
Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

154

A HYBRID GENETIC AND BEE COLONY OPTIMIZATION

ALGORITHM FOR TEST SUITE PRIORITIZATION

1
R.P. MAHAPATRA,

2
RITVIJ PATHAK,

3
KARAN TIWARI

1
Professor and HOD, Department of CSE, SRM University, NCR Campus

2
Research Scholar, Department of CSE, SRM University, NCR Campus

3
Research Scholar, Department of CSE, SRM University, NCR Campus

E-mail:
1
mahapatra.rp@gmail.com,

2
ritvijpathak@me.com,

3
tiwarikaran93@gmail.com

ABSTRACT

In the software industry, any software that has been developed needs to go through a maintenance phase. It

can typically last from 10 to 15 years. Software maintenance is the most cumbersome yet crucial activity

for developers and users alike. Typically, in a Software Development Life Cycle, a software goes from

minor to major changes/modifications/updates to provide smooth end user functioning. This entire process

of testing the modified software repeatedly, is called as Regression Testing. Exhaustive Regression testing

is not possible because of time and budget constraints. Because of this, we have developed several

techniques to prioritize test cases in order to reduce time and effort effectively. The two very well

researched algorithms in this field are: Bee Colony Optimization and Genetic Algorithm. In this paper, we

have formulated a fusion (read hybrid) algorithm based on these two. The Hybrid Algorithm derives a test

sequence from the initial population, runs it through a genetic loop and finally applies scout bee path

exploration to achieve maximum fault coverage in minimum number of executions. Fault Detection

Percentage has been calculated based on the results and a comparison with optimal solution has been

presented.

Keywords: Bee Colony Optimization, Genetic Algorithm, Test Suite Prioritization, Regression Testing,

Test Suite Reduction

1. INTRODUCTION

Regression testing is quite expensive, but

remains an important process in the software

development life cycle. Unfortunately, re-execution

of test cases is not possible because of time and

budget constraints. In his research, Gregg

Rothermel [1] referred to industry reports which

show that for a code segment of nearly 20000 lines,

running the entire test case suite takes over seven

weeks. These situations are what force the need of

having a select few test sequences that can cover all

the faults in minimum amount of time. These test

cases are selected from the initial test suite list and

have maximum fault coverage. In simple terms,

fault coverage refers to the maximum number of

faults that can be detected when testing a particular

piece of software. We assume that some kind of

baseline exists which defines the system under test.

Thus the type of test coverage varies with the

number of ways of system definition. Another

technique is to run a selected number of test cases

based on the last best known priority. This works

for small software tests but once the number of

modifications increase, more number of test cases

are required to test the given software more

accurately.

In this paper, we have taken a look at the two

most well studied algorithms in the field of

prioritization and have combined their properties to

formulate a Hybrid Algorithm. Artificial Bee

Colony (ABC) Optimization replicates the natural

behavior of bees and finds the most optimal test

case sequence covering all faults. The ABCO

algorithm was first proposed by Karaboga in 2005

and is a population based search algorithm. Genetic

Algorithm relies on the natural genetic components

such as mutation and crossover and finds the most

optimal sequence based on an initial population and

a fitness value. The Genetic Algorithm was first

proposed in 1975 by John Henry Holland and is a

probabilistic search based algorithm. The existing

Genetic algorithm techniques factor in the fitness

function and prioritize the test cases but are unable

to reduce it by a marginal quantity. The ABCO

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

155

algorithm on the other hand finds out the maximum

fault coverage and reduces the number of test case

executions increasing the runtime efficiency.

The combination of these algorithms has

resulted in a simple yet very effective way to

prioritize and reduce the number of test cases

thereby decreasing the workload during the

regression testing phase. The major difference

between any two genetic algorithms is the

representation of chromosomes, the evaluation of

fitness function and the semantics of the genetic

operators. In this paper, the genetic algorithm used

as the base for the proposed hybrid algorithm

makes use of a fitness function that is computed

using the initial population. Each statement is

assigned a weight based on the probability of it

introducing an error. Clearly, the chances of a print

statement causing an error are less likely than that

of a conditional statement. The prioritized list thus

produced is used as the input of an ABCO module

which further reduces the initial population and

results in a handful of test cases left for execution.

The organization of the paper is as follows.

