
Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

284

 NEURAL NETWORK OPTIMIZATION USING

SHUFFLEDFROG ALGORITHM FOR SOFTWARE DEFECT

PREDICTION

1
REDDI. KIRAN KUMAR,

 2
S.V.ACHUTA RAO

1
Department of Computer Science, Krishna University, Machilipatnam, India- 521001

2
Research Scholar, Krishna University, Machilipatnam, India- 521001

E-mail:
1
kirankreddi@gmail.com,

2
achutaraosv@gmail.com

ABSTRACT

Software Defect Prediction (SDP) focuses on the detection of system modules such as files, methods,

classes, components and so on which could potentially consist of a great amount of errors. SDP models

refer to those that attempt to anticipate possible defects through test data. A relation is present among

software metrics and the error disposition of the software. To resolve issues of classification, for the past

many years, Neural Networks (NN) have been in use. The efficacy of such networks rely on the pattern

of hidden layers as well as in the computation of the weights which link various nodes. Structural

optimization is performed in order to increase the quality of the network frameworks, in two separate cases:

The first is the typically utilized approximation error for the present data, and the second is the capacity of

the network to absorb various issues of a general class of issues in a rapid manner along with excellent

precision. The notion of Back Propagation (BP) is quite elementary; the result of neural networks is tested

against the desired outcome. Genetic algorithms (GA) are a type of search algorithms built, based on the

idea of natural evolution. A neural network using Shuffled Frog Algorithm for improving SDP is proposed.
Keywords: Software Defect Prediction (SDP), Neural Network (NN), Back Propagation (BP), Genetic

Algorithm (GA) and Shuffled Frog Leaping Algorithm (SFLA)

1. INTRODUCTION

This Software Defect Prediction (SDP)

holds an important place in the domain of software

quality and dependability. Software faults may be

defined as errors, mistakes or defects in computer

programs or systems which lead to false or unusual

outcomes, or leading the software to perform in

unexpected ways. When a software module consists

of too many flaws that gravely inhibit execution, it

is said to be fault-prone. The procedure of

identifying such faulty modules in a particular

software is SDP. The conventional methods of

discovering faults in a software are code review,

unit testing, integration testing and system testing.

But, when a particular software’s dimensions

increase by way of the number of coding statements

and complexity, the process of discovering as well

as repairing errors becomes harder as well as costly

with regard to computation; through the usage of

advanced testing and evaluatory processes.

Furthermore, Boehm gleaned that the discovery and

repair of issues once a particular software has been

delivered, is costlier, money and effort-wise, when

compared to repairing the fault in the initial phases

of the life cycle of the software. Identification of

fault-prone software modules allows professionals

to focus their effort and capabilities on the

problematic regions of the software under

construction [1 & 2].

The NN framework focuses on the

prediction of the quality of object oriented software

through estimation of the amount of flaws as well

as the amount of statements altered in each class.

Object-oriented metrics along with conventional

complexity metrics are both used here. Object-

oriented metrics includes inheritance related

measures, cohesion measures, coupling measures,

memory allocation measures as well as the usage of

Ward Neural Network and General Regression

Neural Network (GRNN) to increase the accuracy

of predictions regarding the quality of software [3].

Neural network consists of back

propagation network with several activation

functions. To achieve more accurate predictions,

they are used on hidden layer slabs so as to identify

dissimilar characteristics in a design analysed using

a network. A Gaussian function is employed in a

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

285

hidden slab for the identification of features in the

mid-range of the information and a Gaussian

complement is employed in a different hidden slab

for the identification of characteristics for the upper

and lower limits of the data. Hence, the outcome

layer will receive dissimilar “views of the data”.

Compounding the two characteristics sets in the

outcome layer points to more accurate predictions.

The other structure picked is the GRNN, which is a

memory-based network that gives an estimation of

continuous variables and comes together at the base

(linear or non-linear) regression surface. As it is a

one-pass learning algorithm possessing a very

parallel architecture, the barest minimum of

information in a multidimensional measurement

environment; the algorithm allows for seamless

movement from one ascertained value to the next.

