
Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

238

FACE RECOGNITION USING ARTIFICIAL NEURAL

NETWORKS IN PARALLEL ARCHITECTURE

1
BATYRKHAN OMAROV,

 2
AZIZAH SULIMAN,

3
KAISAR KUSHIBAR

1
PhD candidate of College of Information Technology, Universiti Tenaga Nasional, Kuala Lumpur,

Malaysia

2
Prof. Madya Dr., College of Information Technology, Universiti Tenaga Nasional

3
Master, University of Burgundy, Le Creusot, France.

E-mail:
1
batyahan@gmail.com,

2
azizah@uniten.edu.my,

3
kukaba.fm@gmail.com

ABSTRACT

Face detection and recognition is the main aspect for different important areas such as video surveillance,

biometrics, interactive game applications, human computer interaction and access control systems. These

systems require fast real time detection and recognition with high recognition rate. In this paper we propose

implementation of the Artificial Neural Network by using high performance computing architecture based

on Graphics Processing Unit to get face recognition with high accuracy and more speedup. There, we

consider a parallel training approach for backpropagation algorithm for face recognition. For the high

performance of face recognition it was used Compute Unified Device Architecture (CUDA) on a GPU.

The experimental results demonstrate a significant decrease on executing times and greater speedup than

serial implementation.

Keywords: Artificial Neural Networks, CUDA, Face recognition, GPU, Parallel Computing.

1. INTRODUCTION

Nowadays, Face detection and recognition has

become far-famed area of image processing and

analysis and computer vision research. Mainly we

meet such kind of systems everywhere, for

example, security systems, social networks, smart

phones, etc. [1, 2]. Using and image facial

recognition algorithms are proposed to estimate and

give decision on where that face is located. In own

case, according to the direction each image is

classified into several classes as left, right, up and

straight.

For some types of such kind of problems using

an artificial neural network (ANN) will be one of

the most effective methods [3]. In addition,

Backpropagation algorithm will serve one of the

top ones of commonly used algorithms for ANN

learning technique. In this case, backpropagation

algorithm is built of parties of interconnected

neurons, where each unit has real-valued inputs and

returns a single real-valued output. It is commonly

used ANN learning method, which is suitable for

tasks where the learning target function is defined

over specimen that can be described by a

predefined features vector or vector of pixel values.

Also, output result may be real-valued, discrete-

valued or vector of real and discrete valued

attributes. Furthermore, training examples may

contain some errors and fact assessment of the

learned function may be required. All these factors

make ANN an effective method in image

recognition problem. Some research of particular

application meets on [4, 5].

One of the main difficulties of ANN is the

significant amount of time needed in the training

phase performance to solve complex problems.

Depending on grow of number of hidden layers and

neurons, the required time to ANN learning process

and new instance assessment time grows by leaps

and bounds. On the other hand, the rate of

successful classification depends on growing of

number of hidden layer and neurons. So, in general,

the more training instances the network is

guaranteed, the more effective result can be

achieved. Thus, it is very important to carry out

training with a considerable number of neurons in

the hidden layer and with a large number of training

examples, and with spending relatively low training

time.

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

239

The statement that each layer makes its own

calculation independently from other neurons leads

us to any layer parallel calculations which can take

place, and a parallel architecture which can be used

for this purpose.

1.1. Motivation

Nowadays, facial recognition is an active and

actual research area. This is composed by multiple

areas as computer vision, pattern recognition,

image processing, artificial intelligence, artificial

neural networks and computer architectures. There

are many applications that use face recognition for

security goals as access control or security systems.

The system gives good results, mainly when the

fingerprint system cannot be used to the recognition

goal.

In spite of the reliable methods of identification

systems such as fingerprinting or iris scanning,

facial recognition is attractive because of the

friendly properties used.

It is clearly seen that, there are many challenges

on facial recognition problem which are related to

reliability and calculative cost, and time cost of the

technique. The main goal of the research is

improving face recognition using artificial neural

network, productivity increasing via the use of

large-scale parallel data processing, reached by the

implementation of artificial neural network

architecture based on Graphic processing unit.

2. RELATED WORKS

With the development of new technologies we

have multi-core processors and graphic processing

units (GPU) with significant power in our desktop

and servers, available to everyone. Using parallel

computing techniques for artificial neural network

and deep learning has become a budding research

area by using current modern hardware.

