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ABSTRACT 

Discovering unknown drug interactions is of great importance for healthcare professionals since these 
interactions can become extremely dangerous and can affect patient’s safety. Since newly discovered drug 
interactions are reported in scientific papers, developing text mining techniques to automatically extract 
those interactions from unstructured texts is of great importance. All state-of-the-art systems evaluated on 
the standard DDIExtraction 2013 challenge corpus didn't exceed the threshold of 70%, which means that 
developing more powerful systems to manage this task still very important. In this paper we present a new 
feature-based kernel method to extract and classify drug interactions described in biomedical literature. 
Like many previous works, our method consists of two steps. First we detect interacting drug pairs, and 
then we classify each extracted pair into one of four interaction categories. To perform the first step, we 
have enhanced an existing feature-based system by adding new features, correction patterns, and trigger 
words. To perform the second step, we have built a new feature-based kernel classifier that exploit the 
lexical field particularity of each interaction type. This classifier is composed of 4 binary classifiers work 
sequentially. When evaluated on the DDIExtraction 2013 challenge corpus, our system achieved an F1-
score of 71.14%, as compared to 69.75% and 68.4% reported by the top two state-of-the-art systems based 
respectively on Convolutional Neural Networks and graph kernel with context vectors methods.  

Keywords: Drug–drug interaction,  Biomedical literature,  Feature-based kernel approach ,  Biomedical 

Informatics ,  Natural Language Processing 

 

1.  INTRODUCTION 

"A drug-drug interaction is a modification 
of the effect of a drug when administered with 
another drug" [1]. Detecting drug-drug interactions 
(DDIs) and their effects is essential to avoid 
undesirable drug reactions and to ensure the safety 
of medical prescriptions. For example, a report 
shows that deaths caused by unexpected DDIs rose 
between 1999 and 2004 by 68% [2]. Many 
websites offer on-line services to check possible 
drug Interactions [3]. Those services use DDIs 
databases which can be populated automatically or 
by experts. But the enormous amount of documents 
describing DDIs makes populating those databases 
by hand expensive and time consuming. On the 

other hand, new drug interactions, discovered by 
professionals, are always reported in new scientific 
publications and technical reports. MEDLINE [4] 
size, for example, has grown by 51% between 2007 
and 2016, and now contains more than 24 million 
documents. This means that regular updates of 
DDIs databases are indispensable. Therefore, 
developing text mining techniques to automatically 
extract DDIs from unstructured text has become an 
urgent need for health care professionals.   

Segura-Bedmar et al [5] used pattern 
matching and linguistic constructions resolution to 
build the first DDI extraction system. After the 
organization of DDIExtraction challenges in 2011 
and 2013 [6,7] several machine learning 
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approaches have been proposed. In the 
DDIExtraction 2011 challenge corpus, no 
information about the types of interactions is 
provided, while, in DDIExtraction 2013 challenge 
corpus [8], true interactions are classified into the 
following interaction types: “Mechanism”, 
“Effect”, “Advice”, and “Int”. In both challenges, 
systems that use machine learning approaches 
achieved the best results. 

The top performing system [9] on the 
DDI2013 corpus uses Convolutional Neural 
Networks (CNN) with Word embeddings and 
position embeddings to detect and classify DDIs. 
This system achieves an F1-score of 69.75%. 
Kernel methods are also exploited to perform the 
detection and classification task. For example, the 
best kernel system [10] uses context vectors with a 
graph kernel to achieve 68.4% F1-score. But what 
was surprising is that Kim et al [11], by using only 
a rich feature-based linear kernel, builds the third 
best system and perform 67% F1-score. These 
encouraging results lead us to suppose that by 
using novel features, new improvement in 
performance can be achieved especially if 
combined with a non linear kernel.  

