

correlated to a binary string. The bits in each string 

are named as genes and their changing values are 

alleles. A set of single chromosomes are a 

population. Fundamental genetic operators 

incorporate reproduction, crossover and mutation 

[10]. GAs and artificial NNs are methods for 

learning and optimization, which have been based 

on biological mechanisms. NNs utilize inductive 

learning and typically need samples, whereas GAs 

adopt deductive learning and need objective 

evaluation function.  

This   paper   suggests neural network 

structure optimization using Shuffled Frog 

Algorithm. Section 2 deals with literature related to 

this work, section 3 reveals the methods used in the 

work, section 4 deals with results and discusses 

obtained results and finally section 5 concludes the 

work. 

2.  LITERATURE REVIEW 

Yang et al., [11] researched this issue and 

proposed a network pruning algorithm grounded in 

sparse representation, called SRP. The suggested 

method begins with a sizeable network, extracted 

crucial hidden neurons from the initial architecture 

utilizing a forward selection criterion which lessens 

the residual output error. Additionally, the proposed 

algorithm possesses no restrictions of network kind. 

The efficacy of the suggested technique was tested 

on various benchmark data sets. The outcomes 

reveal that SRP is more accurate as opposed to 

other methods.  

Fan and Wen [12] proposed a novel mind 

evolutionary algorithm (MEA) grounded in the 

basic MEA model in order to optimize the NN’s 

architecture and weights, where like taxis and 

different operators of architecture optimization are 

planned. Using such taxis operators, the local 

optimum is discovered and then overshooting the 

constriction of local range by the usage of 

dissimilation operators, the global optimum is 

attained in the global solution environment. The 

outcomes of the simulations revealed that the 

approach was efficient and accurate.  

Mohseni and Tan [13] suggested a novel 

mixed training algorithm comprising error back-

propagation (EBP) as well as variable structure 

systems (VSS) for the optimization of parameter 

updating of NNs. In order to optimize the number 

of neurons in the hidden layer, a new term 

dependent on the outcome of the hidden layer is 

combined to the cost function as a penalty term so 

as to optimally utilize hidden blocks connected to 

weights correlating to every single block in the 

hidden layer. Additionally, apart from analysing the 

imposed dynamics of the EBP method, the global 

reliability of the mixed training methodology and 

restrictions on the design variables were observed. 

The suggested method has plenty of benefits 

including assured convergence, increased strength 

as well as decreased sensitivity to preliminary 

weights of the network.  

Shahriari-kahkeshi and Askari [14] 

proposed the plan of a recurrent neural network 

(RNN) trained Shuffled Frog Leaping Algorithm 

(SFLA) for the purpose of identifying and 

following control of non-linear continuous stirred 

tank reactors (CSTR). RNNs were applied to 

approximate unknown dynamic systems and SFLAs 

were employed for the training and optimization of 

connection weights of the RNNs. The suggested 

control design used neural control system synthesis 

was employed in the closed-loop control system for 

accurate control inputs. The outcomes revealed that 

the RNN-SFLA controllers have extraordinary 

dynamic responses and also that they adapted 

excellently to changes.  

Feng et al., [15] suggested a wavelet 

neural network (WNN) sound source model 

grounded in the SFLA. The SFLA is employed for 

the optimization of weights and thresholds of 

WNN, attain preliminary weights and thresholds 

having particular    periodicity and later train 

WNNs. This overpowers certain failings of NNs 

that have slow searching speed. Outcomes revealed 
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that the novel WNN algorithm has improved 

convergence rate, positioning accuracy, favourable 

application prospects and future research value.  

Yu et al., [16] utilized SFLA as a basis for 

NNs in speech emotion detection. SFLA is utilized 

to train arbitrary preliminary information, optimize 

link weights and thresholds of NNS with rapid 

network convergence speech. Outcomes revealed 

that the SFLA network shows excellent detection 

rate in the field.  

Ye et al., [17] used the SFLA with pseudo 

code and flow charts to ease its execution. The 

researches utilized SFLA to optimize weight and 

threshold value of BP networks. Experimental 

results revealed that SFLA outperformed GA in 

optimizing BP networks’ weight and threshold 

values that are utilized in non-linear function 

fitting.  

Che et al., [18] proposed a brilliant 

technique of swarm neural networks (SNN) for 

dealing with equalities-constrained non-convex 

optimization issues. The suggested technique dealt 

with the issue in two sections that compound local 

searching capacity of one-layer RNN and global 

searching capacities of SFLA. Firstly, an RNN 

framework grounded in typical non-convex 

optimization was issued. Also, dependent on the 

SFLA model, NNs are considered as frogs that 

ought to be split into many memeplexes and 

develop individual differential equations in order to 

find an accurate local solution. And lastly, 

numerical samples with outcomes are provided to 

display the efficacy and excellent features of the 

suggested method resolving non-convex 

optimization issues. 

