
Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

225

 PROVIDING A SOLUTION TO IMPROVE PRE-COPY
METHOD FOR MIGRATING VIRTUAL MACHINES IN

CLOUD INFRASTRUCTURE

1
PARVIN AHMADI DOVAL AMIRI,

 2
SHAYAN ZAMANI RAD,

3
FARAMARZ SAFI ISFAHANI

1Islamic Azad University of Babol, Computer Engineering Department, Babol, Iran
2Mazandaran University of Science and Technology, Computer Engineering and IT Department

Babol, Iran
1Islamic Azad University of Najaf Abad, Computer Engineering Department, Isfahan, Iran

E-mail: 1p.ahmadi@khuisf.ac.ir, 2sh.zamani@ustmb.ac.ir
3fsafi@iaun.ac.ir

ABSTRACT

Cloud computing can be defined as a new computing model which suggests solutions for providing
information technology services analogous to utility services such as power electricity, telephone. Thanks
to the virtualization technology, most of Cloud datacenters use this technology for performance
improvement. This technology transforms a physical server to several virtual machines. With regard to this
property, virtual machines can be transferred from one place to another place that is called migration. Pre-
Copy is one of the main methods in migration techniques. An important problem in this method is that
when the memory pages are changed (dirty pages) faster than sending pages to a destination, the process of
migration will take a long time that is the case in transferring virtual machines. In this paper, a solution is
proposed that sets up the speed of virtual machines in terms of CPU frequency and makes a balance
between senders and receivers in pre-copy algorithm. The results show that the proposed method has better
performance compared to the pre-copy method and decreases the total migration time around 25% and the
total amount of transferred data around 47%.

Keywords: Cloud Computing, Migration, Virtualization, Virtual Machine

1. INTRODUCTION

Cloud computing suggests solutions for
providing information technology services
analogous to utility services such as water, power
electricity, gas, and telephone. One of the most
important constitutive elements of this
computational model is virtualization technology
[1][3].

Virtualization makes datacenters flexible
and powerful and also it enables them to utilize
their physical resources in an efficient way.
Furthermore, hypervisor is an integral part of
virtualization technology. It emulates physical
resources for virtual machines and plays as an
intermediate layer between resources and virtual
machines, which are running on the physical server.
By doing so, virtual machines can use emulated and
isolated resources. As each of these virtual

machines may provide a database server, mail
server, or even a web server, most of the giant
cloud pioneers and providers are using
virtualization technology to improve their
efficiency and capacity.

In other words, virtualization technology
converts a physical machine into a logical file, so, it
could be easy for that machine called virtual
machine, to move from one place to another one,
and this is known as virtual machine migration
technique.

Nowadays, datacenters have to handle a
large amount of requests and workloads, and
migration technique helps them to cope with this
issue. Therefore, virtual machine migration is an
undeniable and remarkable technique for delivering
quality of service (QoS). In fact, migration
techniques are used to achieve a wide variety of
goals such as load balancing, fault tolerance, power

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

226

management, response time reduction, server
enhancement, etc.

Pre-copy is known as the most common
migrating method, which has been used as a live
technique by most of the hypervisors. Although this
method has too many advantages and benefits,
substantial amount of workloads that change
memory pages in a very high rate may downgrade
the performance of this method. In this case, pre-
copy sends memory pages to the destination in each
round but without any strictness. It means that
because of the high rate of changes, memory pages
are modified in each round and the hypervisor
resend them again, an endless job. To state it more
clearly, when the change rate of a bunch of memory
pages is higher than the network bandwidth,
iterative copy phase will completely downgrade the
whole system. However, this phase continues for 30
rounds. Then, the hypervisor turns virtual machine
off and migrates it by non-live method. As a result,
all the TCP connections will be disconnected and
all running services will stop, so, that virtual
machine will be inaccessible for a short period of
time (downtime period). It comes to a major issue,
when that virtual machine has many users or
customers and this disruption bring financial losses
for that cloud service provider. It means that not
only the provider may lose the trust of customers,
but also has to reimburse to them.

