
Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

190

IMPLEMENTATION OF PARALLEL ALGORITHM FOR LUC

CRYPTOSYSTEMS BASED ON ADDITION CHAIN BY A

MESSAGE PASSING INTERFACE

ZULKARNAIN MD ALI
1
 AND ARNIYATI AHMAD

2

1
 Software Technology and Management Center, Faculty of Information Science and Technology, National

University of Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
2
 Department of Computer Science, Faculty of Defence Science and Technology, National Defence

University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia

Email:
1
zma@ukm.edu.my ;

2
arniyati@upnm.edu.my

ABSTRACT

The LUC cryptosystem is a modification of RSA cryptosystem. It was based on Lucas Function and has

been introduced by Smith and Lennon. The computation of the LUC Cryptosystem is totally based on the

computation of Lucas Function. Fast computation algorithm is required since the public key, message,

primes are all big enough in order to have very secure cryptosystems. In this paper, the Addition Chain

technique will be implemented for a parallel computation algorithm. In this case, the public key will be turn

into the suitable array where this array will be used for computation of LUC cryptosystem based on

Addition Chain. This Addition Chain will be use in manipulating the Lucas Functions properties such as

V2n, V2n+1 and V2n-1 to find the fast computation techniques for Lucas Functions. The capability of the

standard Message Passing Interface (MPI) is implemented. The process run on special distributed memory

multiprocessors machine known as Sun Fire V1280. The proposed techniques can reduce a computation

time for LUC Cryptosystem computation compare to the computation algorithm for one processor. As a

comparison, the computation time for one processor and several numbers of processors are also included.

Keywords: Parallel Algorithm, Addition Chain, MPI, Public Key Cryptosystem.

1. INTRODUCTION

Nowadays the typical desktop computer contains

a multi-core processor. This parallel hardware

makes the software designers reconsider the

software design to get the most possible

computational power from these powerful

processors. This can be done by exploiting

parallel programming techniques and using them

to make the execution of the software

components concurrent.

Parallel algorithms on the other hand play a

significant role in maintaining rapid growth. Not

only, multicore processors, but also a powerful

graphics cards are becoming more and more

available [7]

Some of the most commonly executed

algorithms by computer users nowadays are

cryptographic algorithms, which are used to

encrypt and decrypt data in order to send it safely

and securely over an unsafe environment like the

internet. The well known RSA is the public key

cryptosystem. It is a form of cryptography where

a user has a pair of keys which are public key

and a private key [1] and the RSA is probably the

most promising and widely used public key

cryptosystem [8].

Two researchers who is Smith and Lennon in [6]

then introduced another public key cryptosystem

based on Lucas Function and it is known as LUC

Cryptosystem. Lucas Function also used in

factoring technique designed [5].

Related discussions of LUC Cryptosystem

security can be found in [1], [3] and [4]. The two

primes used in LUC Cryptosystem should be big

enough to ensure the security of the message.

When the computation involved very big

numbers of primes, the computation for

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

191

encryption and decryption also required huge

computation time. The research on speed up the

computation of LUC Cryptosystems can be

found in [9].

The ability of computation of with some number

of processors is better than only use one

processor. The parallel computation algorithm

for RSA can be found in [2]. This kind of

computation is possible for any kind of public-

key cryptosystem. Some ideas in this paper gives

an idea to do research in the same thrust for LUC

Cryptosystems.

Therefore, a parallel computation technique will

be proposed. The algorithm that is proposed will

be using Addition Chain and manipulate some of

the important properties of Lucas Functions.

Small example of this computation technique can

be described as the following one. Let n = 14,

then the sequence for a given value n is

{2,0,1,0,1,0}. It is simply shown that m = 5. The

first item in a sequence is not used for any

computation. It is only used to indicate the end of

sequence.

The sequence generated here should be used in

backward {0,1,0,1,0,2}. Then, this sequence can

be used in manipulating some properties of

Lucas Functions. The more explanation of this

sequence can be found later in this paper

presentation where it is finally can be organized

as Addition Chain.

Then, the implementation part is very important.

The parallel algorithms are writing in C language

combined with the Message Passing Interface

(MPI) package. As a result, when the number of

processors is increased, the computation time

will be reduced.

It is also improved the efficiency of computation

for LUC Cryptosystem. In this paper, the

concentration is just on fast computation of the

LUC cryptosystem since the security of this

systems will be more concerned by other

researchers. Another possible attack on this

system can be found in other research area.

