
Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

28

AGILE TESTING PRACTICES IN SOFTWARE QUALITY:

STATE OF THE ART REVIEW

1
CESAR GIL,

 2
JORGE DIAZ,

3
MARIO OROZCO,

4
ALEXIS DE LA HOZ

, 5
EDUARDO DE LA

HOZ,
 6
ROBERTO MORALES

1
Assoc. Prof, Universidad de la Costa

2, 3,4,5,6
Assoc. Prof. Universidad de la Costa, Department of Systems Engineering

E-mail:
1
cesargil2012@gmail.com ,

2
jdiaz5@cuc.edu.co,

3
morozco5@cuc.edu.co,

4
adelahoz6@cuc.edu.co,

5
edelahoz6@cuc.edu.co,

 6
romrales1@cuc.edu.co

ABSTRACT

In this paper you can find a review of articles related to agile testing practices in software quality, looking

for theoretical information and real cases applied to testing inside a modern context, comparing them with

the standard procedures taking into account their advantages and relevant features. As final result, we

determine that agile practices in software quality have wide acceptance and many companies have chosen

their use for all their benefits and impact on development software processes in several real applications,

not necessarily IT governance ones, since other kind of technical applications have shown excellent results

on testing.

Keywords: Agile testing software, Scrum agile testing software, Kanban agile testing software, Test
Driven Development agile test software, Behavior Driven Development test software,
automation test software

1. INTRODUCTION

Organizations apply software development

methodologies through their growing process, to

design computational tools with the best

requirements according with the needs of each work

unit and its integration as a system, resulting with a

product that its quality will depend on many factors

in a variable time and cost that can overcome the

budget assigned to it.

In the last years, several agile testing practices

have appeared that look for the best possible

software quality, applying an innovative approach

based on decision making of the software projects,

through a set of iterative and incremental

development activities, where requirements and

solutions have an important role and evolve with

time according to the needs of the project itself,

before their completion.

This way, the work with agile methods is

implemented with the collaboration of self-

organized teams involved in a decision making

shared process, where all members look to build an

agile multidisciplinary team, and the tester becomes

a multifunction expert, guaranteeing that the

business value desired by the client is delivered

with a sustainable and continuous rhythm.

In this case, agile methodologies don’t consider

software testing activities as a separate stage of the

process, instead for them, it’s integral part of it as

coding, which makes a huge difference from

conventional development and testing software

techniques, all this permits a set of various practices

related con agile testing, each of them with their

own features, knowledge that motivates to identify

the existing scientific literature in specialized

databases about this subject in the last five years.

This fact, implies the need of a review of the state

of the art, according with the agile testing practices

context, obtaining a better approach to the relevance

of implementing these methods and techniques.

Based on the analysis of the articles found in

specialized databases, we describe the results of 20

articles from notorious authors in their study area

and finally present a set of conclusions from our

review and software testing in general.

2. CONTEXT

Within lifecycle of software development, testing
become a relevant mechanism of validation and

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

29

verification of the software behavior according to
the requirements settled by design, which permits to
guarantee a level of quality in the developed tool.
Agile Testing (AT) currently has the best impact
and innovation, standing out among them:

 Test Driven Development (TDD) 1: This

practice is based on testing oriented

development and produces simpler, more

cohesive and less coupled code that the one

created by traditional ways. Its use is growing in

many development contexts and its associated to

extreme programming.

 Acceptance Test Driven Development

(ATDD) 2: It´s an approach of requirements

discovery based on team collaboration activities.

In this case, the tests are created by the client,

the developer and the tester. This strategy is

called triad and it´s executed before the

requirements application.

 Story Test Driven Development (STDD) 3,

also known Behavior Driven Development

(BDD): it´s a practice that communicates all the

requirements to all stakeholders through tests.

It´s also known as client test.

 Exploration tests 4: It´s a software test

where testers can interact with the system in any

way and use the information provided with the

objective of exploring all features of the system

without restrictions.

 Automation software tests: It means to

automate software test activities including

development and execution of the tests scripts,

test requirements verification and test tools use.

