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ABSTRACT 

 

Face detection and recognition is the main aspect for different important areas such as video surveillance, 

biometrics, interactive game applications, human computer interaction and access control systems. These 

systems require fast real time detection and recognition with high recognition rate. In this paper we propose 

implementation of the Artificial Neural Network by using high performance computing architecture based 

on Graphics Processing Unit to get face recognition with high accuracy and more speedup. There, we 

consider a parallel training approach for backpropagation algorithm for face recognition. For the high 

performance of face recognition it was used Compute Unified Device Architecture (CUDA) on a GPU.  

The experimental results demonstrate a significant decrease on executing times and greater speedup than 

serial implementation. 

Keywords: Artificial Neural Networks, CUDA, Face recognition, GPU, Parallel Computing.  

 

1. INTRODUCTION  

 

Nowadays, Face detection and recognition has 

become far-famed area of image processing and 

analysis and computer vision research. Mainly we 

meet such kind of systems everywhere, for 

example, security systems, social networks, smart 

phones, etc. [1, 2].  Using and image facial 

recognition algorithms are proposed to estimate and 

give decision on where that face is located. In own 

case, according to the direction each image is 

classified into several classes as left, right, up and 

straight.   

For some types of such kind of problems using 

an artificial neural network (ANN) will be one of 

the most effective methods [3]. In addition, 

Backpropagation algorithm will serve one of the 

top ones of commonly used algorithms for ANN 

learning technique. In this case, backpropagation 

algorithm is built of parties of interconnected 

neurons, where each unit has real-valued inputs and 

returns a single real-valued output.  It is commonly 

used ANN learning method, which is suitable for 

tasks where the learning target function is defined 

over specimen that can be described by a 

predefined features vector or vector of pixel values. 

Also, output result may be real-valued, discrete-

valued or vector of real and discrete valued 

attributes. Furthermore, training examples may 

contain some errors and fact assessment of the 

learned function may be required. All these factors 

make ANN an effective method in image 

recognition problem. Some research of particular 

application meets on [4, 5].   

One of the main difficulties of ANN is the 

significant amount of time needed in the training 

phase performance to solve complex problems. 

Depending on grow of number of hidden layers and 

neurons, the required time to ANN learning process 

and new instance assessment time grows by leaps 

and bounds. On the other hand, the rate of 

successful classification depends on growing of 

number of hidden layer and neurons. So, in general, 

the more training instances the network is 

guaranteed, the more effective result can be 

achieved. Thus, it is very important to carry out 

training with a considerable number of neurons in 

the hidden layer and with a large number of training 

examples, and with spending relatively low training 

time.  
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The statement that each layer makes its own 

calculation independently from other neurons leads 

us to any layer parallel calculations which can take 

place, and a parallel architecture which can be used 

for this purpose.  

1.1. Motivation  

Nowadays, facial recognition is an active and 

actual research area. This is composed by multiple 

areas as computer vision, pattern recognition, 

image processing, artificial intelligence, artificial 

neural networks and computer architectures. There 

are many applications that use face recognition for 

security goals as access control or security systems. 

The system gives good results, mainly when the 

fingerprint system cannot be used to the recognition 

goal.  

In spite of the reliable methods of identification 

systems such as fingerprinting or iris scanning, 

facial recognition is attractive because of the 

friendly properties used.   

It is clearly seen that, there are many challenges 

on facial recognition problem which are related to 

reliability and calculative cost, and time cost of the 

technique. The main goal of the research is 

improving face recognition using artificial neural 

network, productivity increasing via the use of 

large-scale parallel data processing, reached by the 

implementation of artificial neural network 

architecture based on Graphic processing unit.  

2. RELATED WORKS 

With the development of new technologies we 

have multi-core processors and graphic processing 

units (GPU) with significant power in our desktop 

and servers, available to everyone. Using parallel 

computing techniques for artificial neural network 

and deep learning has become a budding research 

area by using current modern hardware.  

In [6] authors gives a research survey of the state 

of the art parallel computer hardware from the 

perspective of a neural networks user focusing on 

the performance of ANN on  affordable parallel 

computer hardware such as clusters, multi-core 

processor machines, workstations and PCs.  

Lindholm et al. [7] and Ryoo et al. [8] consider 

GPU-related problems concerning conventional 

parallel programs. They study NVIFIA’s Tesla 

unified graphics and  

They study developing parallel programs on the 

basis on CUDA programming API that can be 

performed based on NVIDIA’s Tesla unified 

graphics and NVIDIA GPUs computing 

architecture. In their research, they consider CUDA 

as an extension of C/C++ programming language 

that developers writing programs call cores. Cores 

are carried into effect in parallel through a set of 

threads. Also, they discuss some other approaches 

concerning to GPU as OpenCL, PGI Accelerator 

and Brook.   