In this paper we describe a new feature-
based kernel system where interacting drug pairs 
are identified first, and then classified into a 
specific DDI type. We believe that in many cases, 
enhancing an existing system can be more 
advantageous than entirely build a new one. Bui et 
al [12] developed a feature-based kernel system 
that performs only the first step. This system was 
tested separately on DrugBank [13] and MEDLINE 
[4] documents of the DDI2013 corpus each time 
with different parameters and training data, but it 
never be tested entirely on DDI2013 corpus. After 
analyzing we found that three types of 
enhancement can be introduced to this system: 
adding new features, adding new trigger words, and 
enhancing preprocessing. So to accomplish the first 
step, the enhanced system is adopted. For the 
classification step, we developed a new method 
that uses 4 binary classifiers in sequence to exploit 
the lexical field particularity of each DDI type.    

When evaluated on the DDIExtraction 
2013 challenge corpus (DDI2013 corpus), our 
system achieved an overall F1-score of 71.14%, 

which outperforms the current best system [9] by 
1.39%.  

2.  METHODS  

In this system we manage the detection 
and classification task in two step. First we use a 
binary classifier to detect interacting drug pairs. 
Then we use a system of 4 successive classifiers to 
assign predefined interaction types to the extracted 
pairs. Conforming to the Task 9.2 of the 
DDIExtraction 2013 challenge [7], we assume that 
drugs have been annotated, and the interactions are 
expressed within the boundaries of a single 
sentence and concern a pair of drugs.  

This section is divided in two subsections. 
In the first one we detail the new enhancements 
introduced after giving a brief description of the 
baseline system [12]. In the second subsection we 
describe methods, features, and kernels used by the 
new interaction-type classifier to perform the 
classification step.  

2.1. DDIs Detection  

2.1.1. Baseline  

This section gives a brief description of 
the baseline system. For more details please see the 
original work [12].  

2.1.1.1. Text preprocessing  

Each drug is renamed as DRUGi where i 
is the index of the drug. LingPipe NLP toolkit [14] 
is used to tokenize and tag sentences with POS 
tags. OpenNLP shallow parser [15] takes the 
tokens and their tags as input and produces chunks. 
A list of 298 trigger words has been created. Any 
sentence that has no trigger word or contains just 
one drug is filtered out.   

2.1.1.2. Sentence representation and candidate 

drug pairs partitioning  

Each sentence will be segmented into 
clauses. Each clause contains one subject phrase, 
one verb chunk and one object phrase as shown in 
figure 1. Depending on their positions in the 
sentence, drug pairs will be classified into one of 
the following groups:  
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Subject: If the drug pair belongs to the same 
subject phrase.  
Object: If the drug pair belongs to the same object 
phrase.  
Clause: If the drug pair belongs to the same clause.  
Clause_2: If exactly 2 verb chunks exist between 
the drug pair.   
NP: If the input sentence contains only one phrase 
(does not contain any clause). 
Drug pairs separated by more than two verb chunks 
are filtered out.  
5 different classifiers were built (a classifier for 
each group). Each classifier uses different 
combination of features.  

 Figure 1: Example of a sentence containing one clause, 

the clause is composed of one subject phrase, one verb 

chunk and one object phrase.  

 

2.1.1.3. Features   

The following features are used optionally by the 5 
classifiers:  

Lexical features: Designed to detect relations 
between each drug of the candidate pair and its 
closest tokens.  
Phrase features: Are used to describe relations 
between the drug pair and the trigger words within 
the boundaries of one phrase.  
Verb features: Unigrams and bigrams extracted 
from the verb chunk of the clause containing the 
candidate drug pair.  
Syntactic features: Describe the syntactic structure 
around each drug of the candidate pair within the 
boundaries of one phrase.  
Auxiliary features: Describe if the names of the 
candidate drug pair are real names or pronouns, if 
they are identical, and if they belongs to the same 
chunk.  

2.1.1.4. Machine learning  

The LIBSVM [16] classifier is used with 
RBF kernel. For each candidate drug pair all 
individual features generated are normalized and 
added to a single vector as proposed by Miwa et al. 
(2009).  

2.1.2. Enhancements and new features  

In this section, we present the 
enhancements introduced to the preprocessing step 
and to the trigger words list, thereafter new features 
are presented.  