2. LUC CRYPTOSYSTEMS.

Key elements of LUC Cryptosystems are shown

below:

a. Find two large primes p and q. The

product of p and q is N=p∗q.

b. Choose e less than N and relatively

prime to (p−1), (p+1), (q−1) and (q+1).

c. Find d, such that ed≡1(mod-(n)), where

(n)=lcm(p−(D/p), q−(D/q)).

d. The public key is the pair (e, n). The

public key process is done by Ve(P, 1)(mod N) to

get C.

e. The private key is (d, n). The private

key process is done by Vd(C, 1)(mod N) to get P.

There are two different keys that are needed for

the encryption and decryption processes. The

key e is publicly known and key d is remain

secret. The number e must be chosen so it is

relatively prime to (p − 1) (q − 1) (p + 1) (q + 1).

Therefore, the public encryption key e and the

secret decryption key d are related by ed ≡ 1

(mod S (n)), where there are four possible values

for the function S (n) is either lcm (p−1, q−1) or

lcm (p−1, q+1) or lcm (p+1, q−1) or lcm (p+1,

q+1). It is quite easy to compute least common

multiple (lcm).

The plaintext (original text) denoted as M and

the ciphertext denoted as C. The LUC

Cryptosystems is known public key

cryptosystem. It is some time called as

asymmetric cryptosystems.

The concept of public key cryptosystem is very

simple and prove to be more secure than the

symmetric cryptosystem such as DES, 3DES and

others. The public key needed two relatively

primes such as p and q.

The N is the product of p and q where it is

should be N=p*q. The encryption function is C =

Ve(M,Q)(mod N). Meanwhile, the decryption

function is M = Vd(C,Q)(mod N). We simply

choose Q=1 and this apply for its computation

and design. This feature has been explained in

detail by Smith and Lennon [6].

Therefore, to simplified encryption and

decryption of LUC Cryptosystem, the encryption

supposed to be C=Ve(M,1)(mod N) and the

decryption supposed to be M=Vd(C,1)(mod N).

Consider the situation when Bob and Alice

communicated on an insecure channel:

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

192

• To send a message P to Bob, Alice uses

Bob’s public key e to compute, C = Ve(P,1)

(mod N).

• Bob recover the plaintext P from C with

his private key d by computing P = Vd(C, 1)

(mod N).

Computation of Ve and Vd might look extremely

long, for large values of e and d. This is where

we need parallel algorithm in order to make the

computation really fast.

2.1 LUCAS FUNCTIONS.

Let α and β be the roots of the polynomial

equation x
2
 – Px + Q = 0. Then P=α+β and

Q=αβ. The general second order linear

recurrence:

Un = (αn - βn)/(α - β) (1)

Vn = αn + βn (2)

There are two function that can be derive from

Equation (1) and (2). It is:

Un+1 = PUn − QUn−1 (3)

Vn+1 = PVn − QVn−1 (4)

As mentioned in [6], the sequence Vn with Q = 1

is usually used to design LUC cryptosystem.

Then, the Equation (4) can simply be derived as,

Vn = PVn-1–Vn-2 (5)

where n≥2, V0=2 and V1=P

Some equations are related and to be used with

Addition Chain technique. There are:

V2n = Vn2 – 2 (6)

V2n+1 = PVn2 - VnVn-1 – P (7)

V2n-1 = VnVn-1 – P (8)

Simple example of LUC cryptosystems

computation is shown in the following details. In

this example, P = 11111, p = 1949, q = 2089 and

e = 1103.

1. The computation of ciphertext C is as

follows:

a. Let N = p*q = 1949*2089 = 4071461

and P = 11111, a plain text.

b. To encrypt P = 11111, calculate

V1103(11111, 1)(mod 4071461) and the result is

C = 3975392.

c. Then Q = 1, V0 = 2, V1 = 11111 and

need to calculate V1103.

d. First, calculate V2 = PV1 − QV0 (mod

4071461).

e. Second, calculate V3 = PV2 − QV1 (mod

4071461).

f. Continues, until V1103 = PV1102 −

QV1101(mod 4071461).

g. The final value V1103 is the required

value.

h. Therefore at this point C = V1103 where

C = 3975392.