Discovering the appropriate algorithm for

the modeling of software elements to various stages

of error severity is a crucial task [4].A model

grounded in the Biological Neural Network, is the

Artificial Neural Network (ANN) and is typically

referred to as merely Neural Network. Artificial

neurons, described as nodes are interlinked for the

purpose of constructing ANNs. The structure of

neural networks is crucial for the performance of a

specific operation. Certain neurons are placed

specifically for obtaining input from the external

environment. Because they are not linked to one

another, the structure of the neurons is as a layer,

referred to as an input layer. The neurons present in

the input layer provide certain output which

functions as the input for the adjacent layer [5].

Two types of NN structures that may be

combined are feed-forward networks and

recurrent/recursive networks. Networks that possess

completely linked layers, like the multi-layer

perceptron, and networks with convolution and

pooling layers are feed-forward networks. Every

single network acts as a classifier, however each

has a distinct strength of its own. Completely linked

feed-forward NNs are non-linear learners which

may, at the most, be utilized as an alternate to linear

learners.

Because the network is non-linear and has

the capacity to incorporate previously trained word

embeddings, it results in exceptional classification

precision. A set of studies achieved better syntactic

parsing outcomes through the mere replacement of

the linear model of the parser with a completely

linked feed-forward neural network[6].The

networks are initially directed to simulate the

behaviour of active and passive circuits. These

networks, now trained are called as neural network

models. These may now be utilized in high level

simulation and designs, and are shown to produce

the fastest and most precise responses to the task

because of the information they acquired during the

process of training

When compared to traditional approaches;

such as numerical modeling techniques, that are

exceptionally costly with regard to computation, or

analytical techniques that could be hard to attain for

newly obtained gadgets, or empirical modeling

techniques which possess a large range and poor

precision, neural networks prove to be more

efficient and may be employed for a great number

of applications as well as modeling techniques [7].

A three-layer feed-forward NN is proven

to be capable of approximating a non-linear

continuous function to a random precision. They

are employed in plenty of fields like prediction,

system modeling and control. Because of the

specific structure, NNs are excellent in absorbing

learning algorithms like Genetic Algorithm (GA) as

well as Back Propagation. Typically, there are two

learning stages for an NN: Firstly, a network

architecture is determined with a specific set of

inputs, hidden notes as well as outputs. Secondly,

an algorithm is picked to execute the training

procedure.

But, it is not a must for a stable

architecture to give its best results during the

learning stage. A small network might be incapable

of performing well due to the restrictive processing

potential. A big network, though, might possess

repetitive links and the execution cost remains

heavy. Both constructive and destructive algorithms

may be utilized in order to attain the network

architecture. Constructive algorithms begin with the

small networks while the destructive algorithm

begins with the big networks.

Hidden layers, nodes and links are later

eliminated to compress the network in a dynamic

manner. The pattern of a network architecture may

be modeled as a search issue. Gas are used to

achieve the results. Pattern-classification

approaches may be seen designing networks

[8].Fitness testing consumes too much time in

various real-world applications of evolutionary

calculation. A way to decrease the computation

time is through the replacement of the fitness

function with an approximate framework with

lesser computational cost. These frameworks are

called meta-models or substituted in optimization.

A model for evolutionary optimization uses

approximate models for applications in order to

achieve optimization.

In this model, the approximate model is

compounded with the initial fitness function to

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

286

manipulate the evolutionary procedure; that is, to

determine how frequently the approximate model

ought to be utilized as opposed to the initial fitness

function, to make sure of the merging of the

evolutionary algorithm to the right optimum of the

initial issue as well as to decrease calculation cost

to the highest degree. The better the quality of the

framework, it should replace the initial fitness

function more frequently. The learning capacity of

the NNs is especially crucial for the time online

learning is required to be executed at the time of

optimization.

Optimization of the structure of NNs is

performed before they are used for the purpose of

fitness testing in evolutionary pattern optimizations

[9]. GAs are based on the evolution of people. In a

certain environment, people who are more suited to

it, are fit to survive and pass down their genes to

future generations; and less adaptable humans die.

