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ABSTRACT 

 

In this paper, the optimal control problem for switched discrete nonlinear systems, using Control Lyapunov 

Function with adjusted parameter, is studied to minimize the performance criterion. Two main stages are 

proposed, the first one is to find the optimal control of discrete systems using Control Lyapunov Function 

(CLF) and a speed gradient algorithm; whereas the second stage consists in applying the Particle swarm  

approach in order to come up with the optimal switching instants between the sub-systems. 
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1. INTRODUCTION  

 

Switched systems constitute a particular class of 

complex systems that contain several subsystems 

and switching laws orchestrating the active 

subsystem at each time instant [1-3]. The control of 

such systems leads to a great energy consumption 

principally made at switching times. For this 

reason, we are interested in the optimal control 

problems of the switched systems which are 

considered as one of the most challenging classes. 

Many researches treated the optimal control of 

linear switched systems in the continuous case [3-7] 

as well as in the discrete one [8-10]. Generally, the 

optimal command of such systems returns to solve 

the Algebraic Riccati Equation (ARE) either in the 

continuous time or in the discrete time (DARE). 

Compared to the linear switched systems, the 

optimal control of nonlinear switched systems is 

rarely studied. In fact, some researchers have dealt 

with the optimal control of nonlinear switched 

systems in the continuous case using the 

Hamiltonien-Jacobi-Bellman (HJB) to find the 

optimal input control and a metaheuristic algorithm, 

and to get the optimal switching instants  [1,11]. 

The command of the discrete case is still difficult 

and limited. In fact, few researchers treated this 

case [12,13] using approximation, adaptive 

dynamic programming. Sakly et al.,  treated in 

[14,15] this issue using Control Lyaponuv function 

with a fixe parameter and a metaheurstic algorithm. 

In this paper we add the speed gradient algorithm  

to obtain an adjusted parameter which let us to 

overcome the problem of choosing the right fixe 

parameter wish lead to obtaining the needed CLF 

[14,15].  

In fact, to avoid the resolution of discrete HJB 

equations whish seems inappropriate in the 

nonlinear discrete optimization, our technique uses 

the inverse optimal control via CLF in a quadratic 

form. In order to achieve stabilization, this method 

depends not only on the optimal input control of 

each sub-system, but also on an adjusted parameter 

by means of the speed-gradient algorithm. After 

that, the discrete particle swarm algorithm [16,17] 

is applied to find the global minimum of the 

switching instants sequence of the discrete main 

system.  

This paper is organized as follows: firstly, we 

start by an introduction to the optimal control of 

switched systems. In the second section, we 

formulate the problematic and we present our 

method based on inverse optimal control using CLF 

with adjusted parameter as a solution for nonlinear 

discrete systems optimization. In the third part, we 

present a metaheuristic approach based on Discrete 

particle swarm optimization DPSO algorithm wish 

is used to find the optimal switching's instants 

between subsystems . Afterwards, numerical 



Journal of Theoretical and Applied Information Technology 
 30

th 
September 2016. Vol.91. No.2 

 © 2005 - 2016 JATIT & LLS. All rights reserved.   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
365 

 

example is given, and we finalize with a 

conclusion. 

2. INVERSE DISCRETE TIME OPTIMAL 

CONTROL SYSTEMS VIA CLF USING 

SPEED GRADIENT ALGORITHM 

2.1 Discrete Switched System   

We consider the switched discrete system 

described by the following subsystems: 

( ) ( )( ) ( )( ) ( )1
i i

x k f x k g x k u k+ = +
         

(1) 

 : Xif IR→ , { }1,2,...,i I M∈ =              (2) 

: Xig IR→ , { }1,2,...,i I M∈ =
             

(3) 

where ( )x k  is the discrete state space vector, 
i

f  

and 
i

g  are an indexed fields of vectors, and l  is a 

set of finite discrete variables, which indicates that 

the system will be in M  configurations.  

We need to choose an input and a switching 

sequence to control a switched discrete system. 

Actually, a switching sequence in  [ ]0, fn N N∈
 

regulates the sequence of active subsystems. It is 

defined as follows: 

( ) ( ) ( ) ( )( )0 0 1 1, , , ,..., , ,..., ,k k K Kn i n i n i n iσ =      (4) 

with 0 K≤ ≤ ∞ ,
0 1 ... k KN n n N≤ ≤ ≤ ≤ , and 

k
i I∈  

for 0,1,...,k K= . It is worth-noting that ( ),k kn i  

indicates that, at 
kn , the system switches from 

subsystem 
1ki −  

to sub-system
ki . 