Section 2 presents a brief literature survey on

regression testing. Section 3 and 4 explain the BCO

and Genetic method for prioritization. In Section 5,

a formalized Hybrid algorithm for test suite

prioritization is presented. Section 6 contains a few

examples showing the efficiency and a small

analysis of the efficiency of the proposed

algorithm. The subsequent section represents the

conclusion, followed by the future scope of the

project.

2. LITERATURE SURVEY

A number of techniques for test suite

prioritization have been introduced over the years

by several well renowned authors. Some of the

techniques are code coverage based, [2] [3] [4],

some are based on historic execution data [2] [4]

[5] and some are genetic based. Yu-Chi Huang et al

proposed a “cost cognizant test case prioritization

technique” using the historic records and genetic

algorithm [6]. They ran a controlled experiment to

evaluate the effectiveness of the proposed

technique. The only downside of the research was

that there was no prospect for test case similarity.

In 2007, Korel et al. developed a “Model-based

test suite prioritization” in which the test cases

were prioritized based on the number of faults

covered. A. Kaur

et al. proposed a bee colony

optimization algorithm for “fault coverage based

prioritization” [7] and in 2015 Kulothungan

et al.

proposed a Genetic Algorithm for test suite

prioritization [8]. Code Coverage based Test Case

Prioritization also exist. For Prioritizing using

statement coverage, the test cases are ordered for

execution based on the number of statements

executed or covered by the test case such that the

test cases covering maximum number of statements

would be executed first. Some of the other

techniques used are branch coverage (prioritization

based on the number of branches) and function

coverage (based on the number of functions that

cover the faults).

Bee Colony Optimization and Genetic

Approach has gained a fair bit of traction in recent

times. Several uses of BCO can be seen in

Travelling Sales Person problem [9], numerical

optimization [9] and even in scheduling problems

[9] and routing algorithms [9]. In addition to

several of the above mentioned problems, Genetic

Algorithm finds its applications in multi-objective

optimizations [10], water pipelining problems,

signature verification and even solving simpler

problems like Sudoku [11]. The work done earlier

on the test case prioritization using genetic

algorithm used a fitness function which was not

dependent on the statement’s probability of

introducing an error. Thus any statement that has

chances of being faulty was not considered.

3. ARTIFICIAL BEE COLONY

OPTIMIZATION (ABCO)

Since time immemorial, man has studied nature

and its mysteries to solve a plethora of his

problems. Researchers have always been fascinated

with the study of insects, the way they live in social

colonies and function very efficiently. Studying

their perfect little pattern gives us more and more

creative ideas which can be used to solve several

real world problems. The way in which the honey

bees build and maintain their comb and hive is truly

remarkable. What’s truly remarkable is their ability

to scout for food sources in a vast area around their

nests [7]. The task of finding best food sources is

assigned to the worker bees. There are two types of

worker bees in a hive:

Scout Bee: The main job of the scout bee is to

go in search for food and mark all the food sources

based on their quality and distance from home. This

process is called as “Path Exploration” and it is the

first step of the BCO Algorithm.

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

156

Forager Bee: The forager bee revisits all the

food sources as laid out by the Scout Bee in

decreasing order of quality and selects the best path

for all other bees to scourge their food from. This

forms step 2 of the algorithm and is termed as “Path

Exploitation.”

Application of Path Exploration and

Exploitation to the test case prioritization is a fairly

simple process. We assume each test case as a food

source and each scout bee starts searching

randomly through the test suite until it finds all

paths that cover all the faults. This is where the

forager bee comes in. The Forager Bee then sorts

these paths based on their execution time and

selects the one that takes the least time thereby

giving us an optimal sequence of execution.

4. GENETIC ALGORITHM

The Genetic Algorithm works on the basic

principal of survival of the fittest. Researchers have

studied as to how biological beings adapt to their

environment and evolve, with each generation

better at handling changes than the previous one.

Genetic Algorithm has received a nod from various

studies that clearly show that though the algorithm

is very simple and pretty straightforward, it

provides excellent results when compared to

random results and is a pretty robust problem

solver. Probably the best part about the algorithm is

that it searches for a solution from a population of

solutions as compared to other algorithms working

on a single solution space

The Genetic Algorithm has five major

characteristic components:

• Encoding of Chromosomes

• Selection of Initial Population

• Fitness Function

• Crossover

• Mutation

4.1 Encoding of Chromosomes

 The decision variable for a problem statement

is represented by a string of finite length. For best

results, we encode the string as binary bits.