Nickolls et al. [9] and Che et al. [10] treat with 

CPU based parallel calculation approaches as MPI 

(Message Passing Interface), OpenMP or Pthreads. 

Most of the works have to deal with CPU and GPU 

based parallel computing on a very common level 

only and not providing an applicable assessment 

scenario for a specific target.  

Jang et al. [11] deals with Multi-Layer 

Perceptron based (MLP) text detection algorithm 

performed in OpenMP and CUDA. They tried to 

simplify the algorithm for all users, even for those 

users who do not have very good knowledge about 

programming on GPU. They consider that MLP 

consists of one input layer and one output layer, 

also one or more hidden layers. A difficulty of their 

scheme is describing a short assessment section. In 

contrast, our research based on Backpropagation 

algorithm and focuses more specifically on the 

assessment details. The authors also examined 

improvements relating the computation times of 

their application from using parallelization.  

Xavier et al. [12] deal with parallel training of 

Backpropagation using CUDA impleemtation of 

Basic Linear Algebra Subprogram. They compared 

implementation on classical CPU and CUDA 

variation of hidden neurons and comparing the 

performance of CPU and GPU execution.  

Shetal et al. [13] compare CPU in Matlab and 

GPU implementation for pattern recognition 

algorithm, concretely, recognize hand written 

digits.  

Summarizing, in our research we examine multi-

core versus GPU using parallel computing, on the 

other hand our work priorities neural network face 
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recognition problem using Backpropagation 

paradigm by giving specific parameters.  

Many methods can be found using parallel 

computing of neural networks that have been 

implemented on different architectures. For 

instance, Pethrick et al. [14] described several 

approaches for neural network training. In [15] 

describes the different parallelization levels of 

neural network. Also, [16] divided Data Parallel 

category to two types as Structural data parallel 

category and Topological data parallel category.  

This research work focuses on machine learning, 

parallel computing with high performance, using 

GPU computing, as it implements algorithm that 

considerably improves ANN training time as 

contrasted a sequential face recognition algorithm.  

Summing up, in our work on the one hand we 

analyze the multi-core versus GPU performance 

gains by parallelization, but on the other hand we 

also analyze the application behavior of neural 

network face recognition by a sweep of problem 

specific parameters. In addition, in our research we 

implement and run a different number of hidden 

neurons and cores for processing. 

3. GPU ARCHITECTURE AND CUDA 

PROGRAMMING MODEL 

GPUs were designed to perform graphic 

processes on computers. Nowadays, they have large 

computing power afforded by thousands of 

processing units that support fast clock speeds. In 

the last decade GPUs have been used to solve 

complicated tasks owing to high-power parallel 

hardware architecture.  

Graphic processors have a huge computation 

capacity for parallel computing of Image rendering 

issue. CUDA has C based programming model 

ensure easy implement in all-purpose computation.   

GPU’s programmable units are a multiple 

processor that consists of a set of a single program 

multiple-data (SIMD) processor. For greater 

efficiency, GPU processes elements that are called 

vertices or fragments are used parallel in the 

identical program. Each element is not dependent 

on the others, and in programming model elements 

cannot interrelate with each other. GPU programs 

structure follows this method: each element is 

processed parallel by an individual program.  

Figure 1 illustrates a CUDA programming and 

memory model that is based on a parallel compute 

block called grid. There, an overlook of the threads 

running inside the device structure is given. It can 

be seen as parting of host hardware CPU and GPU 

device, that thread processing organized in blocks 

is separated into grids of the processing. There, 

kernels have different grid parameters as its 

dimensionality. As Figure 1 illustrates, the size of 

blocks and grid of kernel 1 is different from the one 

used by kernel 2.  

 

Figure 1. CUDA Programming model (courtesy: 

NVIDIA) 

3.1. CUDA Memory Model 

CUDA memory model access rules are given in 

Figure 2, the detailed explanation is given in Table 

1. CUDA architecture is constructed by a scalable 

array of multi-processors, with each of them having 

eight scalar processors, a shared memory chip, and 

a multithreading unit. Multiprocessor creates and 

manages, also executes parallel threads with 

diminished cost. The threads are constructed 

blocks, which are run in a single multiprocessor. In 

own case, blocks are constructed grids.  
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Figure 2. CUDA Memory Model 

Program in CUDA calls a grid, and it will be run 

in the GPU. Blocks are numbered and spread to 

available multiprocessors. Threads run into the 

device and have access to memory inside the 

device. Threads have access to registers and the 

memory for reading and writing sing memory 

spaces as a shared memory, a local memory, and a 

global memory. A shared memory used by the 

threads, the local memory of the thread, and the 

global memory of the GPU.  Blocks have access to 

shared memory for reading and writing. Constant 

and textures memories can be accessed by the grid 

for reading only. 