2.2 Inverse optimization with CLF 

Many searcher tried to solve the discrete form 

of HJB equation [12, 18, 19,20], but this issue is 

not straightforward and still presents one of the 

main drawbacks of discrete-time optimal control 

for nonlinear systems [21, 22]. To overcome this 

problem, we propose to use inverse optimal control 

with CLF. In [14, 15] we introduced the uses of 

CLF with a fixe supposed parameter, in this paper 

we introduce the speed gradient algorithm wish 

generate an adjusted parameter leading to obtain the 

needed CLF.  

Let us consider the affine discrete time nonlinear 

systems presented in [14,15]. 

( ) ( )1k k k kx f x g x u+ = + ,with ( )0 0x x=            (5) 

where n

kx IR∈
 

is the state of system at 

time { }0,1, 2,...,k ∈ ∞ , m

ku IR∈ is the input, 

: n nf IR IR→
 

and : n nxmg IR IR→
 

are smooth 

mappings, ( )0 0f =  and ( ) 0kg x ≠
 
for all 0

k
x ≠ . 

For the presented system, it is desired to 

determinate a control law ( )k ku u x=
 

which 

minimizes the following cost functional:  

( ) ( )( )T

k n n n

n k

V x l x u Ru
∞

=

= +∑    

               

(6) 

where : nV IR IR+→  presents the performance 

measure, : nl IR IR+→ denotes a positive semi-

definite function weighting the performance of the 

state vector 
kx ,

 
and : n mxmR IR IR→  is a real 

symmetric and positive definite matrix weighting 

the control effort expenditure. The entries of R may 

be functions of the system state in order to vary the 

weighting on control effort according to the state 

value. 

Consequently, equation (6) can be rewritten as 

follows: 

( ) ( ) ( )1

T

k k k k k
V x l x u Ru V x += + +         (7) 

where 

( ) ( )( )1

1

T

k n n n

n k

V x l x u Ru
∞

+
= +

= +∑             (8) 

with the boundary condition ( )0V , ( )kV x
 

becomes a Lyapunov function. 

From Bellman’s optimality principle, we know that, 

for the infinite horizon optimization case, the value 

function ( )kV x
 

becomes time invariant and 

satisfies the discrete time Bellman equation solved 

backward in time. 

( ) ( ) ( ){ }1
min

k

T

k u k k k k
V x l x u Ru V x += + +

       
(9) 

In order to determine the conditions that the 

optimal control law must satisfy, we must define 

the discrete-time Hamiltonian ( ),k kx uh as:  

( ) ( ) ( ) ( )1,
T

k k k k k k kx u l x u Ru V x V x+= + + −h
    

 
 
(10) 

which is used to obtain control law ku  by 

calculating ( )min ,
ku k kx uh . The value of ku , 

which leads to the desired minimum, is a feedback 

control law denoted as ( )k ku u x= . Then, 

( ) ( )( )min , ,
ku k k k kx u x u x=h h . 

This optimal control law must satisfy the necessary 

condition below: 

( )( ), 0
k k

x u x =h  
                   

(11) 

where ( )ku x
 

is obtained by calculating the 

gradient of the right-hand side with respect to ku  

( )1
0 2

k

k

k

V x
Ru

u

+∂
= +

∂
              

 

(12) 
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( ) ( )1

1

0 2
kT

k k

k

V x
Ru g x

x

+

+

∂
= +

∂
           

 

(13) 

As a result, the optimal control law is presented in 

the equation below: 

( ) ( ) ( )1* 1

1

1

2

kT

k k k

k

V x
u u x R g x

x

+−

+

∂
= = −

∂
     (14)

 

*

ku  is used to emphasize that ku
 

is optimal. 

Moreover, if ( ),k kx uh is a quadratic form in ku  

and 0R > then ( )2

2

,
0

k k

k

x u

u

∂
>

∂

h

 
holds as a sufficient 

condition such that optimal control law (14) 

minimizes ( ),k kx uh
 

and the performance index 

(6). 

Substituting (14) into (9), we obtain: 

( )
( ) ( ) ( )

( ) ( ) ( )

11

1

11

1

1

1

2

1

2

T

kT

k k

k

k

kT

k k

k

V x
l x R g x

x
V x

V x
R R g x V x

x

+−

+

+−
+

+

 ∂ 
 + − ∂  =  

∂  
× − +  ∂  

    

(15) 

( )
( ) ( )

( ) ( ) ( ) ( )
1

1 11

1 1

1

4

k k

T
k k kT

k k

k k

l x V x

V x V x V x
g x R g x

x x

+

+ +−

+ +

+ 
 = ∂ ∂ 
+ ∂ ∂   

(16) 

 

which can be rewritten as follows: 

( ) ( ) ( )
( ) ( ) ( ) ( )