The goal of GAs is to utilize basic representations

to code complicated architectures and basic

computations to better those architectures. GAs are

hence, defined by their representations and

operators.

In a GA, a single chromosome is

correlated to a binary string. The bits in each string

are named as genes and their changing values are

alleles. A set of single chromosomes are a

population. Fundamental genetic operators

incorporate reproduction, crossover and mutation

[10]. GAs and artificial NNs are methods for

learning and optimization, which have been based

on biological mechanisms. NNs utilize inductive

learning and typically need samples, whereas GAs

adopt deductive learning and need objective

evaluation function.

This paper suggests neural network

structure optimization using Shuffled Frog

Algorithm. Section 2 deals with literature related to

this work, section 3 reveals the methods used in the

work, section 4 deals with results and discusses

obtained results and finally section 5 concludes the

work.

2. LITERATURE REVIEW

Yang et al., [11] researched this issue and

proposed a network pruning algorithm grounded in

sparse representation, called SRP. The suggested

method begins with a sizeable network, extracted

crucial hidden neurons from the initial architecture

utilizing a forward selection criterion which lessens

the residual output error. Additionally, the proposed

algorithm possesses no restrictions of network kind.

The efficacy of the suggested technique was tested

on various benchmark data sets. The outcomes

reveal that SRP is more accurate as opposed to

other methods.

Fan and Wen [12] proposed a novel mind

evolutionary algorithm (MEA) grounded in the

basic MEA model in order to optimize the NN’s

architecture and weights, where like taxis and

different operators of architecture optimization are

planned. Using such taxis operators, the local

optimum is discovered and then overshooting the

constriction of local range by the usage of

dissimilation operators, the global optimum is

attained in the global solution environment. The

outcomes of the simulations revealed that the

approach was efficient and accurate.

Mohseni and Tan [13] suggested a novel

mixed training algorithm comprising error back-

propagation (EBP) as well as variable structure

systems (VSS) for the optimization of parameter

updating of NNs. In order to optimize the number

of neurons in the hidden layer, a new term

dependent on the outcome of the hidden layer is

combined to the cost function as a penalty term so

as to optimally utilize hidden blocks connected to

weights correlating to every single block in the

hidden layer. Additionally, apart from analysing the

imposed dynamics of the EBP method, the global

reliability of the mixed training methodology and

restrictions on the design variables were observed.

The suggested method has plenty of benefits

including assured convergence, increased strength

as well as decreased sensitivity to preliminary

weights of the network.

Shahriari-kahkeshi and Askari [14]

proposed the plan of a recurrent neural network

(RNN) trained Shuffled Frog Leaping Algorithm

(SFLA) for the purpose of identifying and

following control of non-linear continuous stirred

tank reactors (CSTR). RNNs were applied to

approximate unknown dynamic systems and SFLAs

were employed for the training and optimization of

connection weights of the RNNs. The suggested

control design used neural control system synthesis

was employed in the closed-loop control system for

accurate control inputs. The outcomes revealed that

the RNN-SFLA controllers have extraordinary

dynamic responses and also that they adapted

excellently to changes.

Feng et al., [15] suggested a wavelet

neural network (WNN) sound source model

grounded in the SFLA. The SFLA is employed for

the optimization of weights and thresholds of

WNN, attain preliminary weights and thresholds

having particular periodicity and later train

WNNs. This overpowers certain failings of NNs

that have slow searching speed. Outcomes revealed

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

287

that the novel WNN algorithm has improved

convergence rate, positioning accuracy, favourable

application prospects and future research value.

Yu et al., [16] utilized SFLA as a basis for

NNs in speech emotion detection. SFLA is utilized

to train arbitrary preliminary information, optimize

link weights and thresholds of NNS with rapid

network convergence speech. Outcomes revealed

that the SFLA network shows excellent detection

rate in the field.