One of the main reasons to automate tests is to

diminish the time used doing it manually, also

increase efficiency when repeating the system

functionality, specially regression tests, where

tests cases are executed iterative and

incrementally after changes made on the

software.

3. METHODOLOGY

Based on the context described previously, our

first approach was to know studies, research
projects and themes developed by authors of
scientific community supported by international

databases worldwide accepted, these became the
need of information and search of scientific articles

available in relevant sources such as IEEE,
ScienceDirect, ACM and Taylor & Francis, also
using additional tools like online translators,
specialized texts and other bibliographic references,
that guarantee a good information retrieval process.

After identifying the search needs and the

information sources, we proceeded with the
recovery process through queries in the databases

already mentioned, through language controlled by
the thesaurus. The keywords that allowed the search
and recovery of the information in a faster, more
precise, and more secure way, and with a high level

of pertinence were:

 Agile Testing,
 Agile Methodology,
 distributed agile,
 Agile testing software,
 Scrum agile testing software,
 Kanban agile testing software,
 Test Driven Development agile test

software,
 Behavior Driven Development test

software,
 Automation test software
 control engineering computing,
 object-oriented programming,
 production engineering computing,
 program testing,
 quality management,

After searching with the keywords: Agile testing
software, Scrum agile testing software, Kanban
agile testing software, Test Driven Development
agile test software, Behavior Driven Development
test software, automation test software, the tables 1,

2 and 3 show the number of scientific articles
retrieved. This search was made with a restriction
of publications in the last 5 years only.

Table 1: Number of Articles retrieved with keywords:

agile testing, Software and scrum agile testing software

Database Agile testing

software

Scrum agile

testing software

IEEE Explore 798 119

ScienceDirect 4529 67

ACM Digital Library 148535 8936

Taylor & Francis 2431 97

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

30

Table 2: Number of Articles retrieved with keywords:
Kanban agile testing software and test driven

development agile test software
Database Kanban agile

testing software

Test driven

development

agile test

software
IEEE Explore 9 173

SciencedDirect 140 2735

ACM Digital Library 148557 209937

Taylor & Francis 51 1578

Table 3: Number of Articles retrieved with keywords:

Behavior driven development test software and

automation test software
Database Behavior driven

development

test software

Automation

test software

IEEE Explore 133 88

ScienceDirect 397 66

ACM Digital Library 211644 431945

Taylor & Francis 36225 871

The higher amount of articles reviewed and
analyzed come from IEEE and ScienceDirect in the
first part of the retrieval. After filtering the results,
30% of them are discarded since they’re not related

to the objectives of the review and another 20%
because they’re book chapters or case reports that
are not included in our analysis.

Finally, we obtained 20 papers that are strong
related to our research theme, and they present
concepts, theories and applications of agile
methodologies clearly and understandable for its
application in real contexts of software testing lead

by authors recognized worldwide. For future works,
we’ll analyze another set of articles, giving priority
to enterprise study cases.

Nevertheless, we found several state of the art
reviews with the same theme, those are resumed
next.

These selected references were chosen based on
their strong impact in agile testing, taking into
account their citations, their year of publishing and
the impact factor of the publisher. We found an

exponential growth in year 1998, which it´s a fact
that has generated a bigger growth from 2002 to
2016 21.

We performed a documental review about
software agile techniques, which are quite different
compared with traditional ones, both have become
quite relevant in software development lately. Our
conclusion is that they require little planning, since

they share the same context than client
requirements, looking to prevent delays in the
product delivery, which this is why code is built to
pass testing according to the needs of the client.