Ex: 110011000011

4.2 Selection of Initial Population

Selection operator defines the search spaces.

There are several techniques available for the same

viz. the proportional roulette, binary tournament

selection, linear ranking selection etc. The selection

of initial population has a lasting impact on the

solution.

4.3 Fitness Function

 In Genetic Algorithms, the fitness function is

defined based on the problem. For ex: in the

travelling salesperson problem, the fitness value is

the cost of the entire tour.

4.4 Crossover

The crossover operator takes into account the

belief that the offspring may be better (read fitter)

than the parents as it inherits properties from both

the parents.

 Ex: Let the initial population be 110011 and

000111.

110 | 011 We get 110111 and 000011

000 | 111

4.5 Mutation

 Mutation follows the principle of adaptability

and evolution. Once the offspring adapts to a

particular situation, it mutates its tolerance for it. In

case of binary representation of chromosome,

mutation means that the said bit is flipped.

 Ex: Let the initial representation be

110011001100. Applying mutation at the 9
th

 bit, it

becomes: 110011000100

5. PROPOSED HYBRID ALGORITHM

In this paper, we have implemented a Hybrid

Algorithm for test suite prioritization to increase the

efficiency of regression testing. The performance

metrics of the traditional algorithms used for

prioritization had shown positive results yet

suffered from the lack of either a 100% optimal

solution or have failed to evolve with time. Genetic

Algorithms till date have focused on the fitness

value of test cases rather than the fault coverage of

the statements. Bee Colony Optimization

Algorithms have shown to be more efficient than

the Genetic Algorithm due to the simple fact that

they pay heed to individual fault coverage [13].

The Hybrid Algorithm thus formulated takes

into consideration the individual fault coverage of

each test case as well as the natural components of

genetic algorithm for selection of a prioritized test

suite.

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

157

5.1 Methodology

The Hybrid Algorithm can be applied to an

existing set of test cases. Firstly, we use any of the

available reduction algorithms to find out the initial

population from our set of test cases and calculate

the fitness value for the same. The fitness value is

calculated using the following equation [8]:

〈���� � � ���	� ∗ �����	�
��

���
〉

wt(k) = weight of each statement

init(k) = initial value of test case

 Next, the following steps are to be followed in

a genetic loop [8]:

• The initial population is placed in a

Roulette Wheel.

• A pair of test cases is taken at a time

• XOR the test cases

• If the output is all 1’s i.e. the resultant

covers all faults, send the test case with

highest fitness function to the prioritized

list and the other back into the wheel.

• If the output is not all 1’s, perform

crossover operation and repeat the above

step

• If the output is still not all 1’s, perform

mutation and repeat

• If even after mutation, there is no desired

result, the one with the highest fitness

value is sent to the prioritized list and the

other one is sent to the wheel.

The genetic loop is repeated until the Roulette

Wheel is empty. Next, we perform Path Exploration

on the newly generated prioritized list of test cases.

To do this, the scout bee visits all the test cases

randomly till it finds the minimum number of test

cases that cover all the faults. The paths thus

formed are stored in PSB.

 Next, the forager bee gets to work. Forager Bee

stacks the path formed by the scout bee in

increasing order of the execution time. The path

with the least execution time is chosen as the final

list of test cases for execution. In case two paths

have the same execution time, any path is chosen at

random. This ensures that all the faults are covered

and also that the execution time remains minimal.

5.2 Assumptions

 The Hybrid Algorithm makes the following

assumptions:

• The input has a Test Suite Array, an array with

weights for each statement and the execution

time for each test case.

• Number of Scout Bees = Number of forager

Bees = Number of test cases

• Each food source is visited exactly once

• In case of similar fitness value or execution

time one test case / path is chosen at random

• Each Path Exploration process starts randomly

until all the faults are covered.

• No two Scout paths will be same

• The Selection of initial population has been

done using random selection algorithm.