This paper suggests that there exist a direct
link between decreasing the virtual machine’s CPU
frequency and amount of sending pages in network.
Therefore, the hypothesis of this research is that to
reduce the CPU frequency until the network
bandwidth become greater than the change rate of
pages. By using our method, memory pages are
transferred to the destination hypervisor in a short
time. As a result, the amount of data sending and
total migration time are decreased significantly.

The test results show that the proposed
method decreases the total migration time to around
25% and transferred data to around 47% in
comparison to the basic pre-copy approach.

Here is an outline of the covered topics:
Section 2 gives and overview of the related works,
Section 3 introduces migration techniques, and pre-
copy method. Section 4, proposes the alternative
and new method. Section 5, describes the
experiments and justifies the results of evaluation.

2. RELATED WORK

Figure1 shows taxonomy of migration
methods. The basics were proposed in [13], where
the authors presented pre-copy for the first time.
Live migration method based on adaptive memory

compression is presented in [11]. In this method,
detection of size of modified pages happens
automatically and then a maximum and minimum
threshold of pages similarity ratio is set by the
method. In this case, compression time will be
decreased, and consequently the amount of
modified pages will be reduced significantly.

In [14], a live migration method based on
improving pre-copy presented. This method adds an
extra bitmap for marking modified pages.

The results show that this method
decreases the total amount of send data to 34% and
total migration time to 35%, and also repetition
phase (stop and copy) is completed 5 times faster
than normal pre-copy.

Figure 1: Taxonomy of Migration Methods

Cloud Spider is another method, which
presented in [15] for migrating virtual machines in
WAN networks. In [12], another new live migration
method is proposed which combines the LRU
scheduling algorithm with the Splay tree algorithm.
The result of experiments show that the method can
reduce the amount of send data and total migration
time up to 23.67% and 11.45%, respectively. In
[18], a new method called DPDT is presented. In

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

227

this method, modified pages are transmitted by a
delay, each of delays are stored in an additional
bitmap called Delay. In Delay bitmap, those pages
that are modified in both previous and current
round will send later.

Another live migration method based on
priority was presented in [16]. In this method,
applications, which are sensitive and intolerant to
delay, and fraction have more priority than the
others. During stop and copy phase, like pre-copy
method, the method only sends the high priority
modified pages, those are belongs to high priority
applications. The results show that this method
decreases the disruption of services to 57%
compared to the pre-copy.

3. MIGRATION TECHNIQUES

Migration techniques are divided into two
general categories. Each migration method is a
subcategory of one of these two types: 1) non-live
migration, 2) live migration.

In non-live migration a virtual machine
completely stops at source host, and then its CPU
state, memory pages, and disk data will be
transferred to the destination host. Then, destination
host starts the VM from the last saved state of it
before the transfer.

The most deleterious outcome of this
method is the long downtime of the virtual
machine. Nevertheless, it has some advantages such
as lack of incompatibility due to data transfer, easy
implementation and sending memory pages all at
once.

In contrast, in the live migration method,
while a virtual machine is powering on and
responding to users’ requests, it starts to move from
source to destination host. The usefulness of this
technique is in providing services even when the
migration process has been started and memory
pages and CPU states of VM have been transferring
at the same time.

3.1. Pre-Copy Method

In order to transfer virtual machines, the
pre-copy method has been used by a majority of
hypervisors. Generally, it consists of three phases.
However, some extra phases and extensions are
added into it. In the first phase, source host sends a
virtual machine’s information such as memory
pages and CPU states to the destination host,
iteratively. Furthermore, during this operation, the
source host records all changed memory pages in
each round of copying.

After passing several rounds, the second
phase is started, immediately. In this step, virtual

machine is suspended at the source host and then it
is started to move from the source to the
destination. However, the other pages are changed
consistently during the first phase. Obviously, it is
impossible to transfer them completely due to the
continuous changes. CPU states, which are an
integral part of launching or restoring virtual
machine on the destination host, are also moved.
Finally, in the third phase, virtual machine starts at
the destination host from its last state before
suspension.