22 23

Another important fact to remember is that

software development processes in 1990’s were

heavily criticized as slow, burocratic and had poor
adaptation to changes, which generated a shift
towards agile development in organizations 24

Fig. 1. Agile Testing Approach

Figure 1 represents agile methodologies
procedure, specifically as a tool for acceptance and
unit testing. They use TDD and ATDD as the most
adequate for each unit test. 25

We can also depict that agile methodologies are

currently in a continuous predictive adaptive
delevopment, one of the keys for this methodology

is that uses a wave displacement approach, which
makes them flexible enough in each of their
processes, bringing less documentation and
complexity management. Nevertheless, testing have
a crucial role in lifecycle development software,

since if they aren’t present, product can’t be
evaluated for defects preventiong and minimizing
risk failure in production. 25

Assuming tests as an important process in
software quality, it’s relevant to highlight the role
of these present methodologies, which are born
from the needs and nature of the project, starting
from zero and based on the requirement of the

client. In this process, we can find usually
operational and management problems such as lack
of definition of the software scope, objective
alignment inadequate estimation, communication

issues between developers, testers and clients,
lacking comprehension, etc. 26

A high level of knowledge is needed to

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

31

Fig. 2. Agile Methodology Matrix 5

understand architectural challenges that participate

in the adoption of agile approaches and industrial
practices, to be able to develop huge and
architectural challenging systems. We always will
get to the question: Are we creating the right

product? This is the moment where validation takes
palce, and requires all stockholder participation for
requirement specification and development.
Validation is the process of making real tests in
source code. Through validation, we guarantee that

our product is designed covering the needs of the
client, monitoring them through a check list using
inspection meetings, comments, documents, to
obtain a product that is compliant with the initial

objectives set by stackholders. 27

4. RESULTS OF ARTICLES REVIEW

Based on the set of articles found and filtered, we
present a list of conclusions:

Robert Korošec 5 describes the procedure of
making transition from AVL software development
to the application of agile testing, using the
construction of a matrix of four quadrants that store
unit testing of the components, functional tests,
system acceptance tests and quality system tests.
Figure 1 shows this concept.

Automation test was implemented, and the tasks
were divided among all the team members. A
distribution tool was used for time and resources
optimization during the execution of the test,
obtaining positive results without the need of
building a huge amount of requirements as the

conventional method dictates.

The project described in 6 is the development

of a spectrometer using proprietary technology, it
receives a data spectrum and applies a mathematical
complex algorithm, sending results to an analysis
software through an independent communication
link to a display unit. According to this, agile
software testing applied to embedded software
show several problems, especially the ones
designed to test each unit or component because
they’re related to the communication between
hardware and software of the system.

The proposed and applied solution to the process,

was based on the construction of tests when
hardware changes are made, so algorithms were
built in Matlab to be executed in parallel along the
test for each module, testing its output and input in
the next module. This way, software was tested
based on its response of each hardware module
obtaining a highly reliable response with the
methodology implemented.

The research developed by 7 proposes a project

M directed to a commercial system for prepaid cell
phones, and the project N with the objective of
providing flexible billing for prepaid and postpaid
of mobile users, based on business rules for
protocols and URL addresses with differences in
the billing for data connections.

Several aspects related with applying agile
testing are exposed, especially some issues about
programmers avoiding their responsibility with

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

32

software quality, and relying only on testers for it,
which it´s a problem since testers have no tools to
make changes on the code or either aspects of the
software, and also other problems related with team
integration, even if there was a structured,
organized and rigorous planning of the testing
strategy compliant with the SCRUM methodology.

They recommend to set and apply integration
strategies for the team that assigns clear and well
differenced functions to each member, allowing
permanent interaction between them and avoiding
overlapping actions and skewing information
among others considerations.

Di Bernardo 8, references the activities by
software developers that give priority to the normal

behavior of applications and won’t emphasize to
find the exception points in the events flow.
Applying agile tests, particularly refactoring, it was
possible to fin four errors, two of them unknown for

testers in a production system, checking the
exceptional behavior of it, reviewing that the right
path for exceptions from their starting points to
their destinations were correct. This test allowed to
complement the proposed approach as an extension

of the Junit framework.

Agile methodologies are used to handle the

challenges of managing complex projects during

the development phase. According to Hale 9
research, statistics results from a survey made to
experts in Scrum and Kanban methods to compare
their efficiency (means are not significantly

different at 95% confidence level), showed little
difference, at least to conclude that Scrum would be
better than Kanba from the analysis of its effects in
management factors of software development.
Likewise, it suggest that Scrum and Kanban lead to

successful projects and Kanban can be better than
Scrum in terms of project management, and both
can be used to handle budget management, risk
control, project quality, amount of available

resources, project scope and schedule control.