Ye et al., [17] used the SFLA with pseudo

code and flow charts to ease its execution. The

researches utilized SFLA to optimize weight and

threshold value of BP networks. Experimental

results revealed that SFLA outperformed GA in

optimizing BP networks’ weight and threshold

values that are utilized in non-linear function

fitting.

Che et al., [18] proposed a brilliant

technique of swarm neural networks (SNN) for

dealing with equalities-constrained non-convex

optimization issues. The suggested technique dealt

with the issue in two sections that compound local

searching capacity of one-layer RNN and global

searching capacities of SFLA. Firstly, an RNN

framework grounded in typical non-convex

optimization was issued. Also, dependent on the

SFLA model, NNs are considered as frogs that

ought to be split into many memeplexes and

develop individual differential equations in order to

find an accurate local solution. And lastly,

numerical samples with outcomes are provided to

display the efficacy and excellent features of the

suggested method resolving non-convex

optimization issues.

3. METHODOLOGY

In this section, we discuss neural network

utilizing BP, neural network using GA and

proposed neural network using SFLA.

3.1. Neural Network using Back Propagation

A BPNN learns by utilizing the

generalized delta rule in a two phase propagate-

adapt cycle. The first randomly drawn weights are

applied to the NN in order to create a starting point

in which to initiate the search. During the starting

point, approximates are compared with the

expected outcome, and an error is calculated for

each of the observations. The error for the first

observation is computed by decreasing an amount

equal to the estimated value from the true value.

Total of the squared errors is typically utilized as

objective function [19].

One of the most commonly used NN

algorithms is BP and it may divided into four

major stages. After choosing the weights of the

network arbitrarily, the BP algorithm is utilized to

calculate the required rectifications. The algorithm

may be divided into the below mentioned four steps

[20]:
i) Feed-forward computation

ii) Back propagation to the output layer

iii) Back propagation to the hidden layer

iv) Weight updates

The best technique for carrying out

supervised learning is the BP algorithm. BP has

been employed in many learning tasks and has

come out as the standard algorithm for the training

of multi-layer perceptron networks. BP is grounded

in gradient descent as it is q conjugate gradient. It

typically utilizes a least-square optimality criterion,

determining a technique for computing the gradient

of the error specifically for the weights for a certain

input, through the propagation of the error

backwards through the network. Error BP is

essentially a search procedure that tries to decrease

a whole network error function like the sum E of

the squared error of the network output over an

ensemble of training input/output pairs:

()
2

1

1

2

m

j j

j

E t o
=

= −∑

where jt is the target and jo is the

actual j
th

 output of the network.

The back propagation algorithm

determines two sweeps of the network: firstly, a

forward sweep from the input layer to the output

layer, and next, a backward sweep from the output

to the input layer. In the first stage, input vectors

are propagated through the network to give outputs

of the network. The backward step is alike to the

forward one, except that error values calculated,

are propagated back through the network, so as to

evaluate how the weights ought to be altered during

the training phase. The fundamental process for the

BP algorithm is reported in Figure 1.

The training is monitored through a target

pattern corresponding with an input pattern. A

pattern is displayed to the network and an error

vector is computed to analyze how the weights

ought to alter; the procedure is repeated for every

pattern. An epoch is a complete cycle for each

pattern. The patterns are continually displayed to

the network, epoch after epoch, and training

continues until the alterations in the absolute value

of the the averaged squared error falls to within

some tolerance between one epoch and the next

[21].

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

288

Initialize network weights randomly

 termination condition

Assign as net input to each unit in the input layer its corresponing

element in the input vector. The output for each unit is its ne

while not do

t input

Calculate network output by forwarding input signals in the network

Calculate the error of each output neuron

 all hidden neurons

calculate weights updates

propagate the error back through th

for do

e network.

Update weights of the network.

end for

end while

 Figure 1: Pseudo code of the Back Propagation

algorithm

3.2. Neural Network Using Genetic Algorithm

Genetic Algorithms is a way of

approaching machine learning by appropriating

behaviour of the human gene as well as Darwin’s

theory of natural selection. GA is a part of

Evolutionary Algorithms which provide solutions

depending on the methods more generally

discovered in nature like mutation, selection,

crossover etc.