2. The calculation of private key d is as the

following steps:

a. C = V1103=3975392.

b. Let D = C
2
 − 4; then (D/1949) = −1 and

(D/2089)=−1 are the two Legendre Symbols.

c. Calculate r. r is actually the Least

Common Multiple of 1949+1 and 2089+1. Then,

r = lcm(2.3.52.13, 2.5.11.19) = 407550.

d. Use the Extended Euclid Algorithm to

find the secret key d (decryption key). The

public-key e = 1103, by solving the modular

equation ed = 1(mod 407550). Finally, d =

24017.

3. The decryption of the ciphertext can be

in the following details:

a. Calculate Vd(C, 1)(mod N).

b. It means that V24017(3975392,1)(mod

4071461)=1111.

c. Initial values are V0 = 2, V1 = 3975392

and need to calculate V24017.

d. First, calculate V2=CV1 − QV0 (mod

4071461).

e. Second, calculate V3= CV2 − QV1 (mod

4071461).

f. Continues, until V24017=

CV24016−QV24015(mod 4071461).

g. The final value V24017 is P = 11111.

Then the encryption and decryption processes are

done.

3. BASIC ASPECTS OF PARALLEL

COMPUTATION

3.1 ADDITION CHAIN

Theorem 1

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

193

Given an integer n, a sequence for n is {a0, a1, a2

. . . , am} such that a0 = 2, a1 = (0 or 1), a2 = (0 or

1) and am = 0. The reverse of sequence can be

used to form an Addition Chain.

Proof

Initial value is a0 = 2. For a1 until am−1. Let w = n

mod 2, if w = 1 then a1 = 1 and n = n−1.

Otherwise, if w = 0 then a1 = 0 and n = n/2. The

value of n for next computation is either n = n −

1 or n = n/2 and this computation continues until

n = 1.

It is shown in Theorem 1 that the first value of

that sequence, a0 = 2 is only used as the

indication to stop the computation. The

following definition is very important to show

the possible size of sequence that could be

generated for the Addition Chain.

Let n = 14, then the sequence for a given value n

is {2, 0, 1, 0, 1, 0}. It is simply shown that m =

5. The first item in a sequence is not used for any

computation. It is only used to indicate the end of

sequence. The sequence generated here should

be used in backward {0, 1, 0, 1, 0, 2}.

Based on the reverse sequence {0, 1, 0, 1, 0, 2},

the computation of Lucas Functions is 1, 1+1 =

2, 2+1 = 3, 3+3 = 6, 6+1 = 7, 7+7 = 14 and 1, 2,

3, 6, 7, 14 is Addition Chain with the length of 5.

Therefore, the computation of LUC

Cryptosystem with an Addition Chain is V2, V3,

V6, V7, and V14. These computations should be

deal with Equations (6), (7) and (8) where it is

needed.

Input : n

 k[0] = 2

 m = 0

While (n! = 1)

 m + +

 If (n mod 2) == 1

 n = n − 1

 k[m] = 1

 Else

 ⌊n⌋ = n/2

 k[m] = 0

 End If

End While

Output : Array k[0, 1, ...,m]

Algorithm 1: Generating an array k for Addition

Chain

For a bigger example, an array k[m] for V1103

will be generated. In this case n = 1103. An array

k[m] = {2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0}

is generated. In this case, m = 15. The array k[m]

in reverse manner could be {0, 0, 0, 0, 1, 0, 0, 0,

1, 0, 1, 0, 1, 0, 1, 2}. Therefore, the Addition

Chain for n = 1103 is 1, 2, 4, 8, 16, 17, 34, 68,

136, 137, 274, 275, 550, 551, 1102, 1103.

Remember, the array k[m] that was generated in

Algorithm 1 is just an array. The array k[m] was

only the suitable Addition Chain that could be

used for LUC cryptosystems computation. For

sure it is not the optimum Addition Chain.

The computation of LUC cryptosystem is started

with V2 and followed by V4, V8, V16, V17, V34,

V68, V136, V137, V274, V275, V550, V551, V1102

finally end with computation of V1103.