The research proposed in 10, sets the original

area of product management as the discipline and
integral actions that regulates a product, solution or

service from start to delivery to the market or client,
generating the highest possible value for business.
This means that the application of the Scrum
methodology to the product management software

of a refinery, indicating the most relevant aspects
where stand out identification and structuring what
will be made based on the vision, theme, concepts
and definition of requirements, which are the source

of the flow diagram in implemented Scrum.

As a remarkable fact, the sprint was executed
with a fixed length of 2 to 6 weeks (varying by
company) simultaneously with the development
sprint, and this was beneficial to start the next sprint
of the following activity. They obtained a set of

lists of actions based on improvements of the
sprints, alternated by cycles, and the most amount
of requirements was processed to their minimal
expression, daily meetings were held about Scrum,

and a discipline for management of reserve
information was implemented, promoting early
reuse of information and integration with all
processes. With this, they obtained a huge

improvement in software quality in controlled times
according to each established strategy.

The study proposed by 11 analyzed the

conclusions of articles previously published about
the effects of TDD on quality software, considering
inner and outer factors and the productivity of the
company that builds the software, and comparing
TDD with Development Testing (TLD). The
applied method consisted in a systematic review of
literature having articles between 1999 and 2014.
The obtained results show that 57% of studies
analyzed were validated through experiments
approximately, and 32% of them were validated
through study cases.

Likewise, analysis concluded that 76% of studies
have shown a significant increase in inner software
quality, while 88% had an increase of quality in
external factors of software quality. Also there was
an increment in the number of articles in academic
scope, meanwhile in industrial context there has
been a huge decrease in it. In general, 44% of the
studies show a lower productivity using TDD
comparing with the higher level domain, so they
can conclude that TDD brings more benefits than
TLD with inner and outer software quality, which
affects all TLD developers with a lower
productivity.

Some of the outstanding results from the research

developed by 12, come from the automation of
tests applying scrum methodology in three different
software: They had a set of problems related with
the methodology scrum, highlighting the old habit
of doing regression tests manually. They propose
three different strategies: unit testing automation for
testers and system testing automation for the
development of an API embedded in a modem,
using a Google Test tool, according to level V
application level referenced in 13. As final result,
they obtained a faster application of testing
detecting code errors, even if no faults were found.

The second strategy consisted in the automation

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

33

of a web application for production control in a
factory. In this case, a continuous integration test
was applied in sprint 1 and 2 using Hudson open
tool. The developers executed TDD tests. A
relevant result was fast feedback received by each
member of the team of developers and testers.
Nevertheless, there wasn’t an absolute
synchronization in automation, since each work
team used different automation methods.

The third strategy was the participation of
developers and testers in automation of unit and
systems tests through 5 sprints. This strategy
promotes team harmony, collaboration, knowledge
transfer and fast feedback from sprint results.

According to 14, the idea of using agile testing
is to promote radical changes in software
development inside organizations, and that’s clearly
evident in software tests. Agile development
redefines completely the traditional way of
working. The use of these methodologies removes
the backbone of the software development cycle in
many organizations, including “quality control”.
This type of agile practices requires full integration
of tests and development.

This proposal obtained results from data analysis
at great scale with development projects for an
Israeli aviation company (IAF), and they provide
new evidence that agile testing really works and
essentially they improve development quality and
productivity. The information system of IAF is
critical for daily operations and information
security. As a result, the objective system is highly
complex and must have the highest quality.

Working with professional testers in agile
projects implies the whole team must test their own
creation. Professional testers add value, not making
more tests, but rewriting some of the ones made by
the developers and adding new features. They also
can add better test scenarios, even this can vary
widely among them.

The use of professional testers proposes two key
challenges for organizations adopting agile
development: bottleneck tests and coordinate tests
between testers and programmers.

Defect management in these kind of projects
consists in two huge challenges: to control the
workflow and to select and schedule the defects that
will be solved. The team members check out their
defects, counting and correcting them as a routine.