In [6] authors gives a research survey of the state

of the art parallel computer hardware from the

perspective of a neural networks user focusing on

the performance of ANN on affordable parallel

computer hardware such as clusters, multi-core

processor machines, workstations and PCs.

Lindholm et al. [7] and Ryoo et al. [8] consider

GPU-related problems concerning conventional

parallel programs. They study NVIFIA’s Tesla

unified graphics and

They study developing parallel programs on the

basis on CUDA programming API that can be

performed based on NVIDIA’s Tesla unified

graphics and NVIDIA GPUs computing

architecture. In their research, they consider CUDA

as an extension of C/C++ programming language

that developers writing programs call cores. Cores

are carried into effect in parallel through a set of

threads. Also, they discuss some other approaches

concerning to GPU as OpenCL, PGI Accelerator

and Brook.

Nickolls et al. [9] and Che et al. [10] treat with

CPU based parallel calculation approaches as MPI

(Message Passing Interface), OpenMP or Pthreads.

Most of the works have to deal with CPU and GPU

based parallel computing on a very common level

only and not providing an applicable assessment

scenario for a specific target.

Jang et al. [11] deals with Multi-Layer

Perceptron based (MLP) text detection algorithm

performed in OpenMP and CUDA. They tried to

simplify the algorithm for all users, even for those

users who do not have very good knowledge about

programming on GPU. They consider that MLP

consists of one input layer and one output layer,

also one or more hidden layers. A difficulty of their

scheme is describing a short assessment section. In

contrast, our research based on Backpropagation

algorithm and focuses more specifically on the

assessment details. The authors also examined

improvements relating the computation times of

their application from using parallelization.

Xavier et al. [12] deal with parallel training of

Backpropagation using CUDA impleemtation of

Basic Linear Algebra Subprogram. They compared

implementation on classical CPU and CUDA

variation of hidden neurons and comparing the

performance of CPU and GPU execution.

Shetal et al. [13] compare CPU in Matlab and

GPU implementation for pattern recognition

algorithm, concretely, recognize hand written

digits.

Summarizing, in our research we examine multi-

core versus GPU using parallel computing, on the

other hand our work priorities neural network face

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

240

recognition problem using Backpropagation

paradigm by giving specific parameters.

Many methods can be found using parallel

computing of neural networks that have been

implemented on different architectures. For

instance, Pethrick et al. [14] described several

approaches for neural network training. In [15]

describes the different parallelization levels of

neural network. Also, [16] divided Data Parallel

category to two types as Structural data parallel

category and Topological data parallel category.

This research work focuses on machine learning,

parallel computing with high performance, using

GPU computing, as it implements algorithm that

considerably improves ANN training time as

contrasted a sequential face recognition algorithm.

Summing up, in our work on the one hand we

analyze the multi-core versus GPU performance

gains by parallelization, but on the other hand we

also analyze the application behavior of neural

network face recognition by a sweep of problem

specific parameters. In addition, in our research we

implement and run a different number of hidden

neurons and cores for processing.

3. GPU ARCHITECTURE AND CUDA

PROGRAMMING MODEL

GPUs were designed to perform graphic

processes on computers. Nowadays, they have large

computing power afforded by thousands of

processing units that support fast clock speeds. In

the last decade GPUs have been used to solve

complicated tasks owing to high-power parallel

hardware architecture.

Graphic processors have a huge computation

capacity for parallel computing of Image rendering

issue. CUDA has C based programming model

ensure easy implement in all-purpose computation.

GPU’s programmable units are a multiple

processor that consists of a set of a single program

multiple-data (SIMD) processor. For greater

efficiency, GPU processes elements that are called

vertices or fragments are used parallel in the

identical program. Each element is not dependent

on the others, and in programming model elements

cannot interrelate with each other. GPU programs

structure follows this method: each element is

processed parallel by an individual program.

Figure 1 illustrates a CUDA programming and

memory model that is based on a parallel compute

block called grid. There, an overlook of the threads

running inside the device structure is given. It can

be seen as parting of host hardware CPU and GPU

device, that thread processing organized in blocks

is separated into grids of the processing. There,

kernels have different grid parameters as its

dimensionality. As Figure 1 illustrates, the size of

blocks and grid of kernel 1 is different from the one

used by kernel 2.