2.1.2.1. Preprocessing  

Kim et al [11] reported that concatenating 
the title with the next sentence is a serious problem 
in the DDI2013 corpus. This problem can prevent 
systems from correctly identifying sentences 
structure. For example the baseline system failed to 
recognize that the drug pair in the figure 2.c 
belongs to the Clause group. To alleviate this 
problem the following rules will be implemented:  

1) Titles composed of just one drug are removed.  

2) If the two tokens after the title match a set of 
patterns, the title will not be removed, but the two 
points between the title and the sentence will be 
removed, and the first word before the title will be 
converted to lowercase. 

These patterns use 3 trigger words lists to 
check if the title is related syntactically to the next 
sentence. This correction module will be added 
before the baseline preprocessing step. The 
addition of this module help removing negative 
DDI instances (Like DRUG1-DRUG2 pair in 
figure 2.a), and identifying correctly the sentence 
structure. Figure 2.c and figure 2.d show an 
example of title correction. The sentence in the 
figure 2.d is classified correctly on Clause category 
after the addition of the correction module. 

 
Figure 2: Examples of title corrections. The title in the 

first sentence will be removed while it will be kept in the 

third sentence.  

Finally the Stanford parser [17, 18] is used 
to generate constituent parse trees and dependency 
graphs for all sentences. We will use these graphs 
to generate new features.  

2.1.2.2. Trigger words  

As previously described, the baseline 
system uses trigger words to filter out none 
informative sentences and to generate features. 
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After analyzing the list of trigger words, we found 
that many important trigger words are not included. 
For example this sentence: {The mixing of DRUG1 
with an DRUG2 in vitro can result in substantial 
inactivation of the DRUG3} is removed in the 
filtering phase because the trigger word 
“inactivation” doesn't exist in the list. To handle 
this problem a set of 203 new trigger words has 
been added after analyzing the training data and the 
old list. This increases the number of trigger words 
to 501. 

2.1.2.3. New features  

The following features are added 
optionally to the set of features used by each 
classifier. Table 1 shows the optimal combination 
of the new features for each group based on 10-fold 
cross-validation results over training data. 

Lexical features: In the baseline system, lexical 
features are limited within the boundaries of 3 
chunks before and 3 chunks after each drug. 
Furthermore the tokens between the drug pair are 
not well exploited. To address this shortfall, we 
used unigrams and bigrams of lemmatized tokens 
as features. Similar to the works of He et al [19] 
and Kim et al [11], the position information, 
appended to each lemmatized token, depends on its 
relative position to the drug pair: before (bf), 
between (be) or after (af). For example, unigram 
features generated from the sentence in figure 2.b 
are: [interaction_bf, between_bf, and_be, have_af, 
not_af, be_af, study_af]. All tokens in the sentence 
are considered, but only for NP group, the window 
size will be defined as 4 tokens before the first drug 
and 4 tokens after the second drug because this 
window size shows better performance.  

NEGATIVE SENTENCE feature: Dependency 
graph generated by the Stanford parser [17, 18] 
uses nodes to represent words and their position in 
the sentence (e.g. in Figure 3, DRUG2-6 represents 
the word DRUG2 in the sixth position), and edges 
to describe governor-dependent relations between 
the words. We iterate over all dependent words in 

the dependences list of each sentence, and If any 
dependent word belongs to a trigger words list, 
developed especially to generate this feature, and 
the type of relation between this dependent word 
and it's governor is negation (neg), the 
“NEGATIVE_SENTENCE” feature will be added to 
the vector of features. For example, in the figure 3, 
the list of dependences contains a negative 
dependency (neg(interact-4, n't-3)), and the 
dependent word "interact" belongs to the trigger 
words list, so the “NEGATIVE_SENTENCE” 
feature will be generated. 

