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ABSTRACT 

 

The use of ordinary linear regression model in spatial heterogeneity data often does not suitable within the 

data points, especially the relationship between response variable and explanatory variables. Therefore, the 

geographically weighted t regression (GWtR) is used to overcome spatial heterogeneity term. The model is 

an extension of geographically weighted regression (GWR) which the response variable follows 

multivariate t distribution. The aim of this study is to obtain the estimator of geographically weighted 

multivariate t regression (GWMtR) model with known degrees of freedom. The maximum likelihood 

estimation (MLE) method will be applied to maximize a weighted logarithm likelihood function. Based on 

the EM algorithm, the estimator of geographically weighted multivariate t regression model can be 

determined. 

Keywords: Maximum Likelihood Estimation (MLE), EM Algorithm, Geographically Weigted Regression, 

Multivariate t Model 

 

1. INTRODUCTION  

 

The linear regression model are often used to 

describe the relationship between the response 

variable and the independent variable. The 

estimation of linear regression model by the 

ordinary least squares (OLS) method can be used 

when the error has normal distribution. A number 

of studies of multivariate t linear regression were 

performed. A study of univariate linear regression 

and multivariate linear regression are developed to 

obtain a robust linear regression model when data 

follow the heavy tail distribution. The maximum 

likelihood estimation (MLE) method can be applied 

to find the mean and covariance matrix of estimator 

robust. In addition, it is suggested to treat the 

degrees of freedom of t distribution as a known 

parameter when the sample size is small and to 

estimate it when the sample size is large [1]. 

Although, MLE method and Bayesian method 

have a weakness when the data have null 

probability under sampling model assumption, the 

inference of multivariate t linear regression with 

unknown degrees of freedom was developed. 

Fernandez and Steel [2] suggested that Bayesian 

analysis is based on a set of observations with the 

accuracy of the initial data. MLE method is not 

recommended without further study of the 

properties of the local maxima when it is used to 

find the estimator of model with errors multivariate 

t distribution and unknown degrees of freedom. 

Liu and Rubin [3] developed a maximum 

likelihood method using EM algorithm to estimate 

the parameters of the multivariate t regression 

model with known and unknown degrees of 

freedom. The algorithm has analytically quite 

simple and has stable monotone convergence to a 

local maximum likelihood estimate. 

When the relationship between the response 

variable and the independent variables is explained 

by observing geographic factors for each location, 

the use of spatial regression models is more suitable 

than the ordinary linear regression model which is 

constrained by the assumption of spatial data [4]. 

Spatial data is the measurement data that contains a 

location information, so the observation at one 

location depends on the observation at other nearby 

location. Therefore, the use of the GWR model 

serves to overcome the spatial heterogeneity.  
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Some studies on models of classical GWR 

model has been discussed, where an error follows a 

normal distribution. Although Lu, et al. [5] 

proposed non-Euclidean distance (non-ED) metrics 

calibrated with Euclidean distance (ED), road 

network distance and travel time metrics in GWR 

model, but the error still follows a normal 

distribution.  

An early review of the GWtR model has been 

done by Sugiarti, et al. [6].  The study indicates that 

the parameters of the model GWtR can be estimated 

by maximum likelihood method. The method 

maximize the weighted logarithm likelihood 

function of the response variable and get the value 

of the estimator using the Newton-Raphson 

iteration. In this paper we propose the maximum 

likelihood estimator of geographically weighted 

multivariate t regression model with known degrees 

of freedom using EM algorithm.  

2. MULTIVARIATE t DISTRIBUTION 

  

Base on Nadarajah and Dey [7], vector 
i

y  is said 

to have the q -variate t distribution with degrees of 

freedom  ν , mean vector µ , and scale matrix Ψ , 

if its probability density function (pdf) is given by: 
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Figure 1: Bivariate t Distribution with v=2 

 

The bivariate t distribution has havier tail than 

Normal distribution. It can be shown when degrees 

of freedom 30ν =  is increased as in Figure 2. 

 
 

Figure 2: Bivariate t Distribution with v=30 

 

 

The expectation and variance of vector iy  can be 

expressed by:  
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3. MULTIVARIATE t REGRESSION  

 

Multivariate t regression model is developed 

based on multivariate regression model with 

response variables that follow multivariate t 

distribution. Suppose q  response variables 

1 2( , , , )qY Y YK associated with p  independent 

variables 
1 2( , , , )pX X XK  can be written as: 
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Vector iy  follows the q -variate t distribution with 

degrees of freedom  ν , mean vector T
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matrix Ψ . The probability density function (pdf) of 

vector iy  is given by:  
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where ( ) 1( ) ( )T T T

i i i i iD −= − −y x y xθ Β ΒΨ  is 

Mahala-nobis distance. The expectation and 

variance of vector iy  can be denoted by:  
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Based on equation (3), the likelihood function can 

be stated as 
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 The maximum likelihood estimation of parameter 

multivariate t regression can be obtained by the 

maximized of logarithm likelihood function  
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Furthermore, assuming that the likelihood 

function is differentiable, the estimator can be 

found by solving the simultaneous equations below.  
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is the symmetric q q×  matrix that has ones in row i 

column j and row j column i, and zeros elsewhere.  

Since the equation (6) does not result in closed 

form solution, the estimator of Β  and Ψ  can be 

determined by the iteratively process. Liu and 

Rubin [3] used the EM algorithm to obtain the 

maximum likelihood estimator that consists of E-

step (Estimation step) followed by M-step 

(Maximization step). The E-step of the EM 

algorithm aims to obtain the conditional 

expectation of the complete data sufficient statistics 

when given the observed values. The M-step 

involves weighted least squares estimation of Β  

and Ψ . Thus, the EM algorithm iterates 

successively until the convergence is reached. 