The following figure show how the array k[m] is

generated by Algorithm 1. It is depend totally on

Theorem 1 and Algorithm 1 that was discussed

above.

k[m] Value Description

k[0]=2

k[1]=1

k[2]=0

k[3]=1

k[4]=0

k[5]=1

k[6]=0

k[7]=1

k[8]=0

k[9]=0

k[10]=0

k[11]=1

k[12]=0

k[13]=0

k[14]=0

k[15]=0

1103

1103 mod 2 = 1; 1103-1=1102

1102 mod 2 = 0; 1102/2=551

551 mod 2 = 1; 551-1=550

550 mod 2 = 0; 550/2=275

275 mod 2 = 1; 275-1=274

274 mod 2 = 0; 274/2=137

137 mod 2 = 1; 137-1=136

136 mod 2 = 0; 136/2=68

68 mod 2 = 0; 68/2=34

34 mod 2 = 0; 34/2=17

17 mod 2 = 1; 17-1=16

16 mod 2 = 0; 16/2=8

8 mod 2 = 0; 8/2=4

4 mod 2 = 0; 4/2=2

2 mod 2 = 0; 2/2=1

n=n; m=0

n=n-1 ; m=1

n=n/2 ; m=2

n=n-1; m=3

n=n/2; m=4

n=n-1; m=5

n=n/2; m=6

n=n-1; m=7

n=n/2; m=8

n=n/2; m=9

n=n/2; m=10

n=n-1; m=11

n=n/2; m=12

n=n/2; m=13

n=n/2; m=14

n=n/2; m=15

Figure 1 : Illustration of generating an Array k[0, 1,

..,m] for V1103

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

194

Input : k[0, 1, ...,m] (Algorithm 1), P, N, V0=Vj= 2,

V1=Vn= P;

For (z=m downto 0)

If (k[z]==0)

 V2n = V2n − 2 (mod N)

 V2n+1 = PV2n − VnVj − P (mod N)

 V2n−1 = VnVj − P (mod N)

 Vn = V2n

 Vj = V2n−1

Else

 Vn = V2n+1

 Vj = V2n

End If

End For

Output : Vn
Algorithm 2 : Computation Algorithm Based on

Addition Chain With 1 Processor

The result of the illustration in Figure 1 can be

used in designing the computation for one

processor. It is relatively easy for computation on

one processor by directly implement the

algorithm. It is also can be used for several

processors in parallel computation for LUC

cryptosystem. The algorithm 2 shows the

computation of LUC cryptosystem for one

processor.

3.2 PARALLEL STRATEGIES FOR

ADDITION CHAIN

In the design of parallel computation algorithm,

the algorithm must be suitable for the

architecture of Message Passing Interface (MPI)

library. This library is suitable in this research.

This library is suitable for the use of

programming code in C language. Initialization

can use the command of MPI_Init() to initiate the

using of MPI standard.

Parallel computing frequently relies upon

message passing to exchange information

between computational units. In high

performance computing, the most common

message passing technology is the Message

Passing Interface (MPI).

MPI enables the description of different

communication patterns that enable the most

efficient usage of resources, from an inter-

process communication perspective, to optimize

the performance of a High Performance

Computing cluster.

The initial value of Lucas Function are V0 = 2

and V1 = P. Look at Equations (6), (7) and (8).

All this equations will be using in computing the

LUC cryptosystems. This is a crucial and

important feature that should be considered in

the parallel algorithms.

The general strategies are:

a. Given public-key, e, then generate an

array of sequence of array k using Algorithm 1.

b. Reverse the sequence because it

represented exactly the Addition Chain.

c. Use each item in the Addition Chain in

the calculation of LUC Cryptosystem.

d. Synchronizations of movement of data

are done by master.

e. Master or slaves will decide which

value should be used for the next computation.

The nature of Lucas Function works by

recursive. Therefore, the next values for the next

computations are determined by the checking

procedure. In this case, the parallel computation

algorithms have a checking procedure in master

and also in all slaves.

Algorithm 3 show different techniques and

strategies in computing the LUC Cryptosystems.

In this parallel solution, the value of Vn is either

V2n+1 or V2n or V2n−1. It is also applied to Vj ,

where it is either V2n+1 or V2n or V2n−1.

The values to be assigned to Vn and Vj were

depending on the value of array k[m]. The

number of slaves can be added depending on

how to decompose the function.

Figure 2 : General Idea For Parallel Algorithms

Based On Addition Chain

General idea on how to use Addition Chain for

this parallel algorithm is shown in Figure 2.

Symbol ’X’ represents parallel algorithm for

specific number of processors. In all

parallel implementation, one processor should

act as master, while the others as slaves. On the

other hand, two variables Vj and Vn are used to

keep the values that should be used for next

computation.