1

1 11

1 1

01

4

k k k

T

k kT

k k

k k

l x V x V x

V x V x
g x R g x

x x

+

+ +−

+ +

+ − 
 

=∂ ∂ 
+ ∂ ∂     

(17)  

Equation (17) is known as the discrete time HJB 

equation. Solving this partial-differential equation 

for ( )kV x  is not straightforward. This is one of the 

main drawbacks of discrete-time optimal control 

for nonlinear systems . To overcome this problem, 

we propose using inverse optimal control. In fact, 

for this inverse approach, a stabilizing feedback 

control law was first developed. It was noticed that 

this control law optimizes a cost functional. Along 

the lines of the approach presented in [14, 15], the 

discrete time inverse optimal control law for the 

nonlinear discrete system can be defined as follows: 

 

Definition 1: 

The control law 

( ) ( )1* 1

1

1

2

kT

k k

k

V x
u R g x

x

+−

+

∂
= −

∂
            

 

(18) 

is inverse optimal if : 

(i) it achieves (global) exponential stability of 

the equilibrium point 0kx =
 
for system (5) 

(ii) it minimizes a cost functional defined as in 

(6), for which ( )k
l x V= − with: 

( ) ( ) * *

1
0T

k k k k
V V x V x u Ru+= − + ≤           (19) 

The inverse optimal control is based on knowing 

( )kV x . Thus, we propose a CLF based on 

( )k
V x such that (i) and (ii) can be guaranteed. That 

is to say, instead of solving (17) for ( )kV x , we 

propose a control Lyapunov as: 

( ) 1

2

T

k k k
V x x Px= ,  where 0TP P= > (20) 

for control law (18), in order to ensure system 

stability (5), equilibrium point 0kx =  which will 

be achieved by defining an appropriate matrix P . 

Moreover, it is obvious that control law (18) with 

(20), which is referred to as the inverse optimal 

control law, optimizes a cost functional of the form 

(6). Consequently, by considering ( )k
V x  as in (20), 

control law (18) takes the following form: 

( ) ( )* 1

1

1

2

T

k k k
u R g x Px−

+= −                (21) 

( ) ( ) ( )( )* 1 *1

2

T

k k k k k
u R g x Pf x Pg x u−= − +     (22) 

Thus: 

( ) ( ) ( ) ( )1 * 11 1

2 2

T T

k k k k kI R g x Pg x u R g x Pf x− − + =− 
 

     

(23) 

Multiplying (23) by R , we get 

( ) ( ) ( ) ( )*1 1

2 2

T T

k k k k kR g x Pg x u g x Pf x
 + = − 
 

    (24) 

This leads to the following state feedback control 

law: 

( ) ( )( ) ( )1*

2 1

1

2
k k k k

x u R P x P xα
−

= = − +            (25) 

where ( ) ( ) ( )1

T

k k kP x g x Pf x= , and ( ) ( ) ( )2

1

2

T

k k kP x g x Pg x= . 

We note that ( )2 kP x
 

is a positive definite and 

symmetric matrix, which ensures the existence of 

the inverse matrix in (25). After proposing the CLF 

for solving the inverse optimal control, we present 

now the main contribution (Theorem 1): 

 

Theorem 1: Considers the affine discrete-time 

nonlinear system (5). If we have a matrix 

0TP P= > , the following inequality holds: 

( ) ( ) ( )( ) ( )1 2

1 2 1

1

4

T

f k k k k Q k
V x P x R P x P x xζ

−
− + ≤ −     (26) 

where ( ) ( )( ) ( )f k k k
V x V f x V x= − , with 

( )( ) ( ) ( )1

2

T

k k k
V f x f x Pf x=  and 0Qζ > , where 

( )1 k
P x

 
and ( )2 kP x are

 
as defined in (25). Then, the 

equilibrium point 0kx =  of system (5) is globally 

and exponentially stabilized by the control law 
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(25), with CLF (20). Moreover, with (20) as a CLF, 

this control law is inverse optimal, and it minimizes 

the cost functional given by: 

( ) ( )( )
0

T

k k k k

k

V x l x u Ru
∞

=

= +∑                 (27) 

with 

( )
( )*

k k
k u x

l x V
α=

= −                    (28)

and the optimal value function presented by 

( )0V x �The proof of this theorem is presented in 

[20]. 

 

2.3 Speed-Gradient Algorithm for Inverse 

Optimal Control 

To determine P , which guarantees the stability 

of the equilibrium point 0kx =
 
of system (5) with 

(25), we propose using the speed-gradient (SG) 

algorithm [20, 23] in order to ensure the following 

goal: 

( )1 ,kQ x + ≤ ∆ for
*k k≥                (29) 

where Q  is a positive definite goal function, ∆  is 

a positive constant considered as a threshold, and 
*k is the time step at which the goal is achieved. 