 

Figure 3: An example of a dependency graph.* 

COORDINATED_DRUGS feature: For each 
sentence we remove all dependences except those 
who have a drug as dependent and a drug as 
governor (like: “conj(DRUG2-6, DRUG3-8)). We 
will call the graph described by the remaining 
dependences the COORDINATED_DRUGS graph. 
If the two drugs of the candidate drug pair are 
related in the COORDINATED_DRUGS graph 
(i.e., a path exist between the two candidate drugs 
in this graph), the "CORDINATED_DRUGS" 
feature will be added to the vector of features. For 
example, in this sentence: {Since DRUG1 is a 
DRUG2, it is possible that DRUG3 diminish his 
effectiveness}, The nsubj(DRUG1-2, DRUG2-5) 
dependency exists between DRUG1 and DRUG2, 
so the "CORDINATED_DRUGS" feature will be 
generated. 

Grammatical tags count features: Combining 
information from both sub-sequential and graph

______________________________________________________________________________________ 

*This graph has been generated by the service available at: http://nlp.stanford.edu:8080/corenlp/process. 
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   Table 1: The optimal combination of the new features for each group based on 10-fold cross-validation results over 

training data. 
Group Lexical NEGATIVE_SENTENCE COORDINATED_DRUGS Grammatical tags count SAME_BLOK 

Subject x x   x 
Object  x    
Clause x x x   
Clause_2 x x x x  
NP x  x x  

 

representations improves the overall performance 
[19]. To exploit a part of information given by the 
parse tree, we extract the shortest path connecting 
the drug pair in the parse tree, then we count the 
number of appearances of each grammatical tag, 
this number will be appended to the corresponding 
tag then added as a feature. For example the 
features extracted from this path ‘‘NP VP S VP NP 
VP S VP PP NP’’ are: [NP_3, VP_4, S_2, PP_1]. 

SAME_BLOK feature: Two drugs belong to the 
same block if they appear in the same coordinate 
structure. For example, All drugs in the following 
sentence except DRUG7 belong to the same block: 
{DRUG1 such as DRUG2 (e.g., DRUG3), DRUG4 
such as the DRUG5 or DRUG6 can interact with 
DRUG7}.It can be very helpful for the machine 
learning to now if the candidate drugs belong to the 
some block, so we have developed a rule-based 
module to decide if the drug pair appears in the 
same block, if so, we add the “SAME_BLOK” 
feature to the vector of features. 

2.1.2.4. Parameters selection 

The RBF kernel uses two parameters: C 
and gamma. We apply a grid-search to find the best 
parameters using the 10-fold cross-validation 
technique over the training data. 

2.2. DDI Classification 

2.2.1. Classifiers architecture 

 The objective of the classification phase is 
to classify drug pairs into 4 classes: Advice, 
Mechanism, Effect, and Int.  
Advise: If an advice or recommendation 
concerning the DDI is given. 
Mechanism: If the interaction is described by the 
pharmacokinetic mechanism. 
Effect: If the effect of the interaction is described. 

Int: If the sentence doesn't provide any information 
about the type of the DDI. 

By analyzing the data, one can notice that 
interactions of Advice class are described by a 
special lexical field comparing to interactions of 
other classes. For this reason we have built a binary 
classifier (Classifier_A) that separates interactions 
of Advice class (output1) from interactions of other 
classes (output2). Along the same lines, 
interactions of Mechanism class are described by a 
special lexical field comparing to interactions of Int 
and Effect classes, so we have built a second binary 
classifier (Classifier_B) specialized on separating 
interactions of Mechanism class (output1) from 
interactions of Effect and Int classes (output2). The 
input of this classifier is the output2 of the 
Classifier_A. The third classifier (Classifier_C) 
separates interactions of Effect class (output1) from 
interactions of Int class (output2). The 
Classifier_A+Classifier_B+Classifier_C system 
will be called System_1 in this paper. 

• Int class recall 

By analyzing the results reported by the 
System_1 (see section 3.4), we noticed that all 
classes get good results except the Int class. The 
main cause behind the poor results recorded for the 
Int class is the low recall. To alleviate this problem, 
we decided to add a fourth classifier (Classifier_D) 
with a very high precision (but low recall) before 
the System_1 to separate some DDIs of Int class 
(output1) from the other DDIs. The output2 of this 
classifier is now the input of the System_1. 