Figure 1. CUDA Programming model (courtesy:

NVIDIA)

3.1. CUDA Memory Model

CUDA memory model access rules are given in

Figure 2, the detailed explanation is given in Table

1. CUDA architecture is constructed by a scalable

array of multi-processors, with each of them having

eight scalar processors, a shared memory chip, and

a multithreading unit. Multiprocessor creates and

manages, also executes parallel threads with

diminished cost. The threads are constructed

blocks, which are run in a single multiprocessor. In

own case, blocks are constructed grids.

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

241

Figure 2. CUDA Memory Model

Program in CUDA calls a grid, and it will be run

in the GPU. Blocks are numbered and spread to

available multiprocessors. Threads run into the

device and have access to memory inside the

device. Threads have access to registers and the

memory for reading and writing sing memory

spaces as a shared memory, a local memory, and a

global memory. A shared memory used by the

threads, the local memory of the thread, and the

global memory of the GPU. Blocks have access to

shared memory for reading and writing. Constant

and textures memories can be accessed by the grid

for reading only.

Table 1. Memory Model Access Rules

Memory space When

accessed

Rule

Register By thread Read/Write

Local By thread Read/Write

Shared By block Read/Write

Global By grid Read/Write

Constant By grid Read Only

Texture By grid Read Only

4. FACE RECOGNITION USING

ARTIFICIAL NEURAL NETWORKS IN

GPU

4.1 Mathematical Model and Methods

Program in CUDA calls a grid, and it will be run

in the GPU

ANN provides a commonly practical method for

supervised learning and unsupervised learning

functions from given samples. There we use real

valued, discrete valued, and vector valued

functions. There are some algorithms that allow

attuning network parameters to find the best fit

training set of input and output parameters. ANN is

stable to errors of training data and able to be

successfully applied to issues as image processing,

speech recognition, and image recognition [3].

Figure 3. ANN’s schema

Figure 3 illustrates general structure of an ANN.

ANN work with a set of neurons that connected

with each other. Each neuron receives input data,

fulfill some linear combinations and return the

result, which is the assessment of some function f

for the value x=a.

The first step is to modify the backpropagation

algorithm so that it can be implemented in a SIMD

fashion. In backpropagation algorithm, input

patterns are presented to the neural network. Based

on the input pattern the network calculates an

output pattern. After that the output is compared

with a desired pattern, and an error vector is

calculated. The computed error will be

backpropagated by the network. Based on the error

amount on each connection, the weights of the

network are changed. After, the network receives

next pattern, and the previous procedure is

repeated. In the parallel version of the

backpropagation, the weights will be stored instead

of changing after each template. After the first

calculation in several threads, the stored weights

are added, and then the weights are updated,

depending on the change of total weight are

computed.

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

242

Let, consider a network which with n output to

solve the task with p training patterns. Parallel

backpropagation algorithm tries to find a mean

squared error for one training. The weights are

updated as (1) and (2) formulas.

))(1(
1

p

i

p

i

p

i

P

p

p

i

p

jij actdesactactxw −−=∆ ∑
=

ρ (1)

∑ ∑
= −

−−−=∆

P

p

N

n

p

n

p

n

p

n

p

nnj

p

i

p

j

p

kjk actdesactactwxxi
1 1

))(1()1(ρϑ

(2)

Where,
p

ndes is the desired output and
p

ndes is

the actual output of the n-th output neuron for the

p-th training pattern,
ijjk w∆∆ ,ϑ are the first and

second stage weights, p is enough small step size,

p

ki and
p

jx are the k-th and j-th input values to the

first and second stages respectively.

As we concerned before, the network compute

the weight changes owing to all training patterns,

also, add them up, after, update the weights on the

basis of the variation of the total weight gather over

the full sweep. In the consistent implementation,

weight update is committed after each training. So,

in the consistent implementation, the weight

changes are calculated as following (3) and (4)

formulas.

))(1(
p

i

p

i

p

i

p

i

p

jij actdesactactxw −−=∆ ρ (3)

−−−=∆ ∑

−

N

n

p

n

p

n

p

n

p

nnj

p

i

p

j

p

kjk actdesactactwxxi
1

))(1()1(ρϑ
(4)

This approach works very slowly in the series

implementation. However, using the SIMD

backpropagation approach allows parallelization in

the data level. Each network calculates a weight

variation vector of the entire network parallel at the

same time. After that, the weight vector of the

network is updated on the basis of the total weight

variation vector. So, owing to parallelization we

will achieve more speed. In the next part of our

research, we will explain SIMD backpropagation

approach.