It is important to mention that less rate of
changes in the first phase leads to less downtime,
which occurs in the second phase.

4. PROPOSED METHOD

The main problem of the pre-copy method
is the lack of appropriate reaction to cope with a
large amount of workloads that modify memory
pages in a very high rate. In other words, pre-copy
is unable to manage a mass of changes that may
happen during virtual machine migration process.
In such cases, what pre-copy can do is to send
memory pages to the destination in each round of
migration process. That is to say, pages will be
modified in next round and the method will have to
resend them again and again iteratively.

It is obvious that when changing rate of
memory pages is higher than network bandwidth,
the above-mentioned iterations will be absolutely
unusable. The iterative copy phase continues up to
30 rounds [12]. After that, the hypervisor turns off
virtual machine and transfers it in a non-live way.
By doing so, all the TCP connections will be
disconnected and all running services will stop and
as a consequence, costumers cannot access to the
virtual machine’s services (e.g. Email, Website,
FTP) for a period of time, that is not a good news
for them.

4.1. Reducing vCPU Frequency

The main idea of our proposed method is
that to adopt CPU speed (or CPU Frequency)
during migration time. In other words, we reduce
the speed of CPU gradually, and as a result the
changing rate of memory pages will be reduced
ultimately. In order to implement this idea, we
write an algorithm that decreases the frequency of
virtual machine’s CPU (vCPU) at the time of
moving, just for a short period of time.

This declining in the CPU speed will
reduce the performance of selected virtual machine,
therefore, a reduction on writing operations and
modifying pages will happen consequently. The
usefulness of this solution emerges in such cases

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

228

that we have write-intensive workloads on the most
of VMs. It should be emphasized that this policy,
vCPU frequency reduction, will apply until the
migration process finishes.

In the proposed algorithm, the vCPU
frequency is decreased until the rate of sending
pages through the network (network bandwidth)
becomes higher than memory page change rate.
After a number of steps, migration process will
come to the second phase, stop and copy, and
virtual machine becomes suspended. In this stage,
if the pre-copy method uses, the migration process
takes long time and too many rounds, close to 30.
Furthermore, in the worst case, live migration will
turn into the non-live, because of the high changing
rate.

Pseudo code of the proposed algorithm is
presented as follows:

1: MM=VM’s Memory(Output)
2: R=1
3: T=Threshold(Input)
4: C=Round Cap(default 30)
5: B=Network Bandwidth(Input)
6: CP=VM’s vCPU frequency(Input)
7: MPS=MM’s size
8: While MPS>T or R<C
9: Transfer MM to destination host
10: Mark dirtied pages to bitmap
11: MM=bitmap index
12: MPS=MM’s size
13: While I/O rate >= B
14: TempCP=Reduce CP
15: vCPU=TempCP
16: End while
17: R=R+1
18: End while
19: Pause VM running on source host
20: Transfer CPU state
21: Transfer remain MMs to destination host
22: vCPU=CP
23: Resume VM on destination host

According to the 12th line, page memory
changing rate and network bandwidth are compared
at first step. If changing rate is higher, the migration
process will not finish. So, the algorithm goes to
13th line and records the status of vCPU. Then in
line 14, it reduces the vCPU frequency to half. In
the next line, it checks whether the reduction in the
frequency reduces memory page changing rate or
not. If nothing happens, it will reduce the frequency
to half again. This loop continues until the memory
pages changing rate becomes lower than network
bandwidth. Finally, after transferring virtual

machine to the destination, the main frequency will
be adjusted again and all the states will roll back on
the machine. In Figure 2, flowchart of the proposed
method is shown.