Workflow management is simpler in agile
projects than traditional ones for three reasons:

• Any person can visualize a defect.

• Anyone can close a defect after being fixed

and execute the right tests.

• Anybody that finds a defect can assign who

will repair it.

In 15, they describe that agile methodologies

are born with one goal in software development
community, first we would have to talk about
eXtreme Programming (XP) methodology, created
by Kent Beck 16|17. Currently there are
different agile methodologies, and we can
enumerate some of them:

• XP (Extreme Programming): It proposes a

light technique of software development,
based on the programmer’s discipline.

• Scrum: Its main focus is project management

practices on engineering areas. It proposes
continuous adaptation of the project
planning, using divisions or iterations called
sprints, where each of them produces a new
version of the produce with new features.

• Crystal Methods: It proposes different
processes to apply depending on three basic
variables: project size, criticality, and
priorities of it. Team members set the
process to follow the entire project. It
emphasizes team communication.

• DSDM Dynamic Systems Development
Method: It focuses on RAD (Rapid
Application Development) projects, with
single phase of feasibility and then iterative
phases for analysis, design and development.

• FDD Feature Driven Development: It
proposes to set a series of features that must
be contained in the product, hierarchically
organized, with a scope short enough to be
implemented in a couple of weeks.

• ASD Adaptive Software Development: It
focuses on projects with unstable
requirements with needs of fast
development. It proposes the phases
speculate – collaborate – learn to develop
projects with these features.

• Xbreed: Combines management project
practices from Scrum and XP. It’s quite
recent and there aren’t many references
about it.

In 18, the development of big intensive systems

in software is a complex task that must be carried

out applying a divide and conquer strategy.

Companies face with the challenge of coordinating

the individual aspects of software development in

particular, focusing in two principles: Requirements

Engineering (RE) and Software Testing (ST), both

implied in agile testing software methodologies. A

wrong alignment, not only can lead to a wasted

effort, but to faulty software. Nevertheless, before

an organization can improve these aspects, it’s

necessary to know coordination mechanisms. When

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

34

using REST-bench, its goal is to provide an

evaluation tool that illustrates coordination in

software development projects and identify

concrete improvement opportunities. This tool is

developed based on solid foundations of a

taxonomy of REST alignment methods, validated in

five study cases. The opportunities that were

identified indicates that the evaluation was effective

and efficient. On the other hand, participants

confirmed that their comprehension about

coordination between RE and ST improved

significantly.

Research developed by 19, wanted to

understand how software developers experience

continuous performance adaptation in a highly

volatile and modern environment, using the

software methodology of Lean and Agile. This

knowledge can be used as foundation to build and

maintain high performance teams, to communicate

performance improvement initiatives and also get

better work conditions for developers.

As final result, 33 main categories of

performance factors and relationships between them

were found. A comparison with study cases

revealed similarities and differences between types

and sizes of the organizations.

In this study, software teams are committed to a

permanent cycle of the interpretation of their

actions and negotiation of the alignment with other

interested parts of the organization. Certainly, there

can be difference in size among them, a set of

common performance experiences is present despite

different context variables.

Improve the performance experiences require

integration of soft factors, as communication, team

spirit, team identity, and values in development

process, which suggest a software development

vision and the performance of an innovative

software team is centered in social sciences and

behavior.

Finally, work proposed in 20, has the objective

of analyzing the combination of architecture and

agile methods with the goal of exploring and

analysis focused in activities and approaches, agile

methods and practices, costs, benefits, factors, tools

and learned lessons comparing with the

combination of the two first ones. As final result, 54

studies were included in this research. Some of the

most outstanding aspects found were: (1) There is a

meaningful difference in the proportion between

activities, the agile methods architecture and

practices used in the combination. (2) None of the

architecture approaches has been widely used in

combination. (3) There is a lack of description and

analysis related to costs and the failure stories of the

combination. (4) 20 challenges, 29 factors, and 25

learned lessons were identified.

The results of this study help to the community

of software engineering to think over the last 13

years of research and the practice of combining

architecture and its implications with software agile

methodologies.