5.3 Design Diagram

Figure 1. Design Diagram for Hybrid Algorithm

5.4 Analysis of the Hybrid Algorithm

 The Hybrid Algorithm proposed in this paper

is bounded by the time it takes to reduce the test

cases and perform path exploration and

exploitation. If we take ‘n’ initial test cases then the

complexity to reduce the test cases will be O(n).

Input Test

Suites

Input

Weightage &

Execution Time

Reduction

Algorithm

Initial

Population

Genetic Loop Prioritized List

Path

Exploration

Path of Scout

Bee

Path

Exploitation
Stop

(1)

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

158

 Further, the genetic loop commands a

complexity of O(n
2
). For the path exploration

process the complexity will be O(n) but for path

exploitation it will be O(n
2
) as the loop will for n

more iterations to fetch the path. Final selection

commands a complexity of O(n).

 Adding it all up, the best running time of the

proposed Hybrid Algorithm is O(n
2
).

5.5 Implementation

 The Hybrid Algorithm thus proposed has been

implemented in a Java compiler and contains about

300 lines of code. The input has to be manually

entered and the process of incorporating a database

and file handling is underway. This will help in

minimizing human interaction. The screenshot of

implementation can be seen in section 6 along with

a few examples.

5.6 Threats to Validity

 The proposed Hybrid Algorithm has a few

quirks that need ironing out:

1. The algorithm sends a random test case if the

fitness value remains the same for both the test

cases.

2. The scout bee paths are chosen randomly and

thus it is possible that all the results may not be

optimal.

3. In case of more than one optimal forager bee

path, any one is chosen randomly.

4. Most of the input work is still manual and it

requires an automated interface to speed up the

process even further.

6. CASE STUDY

The algorithm was subjected to sample data

and showed promising results. The examples in

section 6.2 and 6.3 show a highly efficient

algorithm in action. The details of the test cases and

the problem statements can be found online on the

website: (http://planet-source-code.com)

6.1 Implementation Screenshot

Figure 2. Input Screen

Figure 3. Prioritized List

Figure 4. Hybrid Algorithm in Action

6.2 Example 1

 For simple illustrative purpose, we have taken

10 test cases say T1, T2… T10. A reduced initial

population has been determined using a random

reduction algorithm. Table 1 represents the initial

population.

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

159

Table 1. Initial Population

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

T9 0 0 1 1 0 0 1 1 0 0 1 1

T7 0 0 0 1 1 1 0 0 0 1 1 1

T2 1 0 1 1 1 1 1 1 1 1 1 1

T4 0 1 0 1 0 1 0 1 0 1 0 1

T5 0 0 0 0 0 0 0 0 0 0 0 0

The prioritized list after the genetic loop comes out

as follow:

T7>T2>T4>T5>T9

Figure 5. Efficiency of the Hybrid Algorithm

Scout Bee Path:

1. T7,T2,T9

2. T2,T4

3. T9,T3,T4,T2

4. T5,T4,T2

5. T7,T5,T2,T9

Forager Bee Selects: T2, T4

 As we can clearly see, if we execute T2 and T4

only from the given 10 test cases, we are able to

achieve complete fault coverage that too in

minimum execution time.

6.3 Example 2

 Again, we have taken 10 test cases say T1,

T2… T10. A reduced initial population has been

determined using a random reduction algorithm

represented in Table 2.

Table 2. Initial Population

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

T7 1 0 1 0 1 0 1 0 1 0 1 0

T3 0 0 1 1 0 1 1 1 1 1 1 0

T6 0 1 0 1 0 1 0 1 0 1 0 1

T8 1 1 1 1 1 0 0 1 0 0 0 0

T1 1 1 1 1 0 0 1 1 0 0 1 1

The prioritized list after the genetic loop is as

follows:

T6>T7>T8>T3>T1

Scout Bee path:

1. T1,T8,T3,T7

2. T3,T8,T1

3. T7,T6

4. T7,T1,T3,T6

5. T8,T1,T6,T3

Forager Bee selects: T7, T6

80 80

70

90

70

80

0

10

20

30

40

50

60

70

80

90

100

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Efficiency(in %)

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

160

6.4 Analysis

 The efficiency of the proposed Hybrid

Algorithm can be calculated using the formula:

���������� � 	� � �� ∗ 		100

Where, T: Total Number of Test Cases

 F: Test Cases suggested by Forager Bee

 For the above two examples, the value of T =

10 and F = 2 (as the forager bee path contains only

two test cases), the efficiency comes out to be 80%.