The Classifier_D prevents a set of drug 
pairs that belong to Int class from entering into the 
System_1, and thus from being classified on a 
wrong class. These pairs will be classified directly 
as Int class. The Classifier_D+System_1 system 
will be called System_2 in this paper. 
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Figure 4: Architectures of System_1 and System_2 developed to perform the classification step.

 Figure 4 shows the architectures of the 
new classifiers described in this section. 

• A classifier for comparison 

Kim et al [11] shown that the one against 
one strategy give better performance than the one 
against all strategy in DDIs classification. So, by 
way of comparison with our new classifiers, we 
built a multi-classifier that uses the one against one 
strategy. This classifier will be called System_3. 
Comparison details are presented in the section 3.4. 

2.2.2. Preprocessing 

We use the same preprocessing steps used by the 
baseline DDI detection system (see section 2.1.1).  

2.2.3. Features 

Lexical features, such as unigrams and 
bigrams, have been used successfully to extract 
relational knowledge [11, 19]. Their direct 
exploitation of the lexical field makes of them 
strong indicators for the machine learning. Our 
system exploits the lexical level using unigrams 
and bigrams combined with position information. 

Beside the lexical features, we have tested 
a wide set of features like dependency features and 
parse tree features, but experiments in the training 
data have been shown that using lexical features 
alone gives the best performance in the 
classification task. Next we present the lexical 
features used by each classifier. 

2.2.3.1. Features used by all classifiers except 

Classifier_D 

Unigrams of lemmatized tokens: All tokens of the 
sentence except the interacting drugs tokens will be 
lemmatized then added as features. For example 
the features generated from the sentence in the 
figure 2.b are: [interaction, between, and, have, not, 
be, study]. 

Bigrams of lemmatized tokens with position 
information: All tokens of the sentence will be 
lemmatized then concatenated as bigrams. Similar 
to the works of He et al [19] and Kim et al [11], the 
position information, appended to each lemmatized 
token, depends on its relative position to the drug 
pair: before (bf), between (be) or after (af). For 
example features generated from the sentence in 
the figure 2.b are: [interaction_bf_between_bf, 
between_bf_DRUG, DRUG_and_be, 
and_be_DRUG, DRUG_have_af, have_af_not_af, 
not_af_be_af, be_af_study_af]. 

2.2.3.2. Features used by the Classifier_D 

Classifier_D uses only unigrams of 
lemmatized tokens between the drug pair as 
features because they show a very high precision in 
experiments when they are used alone. For 
example the features generated from the sentence 
in the figure 1.d are: [may, decrease]. 
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2.2.4. Machine learning 

Our system use LIBSVM, the popular 
SVM library [16]. Two kernels are used optionally 
by the classifiers composing this system, radial 
basis function (RBF) and linear kernel. For the 
RBF kernel, two parameters need to be selected, C 
and gamma, while only C must be selected for the 
linear kernel. We apply a grid-search to find the 
best parameters and the best kernel for each 
classifier using the 10-fold cross-validation 
technique over the training data. The Classifier_A 
uses binary classification with RBF kernel, while 
Classifier_B, Classifier_C and Classifier_D use 
binary classification with linear kernel. The 
System_3 uses multi-classification with RBF 
kernel.   

3. RESULTS AND DISCUSSION 

3.1. Dataset 

We use the corpus from the 
DDIExtraction 2013 challenge [7] to evaluate our 
system. This corpus contains 905 annotated 
documents from the DrugBank [13] database and 
the MEDLINE [4] abstracts. Drug pairs are 
annotated as interacted or not interacted. True 
interactions are classified into the following four 
classes: Mechanism, Effect, Advice, and Int (For 
definitions see the section 2.2.1). Table 2 shows 
statistics of training and test data before and after 
preprocessing and filtering steps. Removed 
negative pairs represent 38.05% of the negative set 

while removed positive pairs represent only 3.42% 
of the positive set. The statistics of DDI types are 
shown in Table 3. 