Genetic Algorithms are applied starting

with an individual population that is typically

represented in the form of trees. A probable

solution is represented by each tree or say

chromosome in this case. Nodes on the tree denote

certain traits that relate to the issue for which the

solution is being searched. Collectively, the set of

possible solutions to the problem is (represented by

the chromosomes) as known as the population [22].

GA’s appear in the picture when it is

required to solve issues which can have various

solutions. Here, genetic algorithms are utilized to

cluster the classes delineated according to object

oriented metrics into subsystems or typically called

components of software. As described earlier, GA

utilizes an approach similar to Darwin’s “Survival

of the Fittest” theory or natural selection. Why this

approach is being deliberated upon is due to the

large solutions set that provides a many possible

solutions to an issue.

When employing a GA in a problem, a

couple of implications are made. They are

mentioned below

• A fitness function must be present for

evaluating if a solution is a possible or not

• When a solution is found, a representation

of it must be made by a chromosome.

• Which genetic operators will be employed

must be decided.

Furthermore the definition of a solution in

this case would be one which would be both

complete as well as valid. In terms of a

representation, it may be assumed that the possible

solutions have been encoded in the solutions space.

The GA is a search technique grounded in

the idea of evolution, and particularly with the

notion of the survival of the fittest. The usage of

GA on NNs make a hybrid neural network where

the weights of the neural network are computed

through GA method. From all the search spaces of

the probable weights, the GA will create new points

of the probable solution.

The first stage to compute its values, is to

delineate the solution field with a genetic

representation (problem encoding) as well as a

fitness function to define the better solutions. These

two components of a GA are the only problem

dependent on the GA method. When initial

populations of elements (genotype or

chromosomes) have been generated, the method s

utilized by these algorithms in order to reach a

solution to the issue are connected to evolutionary

theories:

i. Selection → few chromosomes of the current

population are chosen for the breeding of a

new generation. A small set is chosen

arbitrarily and the remaining are chosen based

on how they suit a fitness function.

ii. Genetic operations → when the initial

chromosomes have been delineated by those

that fit more appropriately with the fitness

function, the remaining population will be built

through genetic operations. Fatnesses of the

new chromosomes will additionally, be

verified and compared to the worst

chromosomes of the previous generation to

determine who remains in the population.

Mutation: Altering one or more gens of few

chromosomes of the entire set & Crossover:

Crossing two or more chromosomes in the set

amongst themselves.

A pseudo-code for Genetic algorithm is

[23]:

()

()

()

1. Creation of the initial population

2. while !solution

a Evaluate the fitness of all the chromosomes of the population

 b The best chromosomes will be selected to reproduce, using

 mut

()

ation and crossover.

 c Substitute the worsts chromosomes of the previous generation

 by the new produced chromosomes.

Figure 2: Simple Genetic Algorithm

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

289

Genetic algorithms are algorithms for

optimizing and machine learning grounded loosely

in many features of biological evolution. They

require five components [24]:

i. A method of coding solutions to the

problem on chromosomes.

ii. An evaluation function which returns a

rating for each chromosome given to it.

iii. A method to initializing the population of

chromosomes.

iv. Operators that may be applied to parents

when they reproduce to alter their genetic

composition. Standard operators are

mutation and crossover.

v. Parameter settings for algorithms,

operators etc.

3.3. Proposed Neural Network Using Shuffled

Frog Algorithm

ANN technology, inspired by

neurobiological (the brain’s structure) theories of

massive interconnection and parallelism, is perfect

for undertakings like pattern recognition and

discrimination. One of the first researchers to

extend the application of neural networks into

optimization was Hopfield (1984), and it has been

successfully applied to a variety of combinatorial

optimization problems. The ANN learns to solve a

problem by developing a memory capable of

associating a large number of input parameters with

a resulting set of outputs or effects. The ANN

develops a solution system by training using

examples given to it [25].