Table 1. Memory Model Access Rules 

Memory space When 

accessed 

Rule 

Register By thread Read/Write 

Local By thread Read/Write 

Shared By block Read/Write 

Global By grid Read/Write 

Constant By grid Read Only 

Texture By grid Read Only 
 

4. FACE RECOGNITION USING 

ARTIFICIAL NEURAL NETWORKS IN 

GPU 

4.1 Mathematical Model and Methods  

Program in CUDA calls a grid, and it will be run 

in the GPU  

ANN provides a commonly practical method for 

supervised learning and unsupervised learning 

functions from given samples. There we use real 

valued, discrete valued, and vector valued 

functions. There are some algorithms that allow 

attuning network parameters to find the best fit 

training set of input and output parameters. ANN is 

stable to errors of training data and able to be 

successfully applied to issues as image processing, 

speech recognition, and image recognition [3].  

 

Figure 3. ANN’s schema 

Figure 3 illustrates general structure of an ANN. 

ANN work with a set of neurons that connected 

with each other. Each neuron receives input data, 

fulfill some linear combinations and return the 

result, which is the assessment of some function f 

for the value x=a.  

The first step is to modify the backpropagation 

algorithm so that it can be implemented in a SIMD 

fashion. In backpropagation algorithm, input 

patterns are presented to the neural network. Based 

on the input pattern the network calculates an 

output pattern. After that the output is compared 

with a desired pattern, and an error vector is 

calculated. The computed error will be 

backpropagated by the network. Based on the error 

amount on each connection, the weights of the 

network are changed. After, the network receives 

next pattern, and the previous procedure is 

repeated. In the parallel version of the 

backpropagation, the weights will be stored instead 

of changing after each template. After the first 

calculation in several threads, the stored weights 

are added, and then the weights are updated, 

depending on the change of total weight are 

computed.   
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Let, consider a network which with n output to 

solve the task with p training patterns. Parallel 

backpropagation algorithm tries to find a mean 

squared error for one training. The weights are 

updated as (1) and (2) formulas.  
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Where, 
p

ndes  is the desired output and 
p

ndes  is 

the actual output of the n-th output neuron for the 

p-th training pattern, 
ijjk w∆∆ ,ϑ  are the first and 

second stage weights, p  is enough small step size, 

p

ki  and 
p

jx  are the k-th and j-th input values to the 

first and second stages respectively.  

As we concerned before, the network compute 

the weight changes owing to all training patterns, 

also, add them up, after, update the weights on the 

basis of the variation of the total weight gather over 

the full sweep. In the consistent implementation, 

weight update is committed after each training. So, 

in the consistent implementation, the weight 

changes are calculated as following (3) and (4) 

formulas.  
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This approach works very slowly in the series 

implementation. However, using the SIMD 

backpropagation approach allows parallelization in 

the data level. Each network calculates a weight 

variation vector of the entire network parallel at the 

same time.  After that, the weight vector of the 

network is updated on the basis of the total weight 

variation vector. So, owing to parallelization we 

will achieve more speed. In the next part of our 

research, we will explain SIMD backpropagation 

approach. 

4.1. Simulation of Backpropagation algorithm in 

parallel architecture 

The main concept of Backpropagation simulation 

in parallel architecture is the multi layer perceptron. 

In other words, it is a layered neural network with a 

different number of hidden layers. Specially, each 

neuron is associated with each layer neuron of an 

adjacent layer. For supervised learning we use the 

Backpropagation algorithm. It is a gradient descent 

method to determine combination of weights 

between layers for comparison input and given 

output values. Feedforward assessment is defined 

by (5) propagation function.  

jiij wtOnet ,)( ∗=∑    (5) 

Where, 
jiw ,
 is represent the connection weights 

and iO  is the output value of the neuron. Ratio of 

input, adjacent and output layers is defined by the 

following equation system, where input, output, 

hidden are input value, hidden layer’s vector, and 

output vector.  
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Also, 1w  is the weight matrix between the input 

and hidden layers, and 2w  is the weight matrix 

between hidden and output layers. The activation 

function is represented by the sigmoid function (7).  
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Also, we use traditional formulas as (4) to learn 

backpropagation algorithm. 
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Where, 
1

ijw∆ and 
2

ijw  is the weight value of 

1w and 2w matrixes respectively. 