 For the classification subtask, all negative 
pairs are removed from the training data, then 
positive pairs are used to build a special training 
data for each classifier as follow:  
Classifier_A: class 1=DDIs of Advice type, class 
2=DDIs of Mechanism+Effect+Int types. 
Classifier_B: class 1=DDIs of Mechanism type, 
class 2=DDIs of Effect+Int types (DDIs of Advice 
type are removed). 
Classifier_C: class 1= DDIs of Effect type, class 
2=DDIs of Int type (DDIs of Advice and 
Mechanism types are removed). 
Classifier_D: class 1= DDIs of Int type, class 
2=DDIs of Advice+Mechanism+Effect types. 
System_3: A class for each type. 

3.2. Performance Comparison 

In this section, we compare our best 
system, which is the enhanced DDI detection 
system+System_2 (see sections 2.1.2 and 2.2.1), 
with the state-of-the-art systems. 

Our feature-based kernel system shows the 
best performance when compared with state-of-the-
art systems. It outperforms the current best system 
[9] by 1.39% F1-score. 

Table 4 compares our system with the best 
three systems based on the standard F1-score 

Table 2: Statistics of training and test data before and after preprocessing and filtering. 

 Original set   Preprocessed set  

 Positive Negative  Positive Negative 

training 4020 23772  3878 14369 
test 979 4737  950 3290 
all 4999 28509  4828 17659 

 

Table 3: Statistics of DDI types in training and test data. 
 Advice Mechanism Effect Int 

training 826 1319 1687 188 
test 221 302 360 96 
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Table 4: Performance comparison between our system and the top-ranking systems on the DDI2013 test data. The 

standard F1-score evaluation measure is used as unit (%). ‘CLA’ refers to detection and classification performance. 

‘DEC’ refers to detection performance. 
Method CLA DEC Mechanism Effect Advice Int 

Our method 71.14 81.5 73.57 69.55 77.43 52.35 

Shengyu Liu et al [9] 69.75 - 70.24 69.33 77.75 46.38 

Zheng et al [10] 68.4 81.8 66.9 71.3 71.4 51.6 

Kim et al [11] 67 77.5 69.3 66.2 72.5 48.3 

Baseline [12] - 79.4 - - - - 

evaluation measure. Our system achieves 71.14% 
F1-score for detection and classification 
performance (‘CLA’), whereas Shengyu Liu et al 
[9], Zheng et al [10] and Kim et al [11] produced 
69.75%, 68.4% and 67% F1-score respectively. For 
DDIs detection ('DEC') the current best system [10] 
achieved 81.8% F1-score while our system gets 
comparable results by achieving 81.5% F1-score. 

Beside top performing systems, Table 4 
shows the performance of the baseline system for 
two reasons, first as reference to measure the 
improvement performed by the new system, and 
second because the baseline system had never been 
tested on the entire DDIExtraction 2013 challenge 
corpus. 

Shengyu Liu et al [9] uses Convolutional 
Neural Networks with word embeddings and 
position embeddings to perform the detection and 
classification task after filtering a set of negative 
instances by relying on a range of criteria. Zheng et 
al [10] uses context vectors with a graph kernel to 
detect and classify DDIs. He exploits different 
types of contexts and relations among words with 
different distances. To perform the classification 
subtask he uses the one-against-all strategy. Kim et 
al [11] uses linear kernel with a binary 
classification to identify DDIs, and uses the one-
against-one strategy to assign types to the extracted 
pairs. This strategy is used to handle the bad effect 
of unbalanced classes. 

On the other side, our method uses a 
binary SVM classifier with RBF kernel for 
identifying DDIs and 4 binary SVM classifiers in 
cascade to assign DDI types. We use those 
classifiers to exploit the lexical field particularity of 
each type. Our approach gets its best performance 
for advice, mechanism and effect types, while it 
does not perform well for int. This may be due the 
small number of training and test data for this type 
(188 and 96 instances for training and test data 
respectively). 

The results in Table 5 show that our 
system performs well on the DrugBank test 
documents with F1-score of 73.95%. However, its 
performance decreases on the MEDLINE test 
documents to 43.02%. ٍSimilar difference in 
performance was reported by the teams that 
participated in the DDIExtraction 2013 challenge 
[7] and by state-of-the-art systems[9, 10, 11]. One 
issue that might affects performance on the 
MEDLINE test set is its size, which is significantly 
smaller than DrugBank test set. Another reason can 
be the scientific language of the MEDLINE 
documents, which use more complex sentences to 
describe relations. 