SFLA is a meta heuristic for solving

optimization problems. SFLA is a cooperative

search metaphor that is population based and is

occasioned by natural memetics. Memetic

evolution by way of influencing ideas from one

individual to the next in a local search is employed

by the algorithm. Theoretically, this is alike to

Particle Swarm Optimization (PSO). A shuffling

technique allows for the exchange of data amongst

local searches, thereby attaining global optimum

[26].

In the SFLA, the population comprises of

frogs of like structures. Every frog denoted one

solution. The total population is split into various

subgroups. Different subgroups may be considered

as different frog memes. Every subgroup attempts a

local search. They can correspond with one another

and better their memes among local units. Once a

pre-determined number of memetic evolution

stages are done, data is transferred between

memeplexes in a shuffling manner. This shuffling

makes sure that the cultural evolution in the

direction of any specific interest is completely

unbiased. The local search and the shuffling

procedures alternate till the stopping criteria is

satisfied. [27].

The SFLA is based on observing,

imitating, and modeling the behavior of a number

of frogs during the process of searching for the

location that possesses the most amount of

available food. The primary benefit of SFLA is its

fast convergence speed. The SFL Emerges the

benefits of both the genetic-based memetic

algorithm (MA) and the social behavior-based PSO

algorithm.

SFLA is a population based arbitrary

search algorithm occasioned from nature meme

tics. In the SFLA, a set of possible solutions

determined by a set of frogs that is divided into

several communities known as memplexes. Every

frog in the memeplexes performs a local search.

Inside of each memeplex, the single frog’s behavior

may be influenced by other frogs and evolution

through a procedure of memtic evolution will

occur. After a particular number of memetic

evolution stages, the memeplexes are pressured to

join together and novel memeplexes are developed

through a shuffling process.

The flowchart of Shuffled frog leaping

algorithm is illustrated in Fig. 1.The various steps

are as follows:

1. The SFLAincludes a population ‘P’ of possible

solutions, determined by a set of virtual

frogs(n).

2. Frogs are arranged in descending order as pe

their fitness and then divided into subsets called

as memeplexes (m).

3. Frogs i is expressed as

()i i1 i2 isX = X , X ,....X where S represents

number of variables.

4. Within each memeplex, the frog with worst and

best fitness are identified as
wX and

bX .

5. Frog with globe best fitness is defined as

X g
.

6. The frog with worst fitness is improved

according to the following equation.

()

()
i b w

n e w w o l d w i m a x i m a x

D = r a n d () X - X

X = X + D - D D D≤ ≤

where rand is an arbitrary number in the

range of [0,1];
i

D is the frog leaping step size of

the i-th frog and
maxD is the maximum step allowed

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

290

change in a frog’s position. If the fitness value of

new
wX is better than the current one,

wX will be

accepted. If it isn’t improved, then the calculated

are repeated with
bX replaced by X

g
. If there is

no possibility of improvement in the case, a new

wX will be generated arbitrarily. Reiterate the

update operation for a certain number of iterations

[28].The flowchart of SFLA is given below in

Figure 3:

Figure 3: Flowchart Of SFLA

4. RESULTS & DISCUSSION

In this section, the classification accuracy,

precision, recall and F measure are evaluated from

table 1 to 4 and figure 4 to 7.

Table 1: Classification Accuracy

Methodology Classification

Accuracy %

Neural Network - BPP 92.41

Neural Network - GA 94.48

Neural Network- proposed Shuffled frog 95.86

Figure 4: Classification Accuracy

From table 1 and figure 4, it is observed

that the Neural Network method improved

classification accuracy by 2.22%, 1.45% and 3.66%

when compared with the BPP, GA and proposed

Shuffled frog methods.

Table 2: Precision

Methodology Precision

Neural Network - BPP 0.8677

Neural Network - GA 0.8979

Neural Network- proposed Shuffled frog 0.9297

Start

Initialize parameters:

Population size (P)

Number of memeplexes (m)
Number of Iterations within each

memeplex

Generate random population of P

solutions (frogs), Calculate fitness of

each individual frog

Sorting population in descending order

of their fitness

Divide P solutions into m memeplexes

Local search

Shuffle evolved memeplexes

Determine the best solution

Termination=true

End

No

nn

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

291

Figure 5: Precision

From the table 2 and figure 5, it can be

observed that the Neural Network method

improved precision by 3.42%, 3.48% and 6.9%

when compared with the BPP, GA and proposed

Shuffled frog methods.