4.1. Simulation of Backpropagation algorithm in

parallel architecture

The main concept of Backpropagation simulation

in parallel architecture is the multi layer perceptron.

In other words, it is a layered neural network with a

different number of hidden layers. Specially, each

neuron is associated with each layer neuron of an

adjacent layer. For supervised learning we use the

Backpropagation algorithm. It is a gradient descent

method to determine combination of weights

between layers for comparison input and given

output values. Feedforward assessment is defined

by (5) propagation function.

jiij wtOnet ,)(∗=∑ (5)

Where,
jiw ,
 is represent the connection weights

and iO is the output value of the neuron. Ratio of

input, adjacent and output layers is defined by the

following equation system, where input, output,

hidden are input value, hidden layer’s vector, and

output vector.

∗=

∗=

)(

)(

2

1

hiddenwfoutput

inputwfhidden
 (6)

Also, 1w is the weight matrix between the input

and hidden layers, and 2w is the weight matrix

between hidden and output layers. The activation

function is represented by the sigmoid function (7).

xe
y λ−+
=

1

1
 (7)

Also, we use traditional formulas as (4) to learn

backpropagation algorithm.

⋅⋅−⋅⋅⋅=∆

⋅−⋅⋅⋅=∆

∑ jmimmmij

iiiiij

ewaaew

haaw

12

1

)1(

)1(

α

εα

 (8)

Where,
1

ijw∆ and
2

ijw is the weight value of

1w and 2w matrixes respectively.

Figure 4 illustrates a schema for single neuron. In

the first place, a linear combination of input data

will be made.

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

243

Figure 4. Schema of single neuron of ANN

Next, we will find the difference between errors

of serial and parallel version of backpropagation

algorithm. The total mean squared error for a

network with n output neurons for a problem with p

training patterns is as following:

∑∑
= =

−=
P

p

N

n

p

n

p

n actdes
P

E
1 1

2)(
2

1
 (9)

Next, we consider weight variation between

hidden layer and output layer. The received results

can be readily generalized to more than one hidden

layer in the case of neural network consists of

several hidden layers. Even, there is no hidden

layer then the hidden layer will be the same as the

input layer. Based on the chain rule, we can

determine the rate of error change regarding to
ijw

as the following formula:

ij

p

i

p

iij w

act

act

E

w

E

∂

∂
∗

∂
∂

=
∂
∂

 (10)

Where

∑
=

−−=
∂

∂ P

p

p

i

p

ip

i

actdes
Pact

E

1

2)(
1

 (11)

We consider a sigmoidal activation function as

xe
y λ−+
=

1

1
, more precisely it will be in the

following form:

+− ∑

+

=

=

M

j

iij
p
j wx

p

i

ea

act

1

1

θ

 (12)

Where, M is the number of hidden neurons,
p

jx

is the output value of the j-th hidden neuron. And,

we get

2

1

1

1

 ∑
+

∑

=
∂

∂

+−

+−

=

=

M

j

iij
p
j

M

j

iij
p
j

wx

wx

p

j

ij

p

i

e

ex

w

act

θ

θ

 (13)

)1(p

i

p

i

p

j

ij

p

i actactx
w

act
−=

∂

∂
 (14)

Using formulas (10), (11) in equation (14) we get

∑
=

−−−=
∂
∂ P

p

p

i

p

i

p

i

p

j

ij

ofdesactactx
Pw

E

1

))(1(
1

(15)

Using gradient descent method, the weight

variation for
ijw we find

∑
=

−−−=∆
P

p

p

i

p

i

p

i

p

i

p

jij actdesactactx
P

w
1

))(1(
ρ

 (16)

Where p is the step size small constant number.