3.3. Enhancements Analysis 

Table 6 presents improvement of DDI 
detection performance when adding enhancements 
one by one to the baseline system.10-fold cross 
validation was performed over the training data to 
obtain the results.  

Title corrections module improves the F1 
performance by 0.59%. This improvement is 
understandable because this module removes 
negative DDI instances and helps the system to 
correctly recognize the sentence structure. New 
trigger words in their side improve the performance 
by 0.72% F1. This shows that our observation 
about the insufficient of the baseline trigger words 
list was correct. For the new features, Lexical and 
NEGATIVE_SENTENCE features contribute the 
most by increasing F1-score by 0.5% and 0.51% 
respectively. The rest of features have less impact 
on performance and their total contribution on 
improvement is 0.5%.  

The improvement recorded by lexical 
features shows that the baseline system doesn't 
benefited sufficiently from the lexical level, and 
confirms the results reported by Kim et al [11] 
about the importance of attaching position 
information to the words. In the other hand, 
NEGATIVE_SENTENCE feature helps the system 
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to differentiate between positive DDIs and negative 
DDIs expressed by negation. Since this feature is 
generated using grammatical dependences, we 
think that these dependences can be source of other 
powerful features. 

 

 

Table 5: Comparison between performance recorded on DrugBank and MEDLINE test sets. The standard F1-score 

evaluation measure is used as unit (%). ‘CLA’ refers to detection and classification performance. ‘DEC’ refers to 

detection performance. 
Dataset CLA DEC Mechanism Effect Advice Int 

DrugBank 73.95 84.07 76.34 73.54 77.94 55.07 

MEDLINE 43.02 55.81 33.33 46.43 61.54 18.18 

 

Table 6: Improvement of DDI detection performance when adding enhancements one by one to the baseline system. 

‘Improvement’ column shows the F1-score difference between each row and its previous row. The last row shows the 

total improvement. 10-fold cross validation was performed over the training data to get the scores. 
Enhancements and new features Precision Recall F1 Improvement 

Baseline 0.7809  0.7077 0.7425 - 
Baseline + title corrections(TC) 0.7773  0.7216 0.7484 +0.59% 

Baseline + TC + new trigger words 0.7737  0.7383 0.7556 +0.72% 

+New lexical features 0.8088  0.7179 0.7606 +0.5% 

 + NEGATIVE_SENTENCE feature 0.8144  0.7226 0.7657 +0.51% 

   + Grammatical tags count feature 0.8157  0.7268 0.7687 +0.3% 

     + CORDINATED_DRUGS feature 0.8112  0.7313 0.7692 +0.05% 

       + SAME_BLOK feature 0.8119  0.7335 0.7707 +0.15% 

Enhanced DDI detection system 0.8119  0.7335 0.7707 +2.82% 

 

Table7: Results reported by the three classification 

systems on the test corpus for the detection and 

classification task when they are added to the enhanced 

DDI detection system (EDDIDS). 

System Precision Recall F1 

EDDIDS+System_1 0.7317  0.6823 0.7061 

EDDIDS+System_2  0.7371  0.6874 0.7114  
EDDIDS+System_3  0.7273 0.6782 0.7019 

 

3.4. Classifiers Analysis 

Table 7 shows the results reported by the 
three classification systems (described in the 
section 2.2.1) on the test corpus for the detection 
and classification task when they are added to the 
enhanced DDI detection system (EDDIDS).  

The EDDIDS+System_2 gets the best 
performance by achieving 71.14% F1 in the 
detection and classification task, while 
EDDIDS+System_1 and EDDIDS+System_3 
ranked second and third by achieving respectively 
70.61% F1 and 70.19% F1.  