Digressing from the SG application proposed in 

[23], in this paper, the control law is given by (25). 

Besides, in (29), ∆  is a state dependent function 

( )kx∆ . At every time step, the control law (25) 

depends on the matrix P defined as 'kP p P= , 

where 'P is a given constant matrix in which 

' ' 0TP P= > , and 
kp
 

is a scalar parameter to be 

calculated by the SG algorithm. Then, (25) is 

transformed into: 

( ) ( ) ( ) ( )
1

* ' 'f
2 2

T Tk k
k k k k k

p p
u R g x P g x g x P x

−
 =− + × 
 

   (30) 

The SG algorithm is now reformulated for the 

inverse optimal control problem. 

Definition 2:  

Considering a time-varying parameter 
kp IR +∈ , 

the positive definite function :
n

Q IR IR IR× →  is 

given as 
 

( ) ( )1, Vk k sg kQ x p x +=                    (31) 

where ( ) '

1 1 1

1
V

2

T

sg k k k
x x Px+ + += , with ( ) ( ) *

1k k k kx f x g x u+ = +  is 

named as the SG goal function for system (5) with 

control law (30). The SG goal function is defined as 

in (31) in such a way that the convexity property of 

( ),k kQ x p  for kp
 
is guaranteed. Thus, there exist 

an optimal value
*p of 

kp  and a positive 

constant
*ε , such that ( )* *,kQ x p ε≤  [23]. In 

Theorem 1 below, this SG goal function is used to 

construct a Lyapunov function for the closed-loop 

system. 

Definition 3:   

Considering a constant
*p , the SG control goal of 

system (5) with (30) is defined as finding 
kp

 
so 

that the SG goal function ( ),k kQ x p , as given in 

(31), fulfills: 

( ) ( ),k k kQ x p x≤ ∆ for 
*k k≥ ,        (32) 

where 

( ) ( ) 1 T

k sg k k k

k

x V x u Ru
p

∆ = −

        

(33) 

with ( ) 1
'

2

T

sg k k kV x x P x=  and ku  are as defined in 

(30); 
*k is the discrete time step at which the SG 

control goal is achieved. 

Remark 1: Solution 
kp

 
must guarantee that 

( ) 1 T

sg k k k

k

V x u Ru
p

>  in order to obtain a positive 

definite function ( )kx∆ . 

Obviously, the SG algorithm is used to compute 
kp

 
in order to achieve the SG control goal defined 

above. 

Proposition 1: We consider a discrete-time 

nonlinear system of the form (5) with (30) as input. 

Let Q
 
be a SG goal function as defined in (31). Let 

p  be a positive constant, and ( )kx∆
 
be a positive 

definite function with ( )0 0∆ = . We assume that 

there exist a positive constant
*p and a sufficiently-

small positive constant 
*ε such that the following 

control goal is achievable [23]. 

( ) ( )* *,k kQ x p xε≤ << ∆              
 
(34) 

Then, for any initial condition 0 0p > , there is a 

*k such that the SG Control Goal (32) is attained by 

means of the following dynamic variation of 

parameter 
kp : 

( )1 , ,k k d k p k kp p Q x pγ+ = − ∇           
 
(35) 

with 

( )
2

, ,d k c k p kQ x pγ γ δ
−

= ∇ , ( )0 2c kxγ< ≤ ∆    (36) 

and 
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1

0
kδ


= 



for ( ) ( ),

otherwise

k kQ x p x> ∆
             (37) 

Finally, for 
*k k≥ , kp

 
becomes a constant value 

denoted by p and the SG algorithm is terminated . 

Proof: Along the lines of the journal presented in 

[23], the proof is based on the case for which 

( ) ( ),k k kQ x p x> ∆ , and therefore 1kδ = . Let us 

consider the positive definite Lyapunov function 

( )
2

*

p k k
V p p p= − . Then, the respective Lyapunov 

difference is given as follows: 

( )
2 2

* *

1p k k kV p p p p p+∆ = − − −           (38) 

( ) ( ) ( ) ( )*

1 1
2

T

p k k k k k k
V p p p p p p p+ +

 ∆ = − − + −        
(39) 

( )
( )

( ) ( )
,

*

,

,

, 2

d k p k

p k

d k p k k k

Q x p
V p

Q x p p p

γ

γ

− ∇  
∆ =   × − ∇ + −   

    

(40) 