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

195

The decomposition technique could be very clear

in Figure 3 below. In all parallel implementation,

one processor should act as master, while the

others as slaves. On the other hand, two variables

Vj and Vn are used to keep the values that should

be used for next computation. The computation

time of generating Addition Chain is included in

this parallel algorithm.

Figure 3 : Parallel Strategy Based On Addition Chain

With 2 Processors

Figure 3 shows possible arrangement of

functional decompositions with two processors.

Here, one processor as the master and the other

as the slave. The function of master processor is

to synchronize the movement of data. All the

computation job is done by slave.

Algorithm 3 is designed for two processors,

where one as master and the other one as slave.

The master will synchronize the job. The

possible decomposition could involved the

master and some slaves. Therefore, for the bigger

number of processors, the reorganization of the

steps in ’At Slave’ to suit to the number of slaves

(processors).

The numbers of slaves could be two, three, four,

five and six. We only included the best

performance of computations with six slaves. It

means that the total numbers of processor should

be seven processors. In this paper, the parallel

machine that was selected is Sun Fire V1280

server. It is the example of the distributed

memory multiprocessors machine.

MPI Initialization

Input: Array k[0, 1, ...,m] (Algorithm 1), P,

N, V0 = Vj = 2, V1 = Vn = P

For (z=m downto 0)

At master :

 If k[z] = 1 then

 Vn = V2n+1 and Vj = V2n

 If k[z] = 0, then

 Vn = V2n and Vj = V2n−1

 Send Vn and Vj to Slave

 Receive V2n, V2n+1 and V2n−1 from Slave

At slave :

 Receive Vn and Vj from master

 Compute V2n = V2n − 2(mod N)

 Compute V2n+1 = PV2n − VnVj − P(mod

N)

 Compute V2n−1 = VnVj − P(mod N)

 Send V2n, V2n−1 and V2n+1 to master

End For

Final Result, Vn

MPI Finalization

Algorithm 3 : Parallel Computation Algorithm Based

On Addition Chain With 2 Processors

All functional decompositions involved master

and slaves. Therefore, for the bigger number of

processors, the reorganization of the steps in ’At

Slave’ to suit to the number of slaves

(processors). For example, lets have a look at

Equation (7).

This equation can be decomposed into smaller

equations and each portion of equation will

perform by the slave(s). One portion of equation

refers to one task.

To calculate V2n+1, perhaps one slave can

perform the calculation of PV2n and at same time

another slave will calculate QVnVn−1. It is

actually the functional decomposition of big task

into smaller task. After smaller task done their

computation jobs, it will send back the result to

master.

Master will responsible to synchronize the next

value for the next computation. If there are more

slaves, Equation (7) can be distributed to several

slaves. Master and slaves should communicate to

each other to make sure all entities do the right

computation jobs.

With this functional decompositions

arrangement, the reduction of the computation

time compared to only one processor. This

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

196

machine is designed to provide high performance

tool in a compact form. It is clear that up to 7

processors is the best and suitable numbers that

can be used for the parallel computation of the

LUC cryptosystems

Figure 4 : Parallel Strategy Based on Addition Chain

with 7 Processors

MPI Initialization

Input: Array k[0, 1, ...,m] (Algorithm 1), P,

N,

V0 = Vj = 2, V1 = Vn = P

For (z=m downto 0)

At master :

 If k[z] = 1, then

 Vn = V2n+1 and Vj = V2n

 If k[z] = 0, then

 Vn = V2n and Vj = V2n−1

 Send Vn to Slave 1 and 4

 Send Vn and Vj to Slave 2, 3, 5 and 6

 Receive V2n from Slave 1 and V2n−1

from Slave 2

 Receive V2n+1 from Slave 3 and Vn2

from Slave 4

 Receive VnVj from Slave 5 and VnVj − 2

from Slave 6

At Slave 1 :

 Receive Vn from master and VnVj − 2

from Slave 6

 Receive Vn2 from Slave 4

 Compute V2n = V2n − 2(mod N)

 Send V2n to master and Slave 6

At Slave 2 :

 Receive Vn and Vj from master

 Receive Vn2 from Slave 4 and VnVj from

Slave 5

 Compute V2n−1 = VnVj − P(mod N)

 Send V2n−1 to Master

At Slave 3 :

 Receive Vn and Vj from master and VnVj

from

 slave 5

 Compute V2n+1 = PV2n − VnVj − P(mod

N)

 Send V2n−1 to Master

At Slave 4 :

 Receive Vn from master

 Compute Vn2

 Send Vn2 to Master, Slaves 1 and 2

At Slave 5 :

 Receive Vn and Vj from master

 Compute VnVj

 Send VnVj to Master, Slaves 2 and 3

At Slave 6 :

 Receive Vn and Vj from master and V2n

from

 Slave 1

 Compute VnVj − 2

 Send VnVj − 2 to Master and Slave 1

End For

Final Result, Vn

MPI finalization

Algorithm 4 : Parallel Computation Algorithm Based

on Addition Chain With 7 Processors.