5. CONCLUSIONS

 Based on the analysis of review articles, we can
conclude that search must be refined and filtered
with the most number of keywords according to the
topics specialized in software agile testing,
otherwise the number of articles would be
impossible to reference through a research of this
kind.
 The lower amount of articles found are related to
tools used in automation software testing, which
brings an open window of opportunities to develop
new research in this topic.
 We advise having in mind other designations for
the search topics, in case of not finding related
articles directly with the search objective, this is
why the context definition is fundamental to refine
search scope.

Based on the articles reviewed we can conclude:

• Testing must be executed simultaneously
with software development, in other words,
there must be a team of experts testing
continuously and not when development is
finished.

• Agile testing uses continuous feedback,
which allows to redirect all the process
during software development.

• In a team, all members perform direct tests,
or any other tests, including users through
alfa o beta versions of the software being
developed.

• Time for obtaining mistakes and deciding
improvements and corrections is shorter
every time and can be done anytime, since
this is determined by each iteration in all
teams, including the business area. Likewise,
the cost of corrections is lower than those
made at the end of the process of quality
assurance.

• Each error or errors are corrected in each
iteration after constant testing, obtaining
clean code permanently.

• Testers use checklists to collect essential

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

35

information of the test and any details that
aren’t relevant are discarded.

• Organizations should automate testing for
each software layer.

• Test should be easy, reusable and
understandable for each team member.

REFERENCES:

1 D. Janzen and H. Saiedian, "Does Test-

Driven Development Really Improve

Software Design Quality?" in IEEE Software,

vol. 25, no. 2, pp. 77-84, March-April 2008.

doi: 10.1109/MS.2008.34

2 L. F. S. Hoffmann, L. E. G. d. Vasconcelos, E.

Lamas, A. M. d. Cunha and L. A. V. Dias,

"Applying Acceptance Test Driven

Development to a Problem Based Learning

Academic Real-Time System, “Information

Technology: New Generations (ITNG), 2014

11th International Conference on, Las Vegas,

NV, 2014, pp. 3-8. doi:

10.1109/ITNG.2014.63

3 S. Park and F. Maurer, "A Network Analysis

of Stakeholders in Tool Visioning Process for

Story Test Driven Development," Engineering

of Complex Computer Systems (ICECCS),

2010 15th IEEE International Conference on,

Oxford, 2010, pp. 205-214.doi:

10.1109/ICECCS.2010.5
4 B. Suranto, "Exploratory software testing in

agile project," Computer, Communications,

and Control Technology (I4CT), 2015

International Conference on, Kuching, 2015,

pp. 280-283. doi:

10.1109/I4CT.2015.7219581
5 R. Korosec and R. Pfarrhofer, "Supporting the

Transition to an Agile Test Matrix," Software

Testing, Verification and Validation (ICST),

2015 IEEE 8th International Conference on,

Graz, 2015, pp. 1-2.

6 N. Van Schooenderwoert and R. Morsicato,

"Taming the embedded tiger - agile test

techniques for embedded software," Agile

Development Conference, 2004, 2004, pp.

120-126. doi: 10.1109/ADEVC.2004.21

7 A. M. dos Santos, B. F. Karlsson, A. M.

Cavalcante, I. B. Correia and E. Silva,

"Testing in an agile product development

environment: An industry experience report,"

Test Workshop (LATW), 2011 12th Latin

American, Porto de Galinhas, 2011, pp. 1-6.

doi: 10.1109/LATW.2011.5985897

8 R. Di Bernardo, F. Castor and S. Soares,

"Towards Agile Testing of Exceptional

Behavior," Dependable Computing

Workshops (LADCW), 2011 Fifth Latin-

American Symposium on, Sao Jose does

Campos, 2011, pp. 21-24. doi:

10.1109/LADCW.2011.12

9 H. Lei, F. Ganjeizadeh, P. K. Jayachandran,

and P. Ozcan, “A statistical analysis of the

effects of Scrum and Kanban on software

development projects,” Robot. Comput.

Integr. Manuf., pp. 1–9, 2015.