Due to the SG goal function convexity (31) for kp , 

( ) ( ) ( )*, 0
T

k p k k kp p Q x p xε− ∇ ≤ − ∆ <    (41) 

where ( ),p k kQ x p∇
 

denotes the gradient of 

( ),k kQ x p
 
with respect to 

kp . Based on (41), (40) 

becomes 

( ) ( )( ) ( )
2

* 2

, ,2 ,p k d k k d k p k kV p x Q x pγ ε γ∆ ≤ − ∆ − + ∇   (42) 

( )
( )( ) ( )

( ) ( )

2
*

4 2
2 2

2 ,

, ,

c k k p k k

p k

c k p k k p k k

x Q x p
V p

Q x p Q x p

γ δ ε

γ δ

−

−

 − ∆ − ∇ 
∆ ≤  

 + ∇ ∇ 

  (43) 

( )
( ) ( )( )( )

( )

*

2

2 1 /

,

c k k c

p k

p k k

x x
V p

Q x p

γ ε γ ∆ − ∆ − ∆ = −
∇

    

(44) 

From (34), ( )( )( )*1 / 1kxε− ∆ ≈ hence 

( )
( )
( )

2

2
0

,

c k c

p k

p k k

x
V p

Q x p

γ γ∆ −  ∆ = − <
∇

        

(45) 

Thus, the bounds of 
kp
 

is guaranteed if 

( )0 2c kxγ< ≤ ∆ . Finally, when 
*k k≥ , 0kδ = , 

which means that the algorithm terminates; at this 

point ( ) ( ),k k kQ x p x≤ ∆ , then 
kp  becomes a 

constant value denoted by 
kp p= .

Since the parameter 
kp

 
is a scalar value, the 

gradient ( ),p kQ x p∇
 
in (40) is reduced to be the 

partial derivative of ( ),kQ x p with respect to 
kp  as 

( ),
k

k

Q x p
p

∂
∂

. 

Remark 2: Parameter γc in (35) is selected such 

that solution 
kp

 
ensures the 

requirement ( ) ( )1 T

sg k k k k

k

V x u R x u
p

>

 

in Remark 1. 

Then, we have a positive definite function ( )kx∆ . 

Remark 3: With ( ),k kQ x p as defined in (31), the 

dynamic variation of parameter kp in (35) results in 

the following form: 

( ) ( ) ( ) ( )
( ) ( )( )

' 2

1 , 3
'

8
2

T T

k k k k

k k d k
T

k k k

f x Pg x R g x f x
p p

R p g x Pg x
γ+ = +

+
   

 (46) 

which is positive for all time step k  if 
0 0p > . 

Therefore, the positivity of
kp is ensured and 

requirement 0T

k kp p= >
 
is guaranteed. When SG 

Control goal (32) is achieved, then k
p p=

 
for 

*k k≥ . Thus, matrix 
kp

 
in (25) is considered 

constant and 
kP P=

 
where P  is computed as 

'P pP= , with 'P a design positive definite matrix. 

Under these constraints, we obtain: 

( ) ( ) ( ) ( ) ( ) ( )
1

* 1 1
: f

2 2

T T

k k k k k k kx u R x g x Pg x g x P xα
−

 = =− + 
 

(47) 

The following diagram resumes the speed gradient 

algorithm (figure 1). 

 

Figure1: Speed-Gradient Algorithm Flow Diagram 
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3. PARTICULE SWARM ALGORITHM FOR 

SWITCHED INSTANTS OPTIMIZATION  

3.1 Standard PSO 

Particle Swarm Optimization (PSO) is a modern 

optimization technique inspired by bird flocking 

and fish schooling originally designed and 

introduced by Kennedy and Eberhart [24] in 1995. 

A PSO algorithm contains a swarm of particles 

in which each particle includes a potential solution. 

The particles fly through a multidimensional search 

space in which the position of each particle is 

adjusted according to its own experience and the 

experience of its neighbors. PSO system combines 

local search methods with global search methods 

attempting to balance exploration and exploitation 

[16]. It's applied  to many research areas, such as 

clustering and classification, communication 

networks, and scheduling. 

the particle in the swarm update it position 

according the following set of conditions: 

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )( )
1 11

2 2

k k k

i i i ik

i k k

i i

W V j c r pbest j X j
V j

c r pgbest j X j

+
 + − =  

+ −  
 (48) 

( ) ( ) ( ) ( ) ( ) ( )1 1k k k

i i iX j X j V j
+ += +              (49) 

( ) ( ) max min
max

max

.
k

i

W W
W j W k

k

 −
= − 

 
           (50) 

( )k

i
X j   present the candidate enclosed as the 

position of thj element of thi particle in thk  step of 

algorithm and ( )k

i
V j present the thj  element of the 

velocity vector of the thi  particle in the thk  step.  