Table 3: Recall

Methodology Recall

Neural Network - BPP 0.8787

Neural Network - GA 0.9213

Neural Network- proposed Shuffled frog 0.9297

Figure 6: Recall

From table 3 and figure 6, the observation

is made that the Neural Network method improved

recall by 4.73%, 0.91% and 5.64% when compared

with the BPP, GA and proposed Shuffled frog

methods.

Table 4: F Measure

Methodology F Measure

Neural Network - BPP 0.8731

Neural Network - GA 0.909

Neural Network- proposed Shuffled frog 0.9297

Figure 7: F Measure

From the table 4 and figure 7, it can be

observed that the Neural Network method

improved F measure by 4.03%, 2.25% and 6.28%

when compared with the BPP, GA and proposed

Shuffled frog methods.

4. CONCLUSION

NN are widely used for prediction. The

weights in various layers of the network are

optimized using a BP or GA. To enhance the

performance of the NN, a novel method based on

SFLA for optimizing the NN for improving the

SDP is proposed in this paper. The shuffled frog-

leaping algorithm with local search can guarantee

the feasibility of the updated solution.The proposed

method was evaluated for classification accuracy,

precision, recall and f measure for classifiers. It is

seen that the NN method improved classification

accuracy by 2.22%, 1.45% and 3.66% when

compared with the BPP, GA and proposed Shuffled

frog methods.

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

292

REFRENCES:

[1]. Prasad, M. C., Florence, L., & Arya, A.

(2015). A Study on Software Metrics based

Software Defect Prediction using Data Mining

and Machine Learning Techniques.

International Journal of Database Theory and

Application, 8(3), 179-190.

[2]. Gayathri, M., & Sudha, A. (2014). Software

Defect Prediction System using Multilayer

Perceptron Neural Network with Data Mining.

International Journal of Recent Technology

and Engineering (IJRTE) ISSN, 2277-3878.

[3]. Thwin, M. M. T., & Quah, T. S. (2005).

Application of neural networks for software

quality prediction using object-oriented

metrics. Journal of systems and software,

76(2), 147-156.

[4]. Sandhu, P. S., Lata, S., & Grewal, D. K.

(2012). Neural Network Approach for

Software Defect Prediction Based on

Quantitative and Qualitative Factors.

International Journal of Computer Theory and

Engineering, 4(2), 298.

[5]. Panchal, G., Ganatra, A., Shah, P., & Panchal,

D. (2011). Determination of over-learning and

over-fitting problem in back propagation neural

network.International Journal on Soft

Computing, 2(2), 40-51.

[6]. Goldberg, Y. (2015). A Primer on Neural

Network Models for Natural Language

Processing. arXiv preprint arXiv:1510.00726.

[7]. Chakraborty, M. (2012). Artificial neural

network for performance modeling and

optimization of CMOS analog circuits. arXiv

preprint arXiv:1212.0215.

[8]. Leung, F. H., Lam, H. K., Ling, S. H., & Tam,

P. K. (2003). Tuning of the structure and

parameters of a neural network using an

improved genetic algorithm. Neural Networks,

IEEE Transactions on, 14(1), 79-88.

[9]. Hüsken, M., Jin, Y., & Sendhoff, B. (2005).

Structure optimization of neural networks for

evolutionary design optimization. Soft

Computing, 9(1), 21-28.

[10]. Vishwakarma, M. D. D. (2012). Genetic

Algorithm based Weights Optimization of

Artificial Neural Network. International

Journal of Advanced Research in Electrical,

Electronics and Instrumentation

Engineering, 1(3), 206-211.

[11]. Yang, J., Ma, J., Berryman, M., & Perez,

P. (2014, July). A structure optimization

algorithm of neural networks for large-scale

data sets. In Fuzzy Systems (FUZZ-IEEE),

2014 IEEE International Conference on (pp.

956-961). IEEE.