Figure 2: Flowchart of Proposed Method

5. CASE STUDY

In order to start the migration process, the
administrator should run migrate command from
virsh, the main interface for managing guest
domains. This command is shown in the following:

virsh migrate --live domain_id destination_node

Through running the command, at first, the
source hypervisor receives migration command
(Figure 3) and finds the VM’s information. Then, it
tries to make a connection to the destination host
and its hypervisor. After establishing the
connection, the destination host sends the ready
command, and then the migration process starts.

The source hypervisor starts to send
memory pages iteratively (Figure 4). After some
rounds, depending on the memory pages changing
rate and network bandwidth, migration stub realizes
that sending pages is not useful, because changing
rate is much higher.

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

229

Accordingly, remote hypervisor asks the
source hypervisor to decrease the VM’s vCPU
frequency until the network bandwidth is lower
than the changing rate (Figure 5).

Figure 3: Admin and Hypervisor Interaction

Figure 4: The First Step of Migration Process

 After reducing the frequency, source
hypervisor continues to send memory pages and at
the same time migration stub monitors the
migration progress. Again, if the frequency
reduction is insufficient, migration stub will ask the
source hypervisor to reduce the frequency again.
Then, the migration process enters to the second

phase, and VM becomes suspended (Figure 6).
Finally, after taking few seconds, VM resumes and
runs on the destination host.

Figure 5: vCPU Frequency Reduction During Migration

Figure 6: The Final Phase of Migrating VM

Admin

Management App

Hypervisor

libvirt.so

virsh migrate --live xxxxxxxx
xxx.yyy.zzz.www

Domain ID = xxxxxxxx

Source IP = aaa.bbb.ccc.ddd

Destination IP = xxx.yyy.zzz.www

Destination Host Source Host

Xen

Xen

Sending memory

pages in iteratively
rounds

VM2

VM3 VMx

VM1 VM-B VM-A

VMx

Migration Stub

Monitoring progress: amount of dirty
pages, amount of changed pages from

previous round and network bandwidth

Destination Host Source Host

Xen
Hypervisor

Xen
Hypervisor

Migrating

memory pages in
iteratively rounds

VM2

VM3 VMx

VM1 VM-B VM-A

VMx

Migration Stub

VMx’s CPU frequency should be

reduced till network send rate is lower
than dirty pages.

Destination Host Source Host

Xen
Hypervisor

Xen
Hypervisor

(2)Suspending
VM and

transferring dirty
memory pages +

CPU states

(3)All data
received and
VM resumed.

VM2

VM3 VMx

VM1 VM-B VM-A

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

230

6. IMPLEMENTATION AND EVALUATION

In order to implement a test environment,
two machines with AMD Quadro Core 800 MHz
processors, disk capacity of 500 GB, and 8GB
memory as compute nodes were used. In addition,
one another physical machine with Intel Core2Duo
2.66GHz CPU, 320 GB disk capacity and 4 GB of
memory was used as a shared node.

These three machines were connected
through a LAN network with 100 Mbps bandwidth.
The migration operation was performed on a virtual
machine with one vCPU, 2GB disk space, and 128
MB memory.

The operating system of two compute
nodes was Linux Centos 5.6 and also for
virtualization we used Xen 3.4 as hypervisor.
Moreover, in order to create a virtual SAN storage,
the OpenFiler tool were used on the shared node.
Finally, the Stress[22] benchmark version 1.0.2 was
used to make changes on memory pages. In
addition, a small program was written by C
language to simulate a real situation. The
evaluation environment is shown in Figure7.

Figure 7: Test Environment

6.1. Test One: Evaluating Response Time per

Requests

This test is a simulation of a real-world
condition that a virtual machine processes a huge
amount of write-intensive workloads. The result of
this test is shown in figure 8. The proposed method
is analyzed in different conditions to get the
optimum reduction in frequency.

At first, the algorithm applied 25%
decrease in frequency. This amount of reduction in
the functionality of VM led to a decrease in the

change rate of memory pages. Therefore, the total
migration time decreased because the amount of
candidate data for sending was reduced
significantly.