1c  and 2c are positive

 

acceleration constants which 

control the influence of pbest and pgbest on the 

search process. Also 1r  and 2r  are random values 

in range [0, 1] sampled from a uniform distribution.  
k

i
pbest  and 

k

i
pgbest present respectively the best 

position reached by the 
thi particle in the thk  step, and 

the best position between neighbors of each particle 

known as the global best.  

maxk is the maximum number of iterations, k

i
W is 

the inertia weight making balance between 

exploration and exploitation .  

 
3.2 Binary and Discrete PSO  

Primarily PSO was successfully used to solve 

continuous problems whish positions are real 

valued, so standard PSO cannot be applied directly 

to binary/discrete problems. 

Kennedy and Eberhart introduced the discrete 
binary version of PSO with a stochastic velocity 

model in 1997, which was the first PSO algorithm 

to be used in binary discrete space. In this method 
each particle is considered as a position in a D-

dimensional space and each element of a particle 

position can take the binary value of  0 or 1 in 

which 1 means “included” and 0 means “not 

included” [16]. 

In the binary PSO the updated position equation 
takes the following form:    

( ) ( )
( ) ( )( )1

1 1

0

k

k i ij

i

sig V j rif
X j

otherwise

+
+ >

= 


           (52) 

where ( ) ( )( )1k

isig V j
+

 is a Sigmoid Function and ijr  

is a random number in range [0, 1]. 

 
( ) ( )( ) ( ) ( )( )

1

1

1

1 exp

k

i k

i

sig V j
V j

+

+
=

+ −
         (53) 

In our case, we need to ensure the connection 
between the “switching instants” and the “PSO 

particles”. The decision variables, representing the 

discrete integer switching instant, are coded as the 

position vector of the particle and updated as 

follow: 
( ) ( ) ( ) ( ) ( ) ( )( )1 1k k k

i i iX j round X j V j
+ += +    (54) 

We rounded each real value of position to the 

nearest integer value (discrete value), this is due to 

the fact that integer discrete solutions are needed 
for the optimization problem studied in this paper 

[17]. 

the associated code for the optimization of 

fitness function f  is described below: 

Create and Initialize a D-dimensional swarm Px  

particles 

repeat 

for each particle 1,..,i Px= do 

if ( ) ( )i if X f pbest> then i ipbest X=  

end 

if ( ) ( )i if pbest f pgbest>  

then i ipgbest pbest=  

end 

end 

for each particle 1,..,i Px= do 

update the velocity vector using equation (48) 

update the position vector using equation (54) 

end 

until the stopping criteria is true. 

 

Stopping condition can either be the maximum 

number of iterations, or finding an acceptable 

solution, or having no improvement in a number of 

iterations. 
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4. EXAMPLE 

We consider the controlled nonlinear discrete 

switched system presented in [12]. It consists of 

− subsystem 1: 

( )
( )( ) ( )

( )
( )1 2

2

0.2sin 0
1

0.50.5

x k x k
x k u k

x k

   
+ = +   

   
 

− subsystem 2: 

( ) ( ) ( )
( )

( )
3

1 2

2

00.5
1

0.50.3

x k x k
x k u k

x k

   
+ = +   

  
 

The discrete interval time is: 
0 fN N    

where 

0
0N =

 
and 20fN = . We want to find the optimal 

switching discrete instant N that minimizes the 

discrete criterion 

( )( ) ( )( ) ( )( )2 2 2

1 2

0

fk N

k

V x k x k u k

=

=

= + +∑  

such that 
1 2 1R R= = . 

and the initial point is [ ]0 1.5 1.5x = −  

The program code used is formulated as below: 

Step 1: 

− Initialize 0V Q= =  

− Initialize 'P =eye(2),  

− 1N  = discrete instant to optimize with 

SFL algorithm 

− 
fN = 2N =  discrete limit of discrete 

space search 

− Initialize 0k = ,
0x and 0p  

 

Step 2:      
Repeat

 

( ) ( ) ( ) ( ) ( )
1

*

1 1 1 1
' 'f

2 2

T Tk k
k k k k k k

p p
u R x g x P g x g x P x

−
 = − + 
 

( ) ( ) *

1 1 1k k k kx f x g x u+ = +  

( ) ( )1, Vk k sg kQ x p x +=  

( )1 ,k k p k kp p Q x pγ+ = − ∇  

until ( ) ( )*,k kQ x p x≤ ∆  

Step 3: 

1k
p p=

 
1 1

'P p P= ×
 

Step 4: 

 Initialize counter 0k =  
 

 

 

 

Step 5: 
Repeat 

( ) ( ) ( )

( ) ( )