The main reason of the checking procedure by

the master is to make sure the master will

sending the right value to the slave. Each item in

array k[m] is useful in determining the value to

be used in subsequent calculations. It is clearly

shown that this parallel algorithm has the

checking procedure in master and all slaves.

If the item of array k[m] is 1 then the next value

for subsequent calculations is V2n+1 and V2n. On

the hand, if the item is 0, then the next value for

subsequent calculations is V2n and V2n-1.

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

197

4. RESULTS

Performance of parallel algorithms can be

determined by its computation time. The

execution of computer codes in C programming

language with support of Message Passing

Interface standard to solve two different

situations on different size of keys and primes.

The capability of the algorithm can be

determined by running the experiments on

different sizes of keys and primes. Different key

size must produce different computation time.

Table 1 shows different size of keys. Meanwhile,

Table 2 shows different size of primes. The

public key with size of 579 digits will generate

longer array k[m]. Therefore, the public key with

size of 579 digits required huge efforts and

computation time

Public Key

e

Primes p and q Messages

M

159 100 5

339 100 5

579 100 5

Table 1 : Different size of public keys (Digits)

Primes p &

q

Public Key e Messages

M

160 159 20

220 159 20

280 159 20

Table 2 : Different Size of Primes (Digits)

Table 3 shows the comparison of the encryption

computation time for the number of processors.

The bigger the public key size, the longer

computation time is produced for LUC

Cryptosystem computation. It is really clear to

show that the best computation time with seven

processors.

The bigger the number of processors, the better

computation time is produced. In all cases, the

parallel computation algorithm with seven

processors distinctly better computation time

compared the smaller number of processors.

Public Key e

(digits)

1 Processor

(second)

2 Processors

(second)

7 Processors

(second)

159 139.88 132.86 45.26

339 489.74 473.15 160.55

579 869.60 839.38 289.25

Table 3 : Computation time on different size of public

keys

The same situation happened for the different

size of primes. Table 4 shows each computation

time for number of processors where the

computation with seven processors is achieved

the best computation time. The bigger size of

primes, the longer computation time is a need.

Remember that, in this computation experiment,

there are the same size of public key and

message is used but the sizes of primes are

changed.

Public Key e

(digits)

1 Processor

(second)

2 Processors

(second)

7 Processors

(second)

160 358.03 353.43 120.94

220 599.32 571.32 195.72

280 850.02 819.32 263.44

Table 4 : Computation time on different size of primes

The primary issue with speedup is the

communication to computation ratio. To get a

higher speed up, the parallel design should be

considered and tried to have less

communications, make connections faster,

communicate faster and each slave can compute

more task.

Unfortunately, this paper will not discuss the

speedup and communication speed issues.

However, we just discussed simple term in

achieving good speedup.

The less communication between master and

slaves in the proposed parallel algorithm should

be designed. The reduction of redundant

computation and increase the communication

between slaves and master should be considered.

Please remember that the simple formula to

calculate speedup is given by S = T1/Tn. Here, T1

is the computation time to simulate the problem

on one processor. Tn is the computation time to

simulate the problem on n processors.

The rest of the listed features show a totally

different approach and strategy in designing

parallel algorithms:

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

198

1. Length of an array k. The PCABAC has

an array with the size of m.

2. Computation of LUC Cryptosystem.

The PCABAC will compute all V2n, V2n−1,V2n+1

for each k[m]=1 in slaves only, then send the

results to master. Master will only initiate next

value for each k[m] = 0.

3. Distribution of computation jobs among

the processors. The algorithm distribute the

computation jobs depending on the equations

used in Lucas Function. One processor will act

as the master that will synchronized the

movement of data. The less distribution of

computation jobs will result in a better

computation time. Less distribution of

computation jobs will result in a less

communication delay between master and slaves.