Now, let’s consider
jkν as the weight connect

between k-th input and j-th hidden neurons, and we

get

∑∑
∑∑= =

= =

+−

∑
+

−

=−

=

=

P

p

N

n

P

p

N

n wx

p

n

p

n

p

n

M

j

jij
p
j

e

des
P

actdes

P
E

1 1

1 1

2

2

11

1

2

1

)(

2

1

θ

(17)

Where,

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

244

+− ∑

+

=

=

K

k

jij
p
j wx

p

j

e

x

11

1

θ

 (18)

p

jx is the output of the j-th hidden neuron for p-

th training pattern, K is the number of input

neurons,
p

kj is the k-th bit of the p-th training

pattern. Using the chain rule one more time, we

find

jk

p

j

p

jjk v

x

x

E

v

E

∂

∂

∂
∂

=
∂
∂

 (19)

Using (20):

∑∑

∑∑

= =

= =

+−

+−

−−−

=

 ∑
+

∑
−

−

=
∂

∂ =

=

P

p

N

n

P

p

N

n

p

n

p

n

p

n

p

nnj

wx

wx

njp

n

p

n

p

j

actdesactactw
P

e

ew
actdes

Px

E
M

j

nnjj

M

j

nnjj

1 1

1 1

2

))(1(
1

1

)(

1
1

1

θ

θ

(20)

And

)1(p

j

p

j

p

k

jk

p

j
xxi

v

x
−=

∂

∂
 (21)

we get

∑ ∑
= =

−−−−=
∂
∂ P

p

N

n

p

n

p

n

p

n

p

nnj

p

j

p

j

p

k

jk

actdesactactwxxi
Pv

E

1 1

))(1()1(
1

(22)

Sharp descent weight change is

∑ ∑
= −

−−−=∆
P

p

N

n

p

n

p

n

p

n

p

nnj

p

j

p

j

p

kjk actdesactactwxxi
P

v
1 1

))(1()1(
ρ

 (23)

The network computes the weight variation by

reason of all the training patterns, and adds them

together, after update the weights on the basis on

the total weight variation gathered over the whole

sweep. In the consistent implementation, the weight

renewal is fulfilled after each training pattern. So,

using (16) and (23), the weight variation are

calculated as the following formulas:

))(1(
p

i

p

i

p

i

p

i

p

jij actdesactactxw −−=∆ ρ
 (24)

and

∑
=

−−−=∆
N

n

p

n

p

n

p

n

p

nnj

p

j

p

j

p

kjk actdesactactwxxiv
1

))(1()1(ρ

 (25)

Figure 5 illustrates descent steps got by moving

to the inferior limit of a paraboloid using exact and

approximate version of gradient descent algorithm.

The SIMD backpropagation method uses the exact

algorithm because of it uses parallelism of data

level. Each network calculates a vector of weight

changes for all weights in the given network on the

basis on the given training pattern. After

completing the sweep weight variation vectors will

be added up and weight vectors are updated on the

basis of the weight variation vector. Using the exact

method is the result of data level parallelism. In the

next part of our research we will explain parallel

approach implementation of the problem.

Figure 5. Descent path to the minimum of a parabolid.

4.2 ANN Parallel Approach

ANN face recognition system consists of two

parts as “learning” and “recognition”. At the

learning part, several images of one person will be

given, and the system will be trained with the help

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

245

of supervisor returning the identification of the

given person in the image. At the recognition part,

one image will be shown to the camera, and the

system will try to find to whom the image belongs.

Figure 6 illustrates the block scheme of the

CUDA based on parallel processing face

recognition.

Figure 6. ANN Organization on CUDA

There are two data storages - the one used for

storing the weights that are generated during the

training stage of the network and the second one

used for storing the face images of people who

must be recognized. The face recognition algorithm

uses a database of 10,000 face images taken from

500 people. In the next part we discuss the results

of face recognition and CUDA based parallel

processed face recognition.

5. EXPERIMENT RESULTS AND

DISCUSSION

A face recognition system generally involves two

main stages: face detection and face identification.

In the face detection stage, the system searches for

any faces. Then, it takes an image of the face.

Following this, image processing cleans up the

facial image into black-white colors. During the

detection process, a common feature for face

detection is a set of adjacent rectangles that lie

above the eye and the cheek area. The position of

these rectangles is defined relative to a detection

window that acts like a bounding box to the target

object. In our paper, a face can be detected from

several foreshortenings. Implemented results are

shown in Figure 7.

Figure 7. Face detection from several foreshortenings.

After detecting a face, the feature extraction and

verification process is performed as a second step.

After face recognition, the detected and processed

facial image is compared to a database of faces to

decide who that person is. Figure 8 illustrates face

recognition process. Face recognition occurs by

determining id of the recognized person.