Figure 8: Response Time

In the second try, we reduced the VM’s
performance to 50%. As could be seen in Figure 8,
the total migration time consequently was reduced.
However, because of virtual machine suspension
the response time rocked up to around 900ms from
140 to 160 seconds of migration process.
Furthermore, Table1 shows the response time
during migration process in more details.

Take a real-world scenario as an example.
If a virtual machine migrates from one host to
another one 20 seconds earlier, it will be acceptable
only if it continues to respond to the requests with
200ms response time, because no only it occupies
network bandwidth less but also users will not be
aware of the delay caused by VM replacement.
Nevertheless, as far as pre-copy method is
concerned, virtual machine migration process takes
a long time because total amount of transferred data
through the iterative copy phase are huge.

We also tested our method to 75%
reduction, it means virtual machine worked with
only 25% of its performance capacity. As expected,
the total migration time and amount of sent data
declined noticeably, however, the response time
experienced a disappointing incline. So, this
inclining is too high and we can’t consider this
amount of reduction as a good choice. In other
words, if a virtual machine starts to migrate with
such a high response time, this movement will
absolutely be notable by the users.

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

231

Table 1 Response Time During Migration Process

(* Migration Start Time, # Downtime, ^ Migration End

Time)

75%
Decrease

50%
Decrease

25%
Decrease

Pre-Copy

 Method

(MS)
Time(S)

80 125 151 59 20

148 109 277 120 40

130 * 194 * 370 150 60

191 316 447 213 80

192 318 440 * 244 100

* 266 340 483 260 120

270 388 # 1015 272 140

315 # 841 * 0.64 275 160

853 ^ 0.54 0.44 266 180

^ 0.63 0.62 * 0.74 # 769 190

0.59 0.77 0.70 ^ 1.03 200

6.2. Test Two: Evaluating Network Throughput

In this test, the virtual machine migrates
while the network throughput is being monitored.
In order to implement this test, we used Netperf 2.5
benchmark. The result of this test is shown in figure

As we decrease the frequency of vCPU,
both total migration time and suspension phase of
virtual machine became shorter and shorter;
furthermore, the amount of bandwidth consumption
is less than what is happening in pre-copy.

As mentioned in the first test, this
reduction in frequency makes the VM less
functional. The situation of 50% is better than the
situation of 25% from the perspective of response
time. We insist on this factor because it is
completely in a relation with users’ happiness. So,
it is one of the criteria that involved with quality of
service (QoS).

Figure 9: Network Throughput

6.3. Test Three: Evaluating Amount of Data

Send

The aim of this test is comparing the
proposed method with Pre-Copy from the
perspective of transferred data. This test shows that
by decreasing the frequency of vCPU, the amount
of data, which is sent, reduces. Hence, the
migration process will be done in a shorter time and
also less network bandwidth will be occupied. The
result of this test is shown in figure 10. We used
Stress-1.0.2 benchmark to make some minor
changes in memory pages. In other words, in this
test some parts of memory pages have been
changed while the amount of transferred data is
being monitored.

Figure 10: Amount of Transferred Data

As we mentioned before, one of the

disadvantages of pre-copy method is to send
memory pages several times. We concluded that in
our method, by decreasing the frequency of vCPU,
migration process especially the first phase,
iterative copy becomes shorter. In fact, the main
reason is that amount of transferred data will
experience a reduction. Table2 shows the amount
of transferred data during migration process in
more details.

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

232

Table 1 Amount of Transferred Data

(M1 Method (MB), M2 Modification(MB))

6.4. Test Four: Number of Rounds

The aim of this test is to show the number
of rounds that is needed for migrating virtual
machine memory pages by using proposed method
in comparison with standard pre-copy method. The
third test showed that by increasing the frequency,
the amount of transferred data would also be
increased. In the fourth test, we intend to show that
increasing the vCPU frequency is also affect the
number of rounds for sending memory pages. It
should be emphasized that as the number of rounds
increases, the total migration time also faces an
increment. The results of this test are shown in
Figure 11.