  

3.  METHODOLOGY 

In this   section, we discuss neural network 

utilizing BP, neural network using GA and 

proposed neural network using SFLA. 

3.1. Neural Network using Back Propagation 

A BPNN learns by utilizing the 

generalized delta rule     in  a two phase propagate-

adapt cycle. The first randomly drawn weights are 

applied to the NN in order to create a starting point 

in which to initiate the search. During the starting 

point, approximates are compared with the   

expected outcome, and an error is calculated for 

each of the observations. The error for the first 

observation is computed by decreasing an amount 

equal to the estimated value from the true value. 

Total of the squared errors is typically utilized as 

objective function [19]. 

One of the most commonly used NN 

algorithms is BP and it may  divided into four 

major stages. After choosing the weights of the 

network arbitrarily, the BP algorithm is utilized to 

calculate the required rectifications. The algorithm 

may be divided into the below mentioned four steps 

[20]: 
i) Feed-forward computation 

ii) Back propagation to the output layer 

iii) Back propagation to the hidden layer 

iv) Weight updates  

The best technique for carrying out 

supervised learning is the BP algorithm. BP has 

been employed in many learning tasks and has 

come out as the standard algorithm for the training 

of multi-layer perceptron networks. BP is grounded 

in gradient descent as it is q conjugate gradient. It 

typically utilizes a least-square optimality criterion, 

determining a technique for computing the gradient 

of the error specifically for the weights for a certain 

input, through the propagation of the error 

backwards through the network. Error BP is 

essentially a search procedure that tries to decrease 

a whole network error function like the sum E of 

the squared error of the network output over an 

ensemble of training input/output pairs: 

( )
2

1

1

2

m

j j

j

E t o
=

= −∑  

where jt  is the target and jo  is the 

actual  j
th

  output of the network. 

The back propagation algorithm 

determines two sweeps of the network: firstly, a 

forward sweep from the input layer to the output 

layer, and next, a backward sweep from the output 

to the input layer. In the first stage, input vectors 

are propagated through the network to give outputs 

of the network. The backward step is alike to the 

forward one, except that error values   calculated, 

are propagated back through the network, so as to 

evaluate how the weights ought to be altered during 

the training phase. The fundamental process for the 

BP algorithm is reported  in Figure 1. 

The training is monitored through a target 

pattern corresponding with an input pattern. A 

pattern is displayed to the network and an error 

vector is computed to analyze how the weights 

ought to alter; the procedure is repeated for every 

pattern. An epoch is a complete cycle for each 

pattern. The patterns are continually displayed to 

the network, epoch after epoch, and training 

continues until the alterations in the absolute value 

of the  the averaged squared error falls to within 

some tolerance between one epoch and the next 

[21]. 
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Initialize network weights randomly

 termination condition 

Assign as net input to each unit in the input layer its corresponing

element in the input vector. The output for each unit is its ne

while not do

t input

Calculate network output by forwarding input signals in the network

Calculate the error of each output neuron

 all hidden neurons 

calculate weights updates

propagate the error back through th

for do

e network.

Update weights of the network.

end for

end while
 

 Figure 1:  Pseudo code of the Back Propagation 

algorithm 
 

3.2. Neural Network Using Genetic Algorithm 

Genetic Algorithms is a way of 

approaching machine learning by appropriating 

behaviour of the human gene as well as Darwin’s 

theory of natural selection. GA is a part of 

Evolutionary Algorithms which provide solutions 

depending on the methods more generally 

discovered in nature like mutation, selection, 

crossover etc. 

Genetic Algorithms are applied starting 

with an individual population that is typically 

represented in the form of trees. A probable 

solution is represented by each tree or say 

chromosome in this case.  Nodes  on the tree denote 

certain traits that relate to the issue for which the 

solution is being searched. Collectively, the set of 

possible solutions to the problem is (represented by 

the chromosomes) as known as the population [22]. 

GA’s appear in the picture when it is 

required to solve issues which can have various 

solutions. Here, genetic algorithms are utilized to 

cluster the classes delineated according to object 

oriented metrics into subsystems or typically called 

components of software. As described earlier, GA   

utilizes an approach similar to Darwin’s “Survival 

of the Fittest” theory or natural selection. Why this 

approach is being deliberated upon is due to the 

large solutions set that provides a many possible 

solutions to an issue. 

When employing a GA in a problem, a 

couple of implications are made. They are 

mentioned below 

• A fitness function must be present for 

evaluating if a solution is a possible or not 

• When a solution is found, a representation 

of it must be made by a chromosome. 

• Which genetic operators will be employed 

must be decided. 