[12]. Fan, T., & Wen, R. (2009, March). MEA

for Designing Neural Network Weights and

Structure Optimization. In Computer Science

and Information Engineering, 2009 WRI World

Congress on (Vol. 6, pp. 111-115). IEEE.

[13]. Mohseni, S. A., & Tan, A. H. (2012).

Optimization of neural networks using variable

structure systems. Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE

Transactions on, 42(6), 1645-1653.

[14]. Shahriari-kahkeshi, M., & Askari, J.

(2011, December). Nonlinear continuous

stirred tank reactor (CSTR) identification and

control using recurrent neural network trained

Shuffled Frog Leaping Algorithm. In Control,

Instrumentation and Automation (ICCIA),

2011 2nd International Conference on (pp.

485-489). IEEE.

[15]. Feng, H., Rui-Yu, L., Li, Z., & Li, Z.

(2009, December). Application of shuffled frog

leaping algorithm and wavelet neural network

in sound source location. In Information

Science and Engineering (ICISE), 2009 1st

International Conference on (pp. 3600-3604).

IEEE.

[16]. Yu, H., Huang, C., Jin, Y., & Zhao, L.

(2010, October). Automatic recognition of

speech emotion using Shuffled Frog Leaping

Algorithm. In Image and Signal Processing

(CISP), 2010 3rd International Congress

on (Vol. 7, pp. 3505-3508). IEEE.

[17]. Ye, H., Yang, L., & Liu, X. (2013,

September). Optimizing weight and threshold

of BP neural network using SFLA: applications

to nonlinear function fitting. In 2013 Fourth

International Conference on Emerging

Intelligent Data and Web Technologies (pp.

211-214). IEEE.

[18]. Che, H., Li, C., He, X., & Huang, T.

(2015). An intelligent method of swarm neural

networks for equalities-constrained nonconvex

optimization.Neurocomputing.

[19]. Sexton, R. S., Alidaee, B., Dorsey, R. E.,

& Johnson, J. D. (1998). Global optimization

for artificial neural networks: A tabu search

application.European Journal of Operational

Research, 106(2), 570-584.

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

293

[20]. Cilimkovic, M. Neural Networks and Back

Propagation Algorithm. Institute of

Technology Blanchardstown, Blanchardstown

Road North Dublin, 15.

[21]. Azzini, A. (2005). A New Genetic

Approach for Neural Network Design and

Optimization (Doctoral dissertation, Tesi di

dottorato, Universita degli Studi di Milano).

[22]. Rawat, M. S., & Dubey, S. K. (2012).

Software defect prediction models for quality

improvement: a literature study. International

Journal of Computer Science, 9, 288-296.

[23]. Perez, S. (2008). Apply genetic algorithm

to the learning phase of a neural network.

[24]. Montana, D. J. (1995). Neural network

weight selection using genetic

lgorithms. Intelligent Hybrid Systems, 8(6), 12-

19.

[25]. Eusuff, M., Lansey, K., & Pasha, F.

(2006). Shuffled frog-leaping algorithm: a

memetic meta-heuristic for discrete

optimization. Engineering Optimization, 38(2),

129-154.

[26]. Pourmahmood, M., Akbari, M. E., &

Mohammadpour, A. (2011). An efficient

modified shuffled frog leaping optimization

algorithm. Int. J. Comput. Appl, 32(1), 0975-

8887.

[27]. Lu, K., Ting, L., Keming, W., Hanbing,

Z., Makoto, T., & Bin, Y. (2015). An Improved

Shuffled Frog-Leaping Algorithm for Flexible

Job Shop Scheduling

Problem. Algorithms, 8(1), 19-31.

[28]. Samuel, G. G., & Rajan, C. C. A. (2014,

January). A Modified Shuffled Frog Leaping

Algorithm for Long-Term Generation

Maintenance Scheduling. InProceedings of the

Third International Conference on Soft

Computing for Problem Solving (pp. 11-24).

Springer India.