Table 8 details why the 
EDDIDS+System_2 achieves better performance. 
Data in this table shows that adding the 
Classifier_D (see section 2.2.1) improves the recall 
of Int type by 5.2% and the F1-score of the same 
type by 4.46% which lead to get the best 

performance for this type by recording 52.35% F1. 
The EDDIDS+System_2 achieves also the best 
performance for Mechanism and Effect types, this 
is due to preventing a set of drug pairs that belong 
to Int type to be wrongly classified as Mechanism 
or Effect type. This is why only precisions of those 
two types show an improvement while recalls 
maintain the same values. 

3.5. Erroneous Data and Title Section Problem 

During system development, we found 
that the training corpus contains erroneous data. In 
fact, some true interactions are wrongly annotated 
as false and vice versa. Figure 5.a shows a true 
relation between 'Simvastatin' and 'Amiodarone' 
drugs that was wrongly annotated as negative 
instance (See Amiodarone_ddi.xml in DrugBank 
training data sentence id :DDI-
DrugBank.d143.s21). SVM classifiers can manage 
erroneous training data to some degree, but if such 
data are present on the test corpus, systems will be 
wrongly evaluated. 

Title section can be another source of 
noise to systems that require a grammatically well-
formed text. In our case if the sentence is 
incorrectly segmented, drug pairs may be classified 
on false syntactic groups, thus, inappropriate 
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features will be generated. Even a module was 
developed to handle some title problems, others 
still with no solution. For example Figure 4.b 
shows an instance where the title can't be deleted 
by the title correction module.  

4. CONCLUSION 

In this paper, we have proposed a feature-
based kernel method with SVM classification to 
extract DDIs from biomedical literature. New 

features and enhancements are introduced to a 
feature-based kernel system before use it to 
perform the detection step. For the classification 
step, we have built a new classifier that exploits the 
lexical field particularity of each DDI type. When 
compared to a one-against-one strategy classifier, 
our new classifier gets better results. Applied to the 
DDIExtraction 2013 challenge corpus, the 
proposed method gets the best performance when 
compared to the state-of-the-art systems by 
achieving 71.14% F1. 

Table 8: The results reported on the test corpus by the three classification systems when they are added to the 

enhanced DDI detection system (EDDIDS). 'ADV', 'MEC', 'EFF', and 'INT' are for Advice, Mechanism, Effect, and Int 

types respectively. 

System 
 ADV   MEC   EFF   INT  

P R F1 P R F1 P R F1 P R F1 

EDDIS+System_1 0.815 0.737 0.774 0.786  0.682 0.730 0.654  0.736 0.692 0.739  0.354 0.478 
EDDIS+System_2 0.815 0.737 0.774 0.798  0.682 0.735 0.659  0.736 0.695 0.735  0.406 0.523 
EDDIS+System_3 0.79 0.751 0.77 0.742  0.705 0.723 0.672  0.697 0.684 0.790 0.354 0.489 

 

 
Figure 5: The first example shows a wrongly annotated instance in the training data (drugs are underlined) while the 

second example presents a sentence concatenated with the title section (the title section is underlined).

The results show that our new 
architecture, developed to exploits the particularity 
of each group, gives the best performance. This 
technique can be used to manage similar 
classification problems like protein-protein 
interaction classification or other classification 
problems. The results show also that using new 
features and correction patterns improves the 
performance of DDI extraction, and that using a 
complete set of trigger words is crucial to get good 
results. 

Authors of the DDI2013 corpus assumed 
that interactions are expressed within the 
boundaries of a single sentence and concern one 
drug pair. This assumption represents a limitation 
because interactions can concern more than two 
drugs and can be defined by multiple sentences. 
Another limitation is that our current system gets 
drug entities from external source. We think that 
completing this system by a module to 
automatically detect drugs entities is of great 
importance.  

Shengyu Liu et al [9] achieved the second 
best results by using Convolutional Neural 
Networks (CNN) to perform the detection and the 
classification in one step. A previous study [20] has 
shown that performing this task in two steps 
(detection then classification) gives better results. 
We think that building a CNN based method that 
takes two steps to conduct the task can gives better 
results. We think also that developing a module to 
handle the badly formatted sentences may be 
another source of improvement. 
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