Furthermore the definition of a solution in 

this case would be one which would be both 

complete as well as valid. In terms of a 

representation, it may be assumed that the possible 

solutions have been encoded in the solutions space. 

The GA is a search technique grounded in 

the idea of evolution, and particularly with the 

notion of the survival of the fittest. The usage of 

GA on NNs make a hybrid neural network where 

the weights of the neural network are computed 

through GA method. From all the search spaces of 

the probable weights, the GA will create new points 

of the probable solution. 

The first stage to compute its values, is to 

delineate the solution field with a genetic 

representation (problem encoding) as well as a 

fitness function to define the better solutions. These 

two components of a GA are the only problem 

dependent on the GA method. When initial 

populations of elements (genotype or 

chromosomes) have been generated, the method s 

utilized by these algorithms in order to reach a 

solution to the issue are connected to evolutionary 

theories: 

i. Selection → few chromosomes of the current 

population are chosen for the breeding of a 

new generation. A small set is chosen 

arbitrarily and the remaining are chosen based 

on how they suit a fitness function. 

ii. Genetic operations → when the initial 

chromosomes have been delineated by those 

that fit more appropriately with the fitness 

function, the remaining population will be built 

through genetic operations. Fatnesses of the 

new chromosomes will additionally, be 

verified and compared to the worst 

chromosomes of the previous generation to 

determine who remains in the population. 

Mutation: Altering one or more gens of few 

chromosomes of the entire set & Crossover: 

Crossing two or more chromosomes in the set 

amongst themselves. 

A pseudo-code for Genetic algorithm is 

[23]:

  

( )

( )

( )

1. Creation of the initial population

2. while !solution

a  Evaluate the fitness of all the chromosomes of the population

    b  The best chromosomes will be selected to reproduce, using 

          

    

 mut

( )

ation and crossover.

    c  Substitute the worsts chromosomes of the previous generation

           by the new produced chromosomes.

 

Figure 2:  Simple  Genetic Algorithm 
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Genetic algorithms are algorithms for 

optimizing and machine learning grounded loosely 

in many features of biological evolution. They 

require five components [24]: 

i. A method of coding solutions to the 

problem on chromosomes. 

ii. An evaluation function which returns a 

rating for each chromosome given to it. 

iii. A method to initializing the population of 

chromosomes. 

iv. Operators that may be applied to parents 

when they reproduce to alter their genetic 

composition. Standard operators are 

mutation and crossover. 

v. Parameter settings for algorithms, 

operators etc. 

3.3. Proposed   Neural Network Using Shuffled 

Frog Algorithm 

ANN technology, inspired by 

neurobiological (the brain’s structure) theories of 

massive interconnection and parallelism, is perfect 

for undertakings like pattern recognition and 

discrimination. One of the first researchers to 

extend the application of neural networks into 

optimization was Hopfield (1984), and it has been 

successfully applied to a variety of combinatorial 

optimization problems. The ANN learns to solve a 

problem by developing a memory capable of 

associating a large number of input parameters with 

a resulting set of outputs or effects. The ANN 

develops a solution system by training using 

examples given to it [25]. 

SFLA is a meta heuristic for solving 

optimization problems. SFLA is a cooperative 

search metaphor that is population based and is 

occasioned by natural memetics. Memetic 

evolution by way of influencing ideas from one 

individual to the next in a local search is employed 

by the algorithm. Theoretically, this is alike to 

Particle Swarm Optimization (PSO). A shuffling 

technique allows for the exchange of data amongst 

local searches, thereby attaining global optimum 

[26]. 

In the SFLA, the population comprises of 

frogs of like structures. Every frog denoted one 

solution. The total population is split into various 

subgroups. Different subgroups may be considered 

as different frog memes. Every subgroup attempts a 

local search. They can correspond with one another 

and better their memes among local units. Once a 

pre-determined number of memetic evolution 

stages are done, data is transferred between 

memeplexes in a shuffling manner. This shuffling 

makes sure that the cultural evolution in the 

direction of any specific interest is completely 

unbiased. The local search and the shuffling 

procedures alternate till the stopping criteria   is 

satisfied. [27]. 

The SFLA is based on observing, 

imitating, and modeling the behavior of a number 

of frogs during the process of searching for the 

location that possesses the most amount of 

available food. The primary benefit of SFLA is its 

fast convergence speed. The SFL Emerges the 

benefits of both the genetic-based memetic 

algorithm (MA) and the social behavior-based PSO 

algorithm. 

SFLA is a population based arbitrary 

search algorithm occasioned from nature meme 

tics. In the SFLA, a set of possible solutions 

determined by a set of frogs that is divided into 

several communities known as memplexes. Every 

frog in the memeplexes performs a local search. 