1

1 1
* 1 1

1 1

'
2 2

'f

T

k k k

k

T

k k

p p
R x g x P g x

u

g x P x

−  − +  =   
 × 

 

( ) ( ) *

1 1 1k k k kx f x g x u+ = +  

until
1

k N>  

then , SOMME 1= ( )
1

2 *2

0

N

k k

k

x u
=

+∑  

Step 6: 

We obtain
1Nx  

Then, we initialize, again, 0k = ,

 
10 Nx x= and 

0p  

Step 7: 
Repeat

 

( ) ( ) ( )

( ) ( )

1

* 2 2

2 2

'
2 2

'f

Tk k
k k k

k

T

k k

p p
R x g x P g x

u

g x P x

−  − +  =   
 × 

 

( ) ( ) *

1 2 2k k k kx f x g x u+ = +  

( ) ( )1, Vk k sg kQ x p x +=  

( )1 ,k k p k kp p Q x pγ+ = − ∇  

until ( ) ( )*,k kQ x p x≤∆
 

Step 8: 

2kp p=
 

2 2
'P p P= ×
 

Step 9: 
repeat 

( ) ( ) ( ) ( ) ( )
1

* 2 2
2 2 2 2

' 'f
2 2

T T

k k k k k k

p p
u R x g x P g x g x P x

−
 =− + 
   

( ) ( ) *

1 2 2k k k kx f x g x u+ = +  

until 
2

k N>  

then, SOMME 2= ( )
2

1

2 *2
N

k k

k N

x u
=

+∑
 

Step 10: 
Function to optimize: 

( )
2

2 *2

0

N

k k

k

V Q x u
=

= = +∑ = SOMME 1+ SOMME 2. 

To find the optimum switching instants between the 

two subsystems, we use the DPSO algorithm with 

the following parameters:

 − Number of populations = 30  

− Acceleration coefficient relative to the 

best actual position of particle 1 1.5C =  
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− Acceleration coefficient relative to the 

global best  position of particle 2 1.5C =  

− Iterations’ maximum number = 20  

− maxW = 0.9 & minW =0.4 

The programs have been developed under the 

MATLAB 7.1 on a PC whose features are:  

− RAM : 3 GB  

− Processor : Intel ® Core ® I5-5200U CPU 

2.2 GHz  

− Operating system : Windows 7.  

− program execution time: 10.25 minutes. 

 

Now, we begin by showing the results of our 

study. Firstly, we will present figure 3 & figure 4 

depicting respectively the speed gradient evolution 

of subsystem 1 and subsystem 2. figure 5 

demonstrates the discrete state 1x  evolution, while 

figure 6 presents the discrete state 1x evolution. 

figure 7 clarifies the discrete control input 

evolution, while figure 8 presents the state 

evolution and figure 9 present the cost evolution. 

 

Figure 3: Speed gradient evolution for subsystem 1  

 

Figure 4: Speed gradient evolution for subsystem 2  

 

 

 

 

 

Figure 5: Discrete state
1

x evolution DPSO  approach  

 

Figure 6: Discrete state
2

x evolution DPSO  approach  

 

Figure 7: Control input u  evolution using DPSO 

approach 
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Figure 8: State evolution DPSO  approach  

 

Figure 9: Cost criterien V evolution DPSO approach 

After simulation, The numeric results give us 

5.1229 as global minimum achieved in the first 

switching instant 1 1N =  (The same result was 

obtained in [12] but with using two stages 

approximations ). Here we introduced a direct CLF 

method wish ensure the stability of switched 

systems.  

 

5. CONCLUSION 

We tried, in this paper, to solve the problem of 

optimization of instants of nonlinear switching 

systems with a meta-heuristic approach. We used 

two stages. The first one, in which we utilized the 

CLF with an adjusted parameter to avoid the 

resolution of HJB equation, allows us to obtain the 

minimum control for the nonlinear system. For the 

second stage, we used the DPSO algorithm to find 

the minimum instant of switching system with 

optimization of the given cost criterion. 

 

 

 

REFERENCES 

[1] N. Majdoub, A. Sakly, M. Benrajeb, “ACO 

Based Optimization of Switching Instants for 

Nonlinear Switched Systems”, International 

Journal of Information Sciences and 

Computer Engineering, Vol. 2, 2012, pp. 30-

34. 

[2] N. Majdoub, A. Sakly, M. Sakly, M. Benrjeb, 

“Ant Colony Based on Optimization Of 

Switching Instants for Autonomous Switched 

Systems”, International Review of Automatic 

Control, Vol. 03, No. 01, 2010, p24. 