Figure 4 illustrates a schema for single neuron. In 

the first place, a linear combination of input data 

will be made.  
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Figure 4. Schema of single neuron of ANN 

Next, we will find the difference between errors 

of serial and parallel version of backpropagation 

algorithm. The total mean squared error for a 

network with n output neurons for a problem with p 

training patterns is as following: 
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Next, we consider weight variation between 

hidden layer and output layer. The received results 

can be readily generalized to more than one hidden 

layer in the case of neural network consists of 

several hidden layers.  Even, there is no hidden 

layer then the hidden layer will be the same as the 

input layer. Based on the chain rule, we can 

determine the rate of error change regarding to 
ijw  

as the following formula: 
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We consider a sigmoidal activation function as 

xe
y λ−+
=

1

1
, more precisely it will be in the 

following form:  
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Where, M is the number of hidden neurons, 
p

jx  

is the output value of the j-th hidden neuron. And, 

we get 
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Using formulas (10), (11) in equation (14) we get  
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Using gradient descent method, the weight 

variation  for 
ijw  we find 

∑
=

−−−=∆
P

p

p

i

p

i

p

i

p

i

p

jij actdesactactx
P

w
1

))(1(
ρ

  (16) 

Where p is the step size small constant number.  

Now, let’s consider 
jkν  as the weight connect 

between k-th input and j-th hidden neurons, and we 

get  
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Where, 
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p

jx  is the output of the j-th hidden neuron for p-

th training pattern, K is the number of input 

neurons, 
p

kj  is the k-th bit of the p-th training 

pattern. Using the chain rule one more time, we 

find 
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Sharp descent weight change is 
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The network computes the weight variation  by 

reason of all the training patterns, and adds them 

together, after update the weights on the basis on 

the total weight variation gathered over the whole 

sweep. In the consistent implementation, the weight 

renewal is fulfilled after each training pattern. So, 

using (16) and (23), the weight variation  are 

calculated as the following formulas:  
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Figure 5 illustrates descent steps got by moving 

to the inferior limit of a paraboloid using exact and 

approximate version of gradient descent algorithm. 

The SIMD backpropagation method uses the exact 

algorithm because of it uses parallelism of data 

level. Each network calculates a vector of weight 

changes for all weights in the given network on the 

basis on the given training pattern. After 

completing the sweep weight variation vectors will 

be added up and weight vectors are updated on the 

basis of the weight variation vector. Using the exact 

method is the result of data level parallelism. In the 

next part of our research we will explain parallel 

approach implementation of the problem.  

 

Figure 5. Descent path to the minimum of a parabolid. 

4.2 ANN Parallel Approach  

ANN face recognition system consists of two 

parts as “learning” and “recognition”. At the 

learning part, several images of one person will be 

given, and the system will be trained with the help 
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of supervisor returning the identification of the 

given person in the image. At the recognition part, 

one image will be shown to the camera, and the 

system will try to find to whom the image belongs.  

Figure 6 illustrates the block scheme of the 

CUDA based on parallel processing face 

recognition.  

 

Figure 6. ANN Organization on CUDA 

There are two data storages - the one used for 

storing the weights that are generated during the 

training stage of the network and the second one 

used for storing the face images of people who 

must be recognized. The face recognition algorithm 

uses a database of 10,000 face images taken from 

500 people. In the next part we discuss the results 

of face recognition and CUDA based parallel 

processed face recognition.  

5. EXPERIMENT RESULTS AND 

DISCUSSION 

A face recognition system generally involves two 

main stages: face detection and face identification. 

In the face detection stage, the system searches for 

any faces. Then, it takes an image of the face. 

Following this, image processing cleans up the 

facial image into black-white colors. During the 

detection process, a common feature for face 

detection is a set of adjacent rectangles that lie 

above the eye and the cheek area. The position of 

these rectangles is defined relative to a detection 

window that acts like a bounding box to the target 

object. In our paper, a face can be detected from 

several foreshortenings. Implemented results are 

shown in Figure 7.  

 

Figure 7. Face detection from several foreshortenings. 

After detecting a face, the feature extraction and 

verification process is performed as a second step. 

After face recognition, the detected and processed 

facial image is compared to a database of faces to 

decide who that person is. Figure 8 illustrates face 

recognition process. Face recognition occurs by 

determining id of the recognized person.  