4. Maximum number of processors. The

algorithm require seven processors as the

possible maximum number of processors. Each

processor is used in different strategy.

5. Checking the next value to be used. The

nature of Lucas Functions work by recursive

manner. The next value to be used for the next

computation should be known and initiated. The

parallel algorithms require two initial values (V0

and V1) that could be used in LUC computations.

The algorithm has the checking procedure that is

conducted by master.

6. Communications of slaves and master.

Less communications will result in a better

computation time. The communication is

important in order to update the current values to

be used in the computation.

5. CONCLUSIONS

The parallel computation algorithms are

successfully implemented in the distributed

memory multiprocessor machines. The

computation of LUC Cryptosystem shows that

the parallel algorithm will compute all V2n, V2n-1

and V2n+1 for each k[m]=1 in slaves only, then

send the results to master. Master will only

initiate the next value for each k[m]=0. Master

and each slave then check the next values to be

used.

The Parallel Computation Based on Addition

Chain (PCBAC) shows the best solution for

distribution of computation jobs among slaves.

All algorithms require seven processors as the

possible maximum number of processors. Each

processor is used in different strategies. The

strategy used is already shown in each parallel

algorithm.

The nature of Lucas Function works by recursive

manner. Therefore, the next values for the next

computations are determined by the checking

procedure. In this case, PCBAC has the checking

procedure done by master only.

Last but not least for the speedup and efficiency,

the PCABB algorithm shows deliberately the

better speedup and efficiency compared to the

existing parallel algorithms for all experiments.

In this paper, one new parallel algorithm has

been carried out for solving the time domain for

LUC Cryptosystems using MPI on Sun Fire

V1280. Performances for algorithm are studied.

The computation time for a new algorithm and

existing algorithms is also studied. From the

results, it is observed that a new parallel

implementation provides significant reduction in

computational time compared to the previous

parallel algorithm.

The efficiency of this algorithm is increased

when the number of processors is increased. The

reduction of a communication delay among

master and slaves should be considered for

further investigation. Another interesting

research topic for consideration is how to reduce

the arithmetic computations of Lucas Function.

The parallel implementation on seven processors

shows better computation time for all

experiments. The distribution of computation

jobs shows that all algorithms successfully the

computation jobs depending on the equations

used in Lucas Function. The lesser the

distribution of computation jobs the better

computation time.

Lesser distribution of computation jobs will

reduce communication delay between master and

slaves. Each processor is used in different

strategies. The strategy used is already shown in

each parallel algorithm.

REFERENCES:

[1] B. Schenier, Applied Cryptography

(Protocols, Algorithms and Source Code in

C), Second Edition, John Wiley & Sons Inc,

1996.

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

199

[2] C. K. Koç, High Speed RSA

Implementation, Technical Report, RSA

Laboratories, (RSA Data Security INC, CA

1994).

[3] C. S. Laih, F.K. Tu and W.C Tai, Remarks

on LUC public-key system, Electronic

Letters, Vol 30, No. 2, 1994, 123-124.

[4] D. Bleichenbacher, M. Joye and J.J.

Quisquater, A New and Optimal Chosen-

message Attack on RSA-Type

Cryptosystems, Y. Han, T. Okamoto and S.

Qing (Eds), Information and

Communications Security ICICS97, LNCS

1334, Springer-Verlag, 1997, 302-313.

[5] H. C. Williams, A ρ+1 Method of Factoring,

Mathematics of Computation, vol.39, 1982,

225-234.

[6] P. Smith and M. Lennon, LUC: A New

Public Key System, Ninth IFIP symposium

on computer security, E.G. Douglas, Ed,

Elsevier Science Publishers, 1993, 103-117.

[7] P. Lara, F. Borges, R. Portugal and N.

Nedjah, Parallel modular exponentiation

using load balancing without pre

computation, Journal of Computer and

System Sciences, Vol.78, No.2, pp. 575–

582, 2012.

[8] R. L. Rivest, A. Shamir and L.M. Adleman,

A Method for Obtaining digital signatures

and public-key Cryptosystems, Comm,

ACM 21, 1978, 120-126.

[9] Z. Md Ali, Reduce Computation Steps Can

Increase the Efficiency of Computation

Algorithm, Journal of Computer Science

6(10), Sciences Publication, 2010, 1203-

1207.