Figure 8. Face recognition process.

5.1. Results

All the benchmarks consist of 2,000 training

iterations. Each training iteration include one

forward and one backpropagation and the variation

of weights. To test the behavior of the system, we

used one iteration for a pattern. So, the number of

input patterns was 2,000.

To train, we use 10,000 face images from 500

people (there, 1,000 of them are frontal images, the

others are the images with some angles), and the

system was run in the serial and parallel version.

For diversity we take the face images with different

emotions such as smile, surprise, sadness, anger,

and laugh. Table 2 gives information about

characteristics of face images that were used in the

experimental part of the research.

Table 2. Characteristics of the images in the database.

Item Number of images

Face images 10 000

Multiple face images 500

Frontal face images 1 000

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

246

5.1.1. Execution Times

In this section, we report and discuss the execution

time of operations and the results of the GPU

implementing of the proposed SIMD

backpropagation algorithm and face compare in

face recognition rates in consequently and parallel

execution.

5.1.2. Compare sequential and parallel

training

Sequential execution time will be solved by next

formula:

321)(tIttt sequential +∗+= (26)

Where, 1t , 2t , 3t are time of forward pass, time of

backward pass for training picture, and time for

updating the weights respectively. I is number of

images.

Parallel execution time will be solved using next

formula:

{ } 3_2_1_ parallelparallelparallelparallel t
n

I
ttt +

∗+=

 (27)

Where,
1_parallelt ,

2_parallelt ,
3_parallelt are time of

forward pass, time of backward pass for training

picture, and time for updating the weights

respectively, n is number of nodes.

Speedup ratio will be solved by using formula (8)

parallel

sequential

t

t
speedup = (28)

Where,
sequentialt and

parallelt are time spent to

forward pass, and backward propagation for

training picture, respectively.

Efficiency will find from dividing speed up ration

to number of nodes:

n

speedup
efficiency = (29)

5.1.3. Execution time analysis

This subsection compares sequential and parallel

execution times (in seconds) and analyses

performance results of the algorithm for GPU.

Table 3 and Figure 9 report the average execution

times for sequential and parallel implementation,

and speedup value.

 Table 3. Execution times comparing sequential and

parallel execution

image size sequential

execution

time

(second)

parallel

execution

time

(second)

speedup

value

30x40 49 54 0.907

60x80 492 185 2.65

90x120 2334 736 3.17

120x160 3109 543 5,72

Figure 9. Sequential and parallel execution time

comparison.

5.1.4. Speedup analysis

Figure 10 illustrates speedup changes for 30x40 and

120x160 size images when number of input

neurons from 8 until 1024. It is clearly seen that,

when the size of input neurons grow, parallel

training gives great advantage.

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

247

Figure 10. Speedup Analysis depending on hidden

neurons.

AUTHOR CONTRIBUTIONS

B.S. Omarov provided ANN training, Parallel

Backpropagation algorithms; performed the

experiments with parallel and serial face

recognition, and explored face detection and

recognition algorithms. Also, these results are part

of contributions towards his PhD work at Universiti

Tenaga Nasional by supervising Azizah Suliman

who wrote the outline of the article and guided the

direction of our paper, and advised the proof

method of the simulation and experimental results.

Kaisar Kushibar provided experiments with image

processing.

All authors provided substantive comments.

Conflict of interests

The authors declare that there is no conflict of

interests regarding the publication of this article.

Acknowledgement

This publication is funded by Malaysian’s

Ministry of Education (MOE) through the LRGS

fund (01201303LRGS).

6. CONCLUSION

We propose the improvement of face

recognition using neural network and parallel

computing through GPU. The system was described

in terms of the mathematical model and neural

network algorithms to develop recognition rate and

speed up. Therefore, our simulation results confirm

the effectiveness of our approach and demonstrate

increase in face recognition rate owing to neural

network training and fast processing time that is

achieved by virtue of GPU CUDA parallelism.

In addition, tackling the problem of fast multiple

face recognition is planned by using GPU CUDA

and neural network techniques.

Back-propagation is an iterative, gradient search,

supervised algorithm which can be viewed as

multiplayer non-linear method that can re-code its

input space in the hidden layers and thereby solve

hard learning problems. The network is trained

using ANN technique until a good agreement

between predicted gain settings and actual gains is

reached.