Figure 11: Number of Rounds for Sending Memory

Pages

Furthermore, Table 3 shows more
information about the number of needed rounds for
sending virtual machine memory pages.

Table 3 Number of Rounds for Sending Memory Pages

(M1 Method (Rounds), M2 Modification(MB))

75%
Decrease

50%
Decrease

25%
Decrease

Pre-
Copy

M1 �

M2

1 1 1 1 Idle

2 2 2 2 10

3 3 3 3 20

7 6 6 7 40

10 8 7 10 80

14 9 7 14 100

16 9 8 17 120

21 12 10 23 140

24 12 11 Failed 160

29 13 11 Failed 180

Failed 15 13 Failed 200

7. CONCLUSION

In this paper, we described how
organizations and costumers benefit from the
advantages of Cloud Computing. Being pioneer and
famous is very important for Cloud service
providers, so they try their best to use vary efficient
techniques for management, security and
computation. One of these techniques for increasing
flexibility and comparability of cloud datacenters is
virtual machine migration. In this paper, we
proposed a method that is more functional than the
normal pre-copy method.

We built our method on the theory that
decreasing the frequency of virtual machine’s CPU
has a direct relation with the memory page
changing rate and as a consequence sending data
over the network.

Therefore, we reduced the vCPU
frequency of the virtual machine until the changing
rate was higher than sending data through the
network. In this way, memory pages were
transferred to the destination host quickly. As a
result, the amount of sent data and total migration
time significantly decreased. The results show that
proposed method decreased the total migration
time to around 25% and also declines the amount
of sent data to 47% in compare to Pre-Copy
method.

75%
Decrease

50%
Decrease

25%
Decrease

Pre-Copy

M1
�

M2

257 257 257 257 Idle

273 273 273 274 10

281.16 281.05 280.72 281 20

308.03 295.12 294 310.8 40

370 355.5 349 379.47 80

1447.59 956.31 855 1460 100

1962.4 1335.22 1244 2301.84 120

3199.55 1770.14 1470.33 3610 140

4090.72 2176.01 2116.9 Stop
Operation

160

4802.13 2540.34 2250 Stop
Operation

180

Stop
Operation

3248 2861.07 Stop
Operation

200

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

233

REFRENCES:

[1] Y. Ruan, Zh. Cao, Y.Wang, “Efficient Live
Migration of Virtual Machines with a Novel
Data Filter”, Procedings of Network and
Parallel Computing (NPC 2014), Ilan, Taiwan,
Sept, 2014.

[2] M. Forsman, A. Glad, L. Lundberg, D. Ilie,
“Algorithms for automated live migration of
virtual machines”, Journal of Systems and
Software, 1 March 2015, Vol.101, pp.110-126.

[3] M .Atif, P. Strazdins, “Adaptive parallel
application resource remapping through the
live migration of virtual machines”, Future
Generation Computer Systems-The
International Journal Of Grid Comput, 2014
Jul, Vol.37, pp.148-161.

[4] J. Changyeon, E. Gustafsson, S. Jeongseok,
E.Bernhard, “Efficient live migration of virtual
machines using shared storage”, ACM
SIGPLAN Notices, August 2013, Vol.48(7),
pp.41-50.

[5] R. Yonghui, C. Zhongsheng, C. Zongmin,
“Pre-Filter-Copy: Efficient and Self-Adaptive
Live Migration of Virtual Machines”, IEEE
Systems Journal, 5 November 2014.

[6] E. Baccarelli, D. Amendola, N. Cordeschi,
“Minimum-energy bandwidth management for
QoS live migration of virtual machines”,
Computer Networks, 2015 Dec 24, Vol.93,
pp.1-22.

[7] K. Changhyeon, J. Changho, L. Wonjoo, Y.
Sungil, “A parallel migration scheme for fast
virtual machine relocation on a cloud cluster”,
The Journal of Supercomputing, 2015,
Vol.71(12), pp.4623-4645.