 For a better understanding of the efficiency of

the algorithm, we ran the algorithm 10 times for the

same test suite input and observed that the optimal

test case sequence was found 6-7 times and the

efficiency varied from 70-90%. The efficiency

graph for six different test suites can be seen in

Figure 5.

 It can be clearly observed from Examples 1

and 2 that if we were to execute the initial test

cases, it would have required 10 executions to

complete the regression testing process. The Hybrid

Algorithm further reduces it to more than half of

the initial size.

7. CONCLUSION AND FUTURE WORK

In this research paper, a Hybrid Optimization

Algorithm has been presented which aims at

achieving maximum fault coverage and minimal

execution time. The algorithm makes use of the

components of the Genetic Algorithm and

combines them with the natural behavior of the

honey bees. The execution has been done in a Java

compiler and examples illustrating the effectiveness

of the said algorithm have been presented. The

results are much more efficient as the number of

test cases reduces drastically and for large number

of test cases, the algorithm proves to be super-

efficient.

Although the Hybrid Algorithm produces

optimal results, there is still a requirement of a

manual data entry. The work for linking the

algorithm to a database for test data input and result

storage is in progress. This will not only be

beneficial in situations where the input test cases

are fairly large but will also help in collecting

historic data for future uses.

REFERENCES:

[1] G. Rothermel, R. Untch, C. Chu, and M.

Harrold, "Test Case Prioritization," IEEE

Transactions on Software Engineering, vol. 27,

no. 10, October, 2001. 929-948

[2] Gupta, Avinash, et al. "An Improved History-

Based Test Prioritization Technique Using

Code Coverage." Advanced Computer and

Communication Engineering Technology.

Springer International Publishing, 2015. 437-

448

[3] Ranga, Kamal Kumar. "Analysis and Design of

Test Case Prioritization Technique for

Regression Testing." International Journal for

Innovative Research in Science and

Technology 2.1 (2015). 248-252

[4] Di Nardo, Daniel, et al. "Coverage-based test

case prioritization: An industrial case study."

Software Testing, Verification and Validation

(ICST), 2013 IEEE Sixth International

Conference on. IEEE, 2013

[5] Lin, Chu-Ti, et al. "History-based test case

prioritization with software version

awareness." Engineering of Complex Computer

Systems (ICECCS), 2013 18th International

Conference on. IEEE, 2013

[6] Yu-Chi Huang, Chin-Yu Huang, Jun-Ru

Chang and Tsan- Yuan Chen “Design and

Analysis of Cost-Cognizant Test Case

Prioritization Using Genetic Algorithm with

Test History”, IEEE 34th Annual Computer

Software and Applications Conference 2010.

[7] Kaur, Arvinder, and Shivangi Goyal. "A bee

colony optimization algorithm for fault

coverage based regression test suite

prioritization." International Journal of

Advanced Science and Technology 29 (2011).

17-30

[8] A Kulothungan et al., “Prioritization Of Test

Cases Using Genetic Algorithm,” Spreizen-

Journal on Software Engineering Volume 1,

Issue 2 (Apr-Jun. 2015). 12-25

[9] Karaboga, Dervis, et al. "A comprehensive

survey: artificial bee colony (ABC) algorithm

and applications." Artificial Intelligence

Review 42.1 (2014). 21-57

(2) (2)

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

161

[10] Abdullah Konaka, David W. Coit, Alice E.

Smith, “Multi-objective optimization using

genetic algorithms: A tutorial,” Reliability

Engineering and System Safety 91 (2006). 992–

1007

[11] Deng, Xiu Qin, and Yong Da Li. "A novel

hybrid genetic algorithm for solving Sudoku

puzzles." Optimization Letters 7.2 (2013). 241-

257

[12] Dennis Jeffrey and Neelam Gupta, “Test Case

Prioritization Using Relevant Slices”, In

Proceedings of the 30th Annual International

Computer Software and Applications

Conference, Volume 01, 2006. 411-420

[13] Ranga, Kamal Kumar. "Analysis and Design of

Test Case Prioritization Technique for

Regression Testing." International Journal for

Innovative Research in Science and

Technology 2.1 (2015). 248-252