During last three decades, the assessment of

potential of the sustainable eco-friendly alternative

sources and refinement in technology has taken

place to a stage so that economical and reliable

power can be produced. Different renewable

sources are available at different geographical

locations close to loads, therefore, the latest trend is

to have distributed or dispersed power system.

Examples of such systems are wind-diesel, wind-

diesel-micro-hydro-system with or without

multiplicity of generation to meet the load demand.

These systems are known as hybrid power systems.

To have automatic reactive load voltage control

SVC device have been considered. The multi-layer

feed-forward ANN toolbox of MATLAB 6.5 with

the error back-propagation training method is

employed.

REFRENCES:

 [1] Ng, C., Savvides, M. and Khosla, P.: Real-time

face verification system on a cell-phone using

advanced correlation filters, Proc. of 4th IEEE

Workshop on Automatic Identifica-tion

Advanced Technologies, pp. 57–62. IEEE 2005

[2] Venkataramani, K., Qidwai, S. and Vijayakumar,

B.: Face authentication from cell phone camera

images with illumination and temporal

variations, IEEE Trans. on Systems, Man, and

Cybernetics, Part C, vol. 35, pp. 411 – 418.

IEEE 2005

[3] Mitchell, Tom: Machine Learning. McGraw Hill

1997

Journal of Theoretical and Applied Information Technology
 30

th
September 2016. Vol.91. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

248

[4] Rumelhart, D., Widrow, B. and Lehr, M.: The

basic ideas in neural networks, Communica-

tions of the ACM, 37(3) pp. 87-92. ACM 1994

[5] Juan Pablo Balarini, Martín Rodríguez, and

Sergio Nesmachnow Centro de Cálculo,

Facultad de Ingeniería. Facial Recognition

Using Neural Networks over GPGPU.

Universidad de la República, Uruguay 2012

[6] U. Seiffert, Artificial neural networks on

massively parallel computer hardware,

Neurocomputing 57 (2004) 135–150, new

Aspects in Neurocomputing: 10th European

Symposium on Artificial Neural Networks

2002.

[7] E. Lindholm, J. Nickolls, S. Oberman, J.

Montrym, NVIDIA Tesla: A Unified Graphics

and Computing Architecture, IEEE Micro 28

(2008) 39–55.

[8] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S.

Stone, D. B. Kirk,W.-m.W. Hwu, Optimization

principles and application performance

evaluation of a multithreaded GPU using

CUDA, in: Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and

practice of parallel programming, PPoPP ’08,

ACM, New York, NY, USA, 2008, pp. 73–82.

[9] J. Nickolls, I. Buck, M. Garland, K. Skadron,

Scalable Parallel Programming with CUDA,

Queue - GPU Computing 6 (2008) 40–53.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W.

Sheaffer, K. Skadron, A performance study of

general-purpose applications on graphics

processors using CUDA, Journal of Parallel and

Distributed Computing 68 (10) (2008) 1370–

1380, general-Purpose Processing using

Graphics Processing Units. doi:DOI:

10.1016/j.jpdc.2008.05.014.

[11] H. Jang, A. Park, K. Jung, Neural Network

Implementation Using CUDA and OpenMP,

Digital Image Computing: Techniques and

Applications 0 (2008) 155–161.

[12] Sierra-Canto, Xavier, Madera-Ramirez,

Francisco, V. Uc-Cetina, Parallel training of a

back-propagation neural network using cuda, in:

Proceedings of the 2010 Ninth International

Conference on Machine Learning and

Applications, ICMLA ’10, IEEE Computer

Society, Washington, DC, USA, 2010, pp. 307–

312. doi:10.1109/ICMLA.2010.52. URL

http://dx.doi.org/10.1109/ICMLA.2010.52

[13] S. Lahabar, P. Agrawal, P. J. Narayanan, High

performance pattern recognition on gpu, in:

National Conference on Computer Vision,

Pattern Recognition, Image Processing and

Graphics (NCVPRIPG’08), 2008, pp. 154–159.

URL

http://cvit.iiit.ac.in/papers/Sheetal08High.pdf

[14] M. Pethick, M. Liddle, P.Werstein, Z. Huang,

Parallelization of a backpropagation neural

network on a cluster computer, in: International

conference on parallel and distributed

computing and systems (PDCS 2003), 2003