10 K. Vlaanderen, S. Jansen, S. Brinkkemper,

and E. Jaspers, “The agile requirements

refinery: Applying SCRUM principles to

software product management,” Inf. Softw.

Technol., vol. 53, no. 1, pp. 58–70, 2011.

11 W. Bissi, A. G. Serra Seca Neto, and M. C. F.

P. Emer, “The effects of test driven

development on internal quality, external

quality and productivity: A systematic

review,” Inf. Softw. Technol., vol. 74, pp. 45–

54, 2016.

12 E. Collins, A. Dias-Neto and V. F. d. Lucena

Jr., "Strategies for Agile Software Testing

Automation: An Industrial Experience,"

Computer Software and Applications

Conference Workshops (COMPSACW), 2012

IEEE 36
th

 Annual, Izmir, 2012, pp.

 440-445. doi:

10.1109/COMPSACW.2012.84

13 G. Myers (2004): The Art of Software

Testing. Ed. John Wiley & Sons, Inc.,

Hoboken, New Jersey.

14 D. Talby, A. Keren, O. Hazzan and Y.

Dubinsky, "Agile software testing in a large-

scale project," in IEEE Software, vol. 23, no.

4, pp. 30-37, July-Aug. 2006. doi:

10.1109/MS.2006.93

15 K. Beck and M. Fowler, Planning extreme

programming. Boston: Addison-Wesley,

2001.
16 Kent Beck. “Extreme Programming Explained:

Embrace Change”. Reading, Addison Wesley,

1999.
17 Kent Beck, Mike Beedle, Arie van Bennekum,

Alistair Cockburn, and others. “Agile

Manifesto”. 2001.http://agilemanifesto.org/

18 M. Unterkalmsteiner, T. Gorschek, R. Feldt,

and E. Klotins, “The Journal of Systems and

Software Assessing requirements engineering

and software test alignment — Five case

studies,” J. Syst. Softw., vol. 109, pp. 62–77,

2015.

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

36

19 F. Fagerholm, M. Ikonen, P. Kettunen, J.

Münch, V. Roto, and P. Abrahamsson,

“Performance Alignment Work: How

software developers experience the continuous

adaptation of team performance in Lean and

Agile environments,” Inf. Softw. Technol., vol.

64, pp. 132–147, 2015.

20 C. Yang, P. Liang, and P. Avgeriou, “The

Journal of Systems and Software A systematic

mapping study on the combination of software

architecture and agile development,” J. Syst.

Softw., vol. 111, pp. 157–184, 2016.

21 C. ©. 2. E. B.V, «Scopus» Elsevier, 2016.

Online. Available: https://www.scopus.com.

22 K. Sunil y S. Priya, Applying FLOOT Testing

to Agile Methodology, Reliability, Infocom

Technologies and Optimization (ICRITO)

(Trends and Future Directions), 2015.

23 R. O'Connor. N. Baddoo, J. J. Cuadrado-

Gallego, R. Rejas Muslera, K. Smolander y R.

Messnarz, Software Process Improvement:

16th European Conference, EuroSPI, Alcala

(Madrid), Spain: Springer Science & Business

Media, 2009.

24 « Brief History of Agile Version One, Agile

Sherpa by and for the, » 2016. Online.

Available: http://www.agilesherpa.org/.

25 S. AMBLER y M. LINES, «Agile Practices

Survey Results: July 2009, » 2009. Online.

Available:

http://www.ambysoft.com/surveys/practices20

09.html.

26 «Overcoming Testing Challenges in Project

Life Cycle using Risk Based Validation

Approach, » K. Nageswara Rao et al. /

International Journal on Computer Science

and Engineering (IJCSE) , vol. 3, nº 3, pp.

1232-1239, 2011.

27 D. F. Rico, «v&v lifecycle methodologies, »

Software Engineering Terminology, 2014.

28 C. Tulika, C. Samyadip y J. Nasina, «Analysis

of Agile testing attributes for faster time to

Market: Context of Manufacturing sector

related IT projects, » Procedia Economics and

Finance, vol. 11, pp. 536-552, 2014.