At iteration ( 1)r+  with input ( )rΒ  and ( )rΨ , the 

E-step of EM algorithm calculate the expectation of 

ln likelihood complete and the expected sufficient 

statistics, respectively as follows: 
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The M-step of EM algorithm will calculate 
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4. GEOGRAPHICALLY WEIGHTED 

MULTIVARIATE t REGRESSION  

 

Geographically weighted multivariate t 

regression (GWMtR) model is developed based on 

geographically weighted t regression (GWtR) 

model which proposed by Sugiarti et al. [6]. The 

model describes relationship between q  response 

variables iy  and p  independent variables ix  by 

considering the location factor that expressed as 

vector coordinate in two dimensional of geographic 

space. Hence, the estimator obtained in GWMtR 

model is a local estimator for each point of 

observation. Let  
1 2

( , )i i iu u=u   is a coordinate in 

two dimensional geographic space (latitude and 

longitude), the expectation of GWMtR model can 

be defined as follows: 
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and vector ( ) ( )( ), ,T

i q i i i
t νy u x uΒ Ψ  have the q -

variate t distribution and probability density 

function is  
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5. 

 

PARAMETER ESTIMATION OF 

 GEOGRAPHICALLY  WEIGHTED 

MULTIVARIATE t  REGRESSION 

 

Maximum likelihood estimation of parameter 

GWMtR model can be obtained by the maximized 

of weighted logarithm likelihood function (10). 
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where ( )*i iw u  is a weighted function for location iu

and ( )( ) ( ) ( ) ( )1

* * * *( ) ( )T T T

i i i i i i i i iD −= − −θ Β Βu y u x u y u xΨ  

There are some types of weighting functions that 

can be used to describe the relationship between the 

observations at the location i to other locations. The 

one obvious choice is the Gaussian function [8] 
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where *iid  is Euclidean distance between location 

*i  and location i with bandwidth h .  

Lu, et al. [5] propose non-Euclidean distance 

(non-ED) metrics calibrated with Euclidean 

distance (ED), road network distance and travel 

time metrics in GWR model. The results indicate 

that GWR calibrated with a non-Euclidean metric 

can not only improve model fit, but also provide 

additional and useful insights about relationships 

within data set. However, Lu, et al. [9] propose a 

back-fitting approach to calibrate a GWR model 

with parameter-specific distance metrics. The 

results show that the approach can provide both 

more accurate predictions and parameter estimates, 

than that found with standard GWR.  

In order to select an appropriate bandwidth in 

GWR, there are a number of criteria that can be 

used, one of them is generalized cross validation 

criterion (GCV) which is described Matsui, et al. 

[10] 
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where ( )ˆ hy  is the fitted value of ( )hy  using a 

bandwidth of h , ( )iW u  is weighted matrix that 

consists weighting function in equation (12). 

Estimation of GWMtR's parameter model is 

obtained through the following equation.  
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Since the equation (14) does not result in closed 

form solution, the estimator of ( )*iΒ u and ( )*iuΨ  

are determined by the iteratively process.  

A joint iterative process to solve (14) is given by 

EM algorithm. The EM algorithm is developed to 

maximize the weighted ln likelihood observed 

through the weighted ln likelihood complete. Let  

i iτy  has multivariate normal distribution and iτ  

has Gamma distribution with density function, 

respectively as follows: 
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Therefore, the 
i iτ y  follows Gamma distribution 

with parameter: 
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i iτ y  can be denoted as: 
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                                    (18) 

From (16), the weighted ln likelihood complete is 

given by 
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(19)                          

 

Based on the conditional expectation of 
i iτ y  , 

the E-step of EM algorithm will calculate the 

expectation of weighted ln likelihood complete. 

Because
i

τ unknown, the use of  ( )i iE τ y  is easier 

than the of ( )iE τ .  

Hence, at iteration ( 1)r+  with input 

( ) ( ) ( )( )( ) ( ) ( )
,

r r r

i i i
Θ =u u uΒ Ψ , the E-step of EM 

algorithm will calculate the expectation of weighted 

ln likelihood complete and the expected sufficient 

statistics, respectively as follows: 
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The M-step of EM algorithm will calculate 

( ) ( )( ) ( )
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(21) 

The estimator of ( )*iΒ u and ( )*iuΨ  can be found 

by update the E-step and M-step iteratively until the 

convergence of algorithm is reached.  

Lange, et al. [1] used the Fisher Information 

matrix to determine the estimator of the asymptotic 

variance-covariance matrix of ( )*iuΒ . The Fisher 

Information matrix can be expressed as 
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The equation (15) can be written as 
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Hence, the contribution of the current observation 

in equation (22) to find estimator of ( )*iuΒ is  
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(23) 

Based on Lange, et al. [1], when q  declared the 

dimension of ( )*iuΨ , then the expectation of some 

function can be expressed 
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Furthermore, the Fisher Information matrix can be 

found through 
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 Hence, the Fisher Information matrix can be 

expressed as 
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(24) 

Then, the consistent estimator of the asymptotic 

variance-covariance matrix of ( )*iuΒ can be 

expressed by 
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(25) 

 

 

6. 

 

CONCLUCION 

 

GWMtR model is an extension of geographically 

weighted regression (GWR) which response 

variables follow multivariate t distribution. In this 

model, the response variables will be predicted by 

independent variables for each location. Therefore, 

there are many estimator of coefficients regression 

that depend on the location where the data are 

observed. Parameter estimation of GWMtR model 

can be done by maximum likelihood estimation 

(MLE) method with EM algorithm.
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