[8] L. Kangkang, Zh. Huanyang, W. Jie, D.
Xiaojiang, “Virtual machine placement in
cloud systems through migration process”,
International Journal of Parallel, Emergent and
Distributed Systems, 03 September 2015,
Vol.30(5), p.393-410.

[9] M. Zoltán Ádám, “Allocation of virtual
machines in cloud data centers-a survey of
problem models and optimization algorithms”,
ACM Computing Surveys, 1 August 2015,
Vol.48(1).

[10] Sh.Z. Rad, M.S. Javan, M.K, Akbari,
“Providing a Solution for Live Migration of
Virtual Machines in Eucalyptus Cloud
Computing Infrastructure without Using a
Shared Disk”, CLOUD COMPUTING 2012,
The Third International Conference on Cloud

Computing, GRIDs, and Virtualization, Nice,
France, July 2012.

[11] J. Hai, D. Li, W. Song, S. Xuanhua, and P.
Xiaodong, "Live virtual machine migration
with adaptive, memory compression," in IEEE
International Conference on Cluster
Computing and Workshops, CLUSTER '09,
pp. 1-10.

[12] E. Zaw, N. Lar Thein," Improved Live VM
Migration using LRU and Splay Tree
Algorithm " International Journal of Computer
Science and Telecommunications ,Volume 3,
Issue 3, March 2012.

[13] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E.
July, C. Limpach, I. Pratt, and A. Warfield,
“Live Migration of VMs”, Proceedings of the
2nd USENIX Symposium on Networked
Systems Design and Implementation, 2005.

[14] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z.
Wang, S. Singhal, A. Merchant, and K. Salem,
“Adaptive control of virtualized resources in
utility computing environments,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems
(EuroSys’07), 2007, pp. 289–302.

[15] S. K. Bose, S. Brock, R. Skeoch, and S. Rao,
"CloudSpider: Combining replication with
scheduling for optimizing live migration of
virtual machines across wide area networks,"
11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGrid
2011, May 2011, pp. 13-22.

[16] B. Jiang, J. Wu, X. Zhu, and D. Hu, “Priority-
Based Live Migration of Virtual Machine "
,Springer-Verlag Berlin Heidelberg 2013, GPC
2013, LNCS 7861, pp. 376–385, 2013.

[17] Hines, M.R., Gopalan, K.: Post-copy based live
virtual machine migration using adaptive pre-
paging and dynamic self-ballooning. In:
Proceedings of the ACM/Usenix International
Conference on Virtual Execution
Environments (VEE 2009), pp. 51–60 (2009)

[18] D. Chen,_, H.Yang, Q. Xue, and Y. Zhou,"
Live Migration of Virtual Machines Based on
DPDT" , Springer-Verlag Berlin Heidelberg
2013, CWSN 2012, CCIS 334, pp. 26–33,
2013.

[19] Zhang, X., Huo, Z., Ma, J., Meng, D.:
Exploiting Data Deduplication to Accelerate
Live Virtual Machine Migration. In: IEEE
International Conference on Cluster
Computing, Cluster 2010, pp. 88–96 (2010).

Journal of Theoretical and Applied Information Technology
 31

st
 October 2016. Vol.92. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

234

[20] Michael, N., Lim, B.H., Greg, H.: Fast
transparent migration for virtual machines. In:
Proceedings of the USENIX Annual Technical
Conference 2005 on USENIX Annual
Technical Conference, Anaheim, p. 25 (2005).

[21] Liu, Z.B., Qu, W.Y., Liu, W.J., Li, K.Q.: Xen
Live Migration with Slowdown Scheduling
Algorithm. In: 2010 International Conference
on Parallel and Distributed Computing,
Applications and Technologies, PDCAT, pp.
251–221 (2010).

[22] Stress Test http://freecode.com/projects/stress