 

Figure 8. Face recognition process. 

5.1. Results 

All the benchmarks consist of 2,000 training 

iterations. Each training iteration include one 

forward and one backpropagation and the variation 

of weights.  To test the behavior of the system, we 

used one iteration for a pattern. So, the number of 

input patterns was 2,000.  

To train, we use 10,000 face images from 500 

people (there, 1,000 of them are frontal images, the 

others are the images with some angles), and the 

system was run in the serial and parallel version. 

For diversity we take the face images with different 

emotions such as smile, surprise, sadness, anger, 

and laugh. Table 2 gives information about 

characteristics of face images that were used in the 

experimental part of the research.   

Table 2. Characteristics of the images in the database.  

Item Number of images 

Face images 10 000 

Multiple face images 500 

Frontal face images 1 000 
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5.1.1. Execution Times 

In this section, we report and discuss the execution 

time of operations and the results of the GPU 

implementing of the proposed SIMD 

backpropagation algorithm and face compare in 

face recognition rates in consequently and parallel 

execution.  

5.1.2. Compare sequential and parallel 

training  

Sequential execution time will be solved by next 

formula: 

321 )( tIttt sequential +∗+=  (26) 

Where, 1t , 2t , 3t  are time of forward pass, time of 

backward pass for training picture, and time for 

updating the weights respectively. I is number of 

images.  

Parallel execution time will be solved using next 

formula: 

{ } 3_2_1_ parallelparallelparallelparallel t
n

I
ttt +







∗+=

 (27) 

Where, 
1_parallelt , 

2_parallelt , 
3_parallelt  are time of 

forward pass, time of backward pass for training 

picture, and time for updating the weights 

respectively, n is number of nodes.  

Speedup ratio will be solved by using formula (8) 

parallel

sequential

t

t
speedup =  (28) 

Where, 
sequentialt and 

parallelt  are time spent to 

forward pass, and backward propagation for 

training picture, respectively.  

Efficiency will find from dividing speed up ration 

to number of nodes:  

n

speedup
efficiency =   (29) 

5.1.3. Execution time analysis 

This subsection compares sequential and parallel 

execution times (in seconds) and analyses 

performance results of the algorithm for GPU. 

Table 3 and Figure 9 report the average execution 

times for sequential and parallel implementation, 

and speedup value. 

 Table 3. Execution times comparing sequential and 

parallel execution 

image size sequential 

execution 

time 

(second) 

parallel 

execution 

time 

(second) 

speedup 

value 

30x40 49 54 0.907 

60x80 492 185 2.65 

90x120 2334 736 3.17 

120x160 3109 543 5,72 

 

 

Figure 9. Sequential and parallel execution time 

comparison. 

5.1.4. Speedup analysis  

Figure 10 illustrates speedup changes for 30x40 and 

120x160 size images when number of input 

neurons from 8 until 1024. It is clearly seen that, 

when the size of input neurons grow, parallel 

training gives great advantage. 
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Figure 10. Speedup Analysis depending on hidden 

neurons. 
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6. CONCLUSION 

We propose the improvement of face 

recognition using neural network and parallel 

computing through GPU. The system was described 

in terms of the mathematical model and neural 

network algorithms to develop recognition rate and 

speed up.  Therefore, our simulation results confirm 

the effectiveness of our approach and demonstrate 

increase in face recognition rate owing to neural 

network training and fast processing time that is 

achieved by virtue of GPU CUDA parallelism.    

In addition, tackling the problem of fast multiple 

face recognition is planned by using GPU CUDA 

and neural network techniques. 

Back-propagation is an iterative, gradient search, 

supervised algorithm which can be viewed as 

multiplayer non-linear method that can re-code its 

input space in the hidden layers and thereby solve 

hard learning problems. The network is trained 

using ANN technique until a good agreement 

between predicted gain settings and actual gains is 

reached.  

During last three decades, the assessment of 

potential of the sustainable eco-friendly alternative 

sources and refinement in technology has taken 

place to a stage so that economical and reliable 

power can be produced. Different renewable 

sources are available at different geographical 

locations close to loads, therefore, the latest trend is 

to have distributed or dispersed power system. 

Examples of such systems are wind-diesel, wind-

diesel-micro-hydro-system with or without 

multiplicity of generation to meet the load demand. 

These systems are known as hybrid power systems. 

To have automatic reactive load voltage control 

SVC device have been considered. The multi-layer 

feed-forward ANN toolbox of MATLAB 6.5 with 

the error back-propagation training method is 

employed. 
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