Inside of each memeplex, the single frog’s behavior 

may be influenced by other frogs and evolution 

through a procedure of memtic evolution will 

occur. After a particular number of memetic 

evolution stages, the memeplexes are pressured to 

join together and novel memeplexes are developed 

through a shuffling process.  

The flowchart of Shuffled frog leaping 

algorithm is illustrated in Fig. 1.The various steps 

are as follows: 

1. The SFLAincludes a population ‘P’ of possible 

solutions, determined by a set of virtual 

frogs(n). 

2. Frogs are arranged in descending order as pe 

their fitness and then divided into subsets called 

as memeplexes (m). 

3. Frogs i is expressed as 

( )i i1 i2 isX = X , X ,....X  where S represents 

number of variables. 

4. Within each memeplex, the frog with worst and 

best fitness are identified as 
wX  and 

bX . 

5. Frog with globe best fitness is defined as 

X g
. 

6. The frog with worst fitness is improved 

according to the following equation. 

( )

( )
i b w

n e w w o l d w i m a x i m a x

D = r a n d ( ) X - X

X = X + D - D D D≤ ≤

 

where rand is an arbitrary number in the 

range of [0,1];
i

D  is the frog leaping step size of 

the i-th frog and 
maxD  is the maximum step allowed 
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change in a frog’s position. If the fitness value of 

new 
wX  is better than the current one, 

wX  will be 

accepted. If it isn’t improved, then the calculated 

are repeated with 
bX  replaced by X

g
. If there is 

no possibility of improvement in the case, a new 

wX  will be generated arbitrarily. Reiterate the 

update operation for a certain number of iterations 

[28].The flowchart of SFLA is given below in 

Figure 3: 

 

Figure 3:  Flowchart Of SFLA 

4. RESULTS & DISCUSSION  

In this section, the classification accuracy, 

precision, recall and F measure are evaluated from 

table 1 to 4 and figure 4 to 7. 

Table 1:  Classification Accuracy 

Methodology Classification 

Accuracy % 

Neural Network - BPP 92.41 

Neural Network - GA 94.48 

Neural Network- proposed Shuffled frog 95.86 

 

Figure 4: Classification Accuracy 

From table 1 and figure 4, it is observed 

that the Neural Network method improved 

classification accuracy by 2.22%, 1.45% and 3.66% 

when compared with the BPP, GA and proposed 

Shuffled frog methods. 

Table 2:  Precision 

Methodology Precision 

Neural Network - BPP 0.8677 

Neural Network - GA 0.8979 

Neural Network- proposed Shuffled frog 0.9297 

 
 

Start 

Initialize parameters: 

Population size (P) 

Number of memeplexes (m) 
Number of Iterations within each 

memeplex 

Generate random population of P 

solutions (frogs), Calculate fitness of 

each individual frog 

Sorting population in descending order 

of their fitness 

Divide P solutions into m memeplexes 

Local search 

Shuffle evolved memeplexes 

Determine the best solution 

Termination=true 

End 

No 

nn
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Figure 5: Precision 

From the table 2 and figure 5, it can be 

observed that the Neural Network method 

improved precision by 3.42%, 3.48% and 6.9% 

when compared with the BPP, GA and proposed 

Shuffled frog methods. 

Table 3: Recall 

Methodology Recall 

Neural Network - BPP 0.8787 

Neural Network - GA 0.9213 

Neural Network- proposed Shuffled frog 0.9297 

 

Figure 6:  Recall 

From table 3 and figure 6, the observation 

is made that the Neural Network method improved 

recall by 4.73%, 0.91% and 5.64% when compared 

with the BPP, GA and proposed Shuffled frog 

methods. 

Table 4:  F Measure 

Methodology F Measure 

Neural Network - BPP 0.8731 

Neural Network - GA 0.909 

Neural Network- proposed Shuffled frog 0.9297 

 

Figure 7:  F Measure 

From the table 4 and figure 7, it can be 

observed that the Neural Network method 

improved F measure by 4.03%, 2.25% and 6.28% 

when compared with the BPP, GA and proposed 

Shuffled frog methods. 

4. CONCLUSION 

NN are widely used for prediction. The 

weights in various layers of the network are 

optimized using a BP or GA. To enhance the 

performance of the NN, a novel method based on 

SFLA for optimizing the NN for improving the 

SDP is proposed in this paper. The shuffled frog-

leaping algorithm with local search can guarantee 

the feasibility of the updated solution.The proposed 

method was evaluated for classification accuracy, 

precision, recall and f measure for classifiers. It is 

seen that the NN method improved classification 

accuracy by 2.22%, 1.45% and 3.66% when 

compared with the BPP, GA and proposed Shuffled 

frog methods. 
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