[3] M. Sakly, A. Sakly, N. Majdoub, M. Benrjeb, 

“Optimal Switching Instants of Linear 

Switched Systems Based on Meta-Heuristic 

Approaches”, International Journal of 

Intelligent Control and Systems, Vol. 16, No. 

01, 2011, pp. 8-18. 

[4] C. Aghayeva , M. Alpaslan, “Singular Optimal 

Control Problem of Stochastic Switching 

Systems”, Proceedings in the world congress 

on engineering and computer Science, 

WCECS, San Francisco, USA Vol. 02, , 2014. 

[5] R. Luus, Y.Q. Chen, “Optimal Switching 

Control via Direct Search Optimization”, Asian 

Journal of Control, Vol. 06, No. 02, 2004, pp. 

302-306.  

[6] E. Mojica-nava, R. Meziat, N. Quijano, A. 

Gauthier, N. Rakoto-ravalontsalama, “Optimal 

Control of Switched Systems: A Polynomial 

Approach”, Proceedings in the 17th 

International Federation of Automatic Control 

Congress, Seoul, Korea, July 6-11, 2008. 

[7] X. Xu, P.J. Antsaklis, “Optimal Control of 

Switched Systems via Nonlinear Optimization 

Based on Direct Differentiations of Value 

Functions”, International Journal of control, 

Vol. 75, 2002,  pp. 1406-1426. 

[8] M. Sakly, A.A. Kahloul, N. Majdoub, A. 

Sakly,  F. M’sahli, “Optimization of Switching 

Instants For Optimal Control of Switched 

Discrete Systems Based on Particle Swarm 

Algorithm”, Proceeding of the 14th 

international conference on Sciences and 

Techniques of Automatic Control & Computer 

Engineering, Sousse, Tunisia, 2013, pp.358-

363. 

 



Journal of Theoretical and Applied Information Technology 
 30

th 
September 2016. Vol.91. No.2 

 © 2005 - 2016 JATIT & LLS. All rights reserved.   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
373 

 

[9] W. Zhang, J. Hu, “On Optimal Quadratic 

Regulation for Discrete-Time Switched Linear 

Systems”, Lecture Notes Computer Sciences, 

Vol. 4981, pp.584-597. 

[10] Q. Zhu, G. Xie, “Finite-Horizon Optimal 

Control of Discrete-Time Switched Linear 

Systems”, Mathematical  Problems in 

Engineering 2012, Article ID 483568. 

[11] N. Majdoub, A. SAKLY, M. Benrjeb, “Hybrid 

Approach for Optimal Control Problem of 

Switched Systems”, Proceeding of Systems 

Man and Cybernetics (SMC), IEEE 

International Conference, Istanbul, 2010, pp. 

4161-4168. 

[12] N. Cao, H. Zhang, Y. Luo, D. Feng, “Infinite 

Horizon Optimal Control of Affine Nonlinear 

Discrete Switched Systems using Two-Stage 

Approximate Dynamic Programming”, 

International Journal of System Science, 

Vol. 43, No. 9, 2012,  pp. 1673-1682. 

[13] A. Heydari, S.N. Balakrishnan, “Optimal 

Switching and Control of Nonlinear Switching 

System Using Approximate Dynamic 

Programming”, Neural Networks and Learning 

Systems, IEEE Transaction on., Vol. 25, No. 

06, 2014, pp. 1106-1117. 

[14] M. Sakly, A. Sakly, F. M'sahli, “Inverse 

Optimal Control of Switched Discrete 

Nonlinear Systems Based on Control 

Lyapunov Function And Genetic Algorithm”, 

International Conference on Sciences and 

Techniques of Automatic Control & Computer 

Engineering, Monastir, Tunisia, December 21-

23, 2015, pp. 24-29. 

[15] M. Sakly, A. Sakly, N. Majdoub, F. M'sahli, 

“Optimization of Switching Instants for 

Optimal Control of Switched Discrete 

Nonlinear Systems Based on Particle Swarm 

Algorithm”, International Conference on 

Sciences and Techniques of Automatic Control 

& Computer Engineering, Monastir, Tunisia, 

December 21-23, 2014, pp. 105-111. 

[16] H. Izakian, B.T. Ladani, A. Abraham, V. 

Snasel “A Discrete Particle Swarm 

Optimization Approach for Grid Job 

Scheduling”, International Journal of 

Innovative Computing, Information and 

Control,Vol. 6, No. 9, 2010, pp. 1-09-0370. 

 

[17] S. Boubaker, M. Djemai, N. Manamanni and F. 

M’sahli, “Active Modes and Switching 

identification for Linear Switched Systems 

Based on Discrete Particle Swarm 

Optimization”, Applied Soft Computing, 

Vol. 14, Part C, January 2014, pp 482-488. 

[18] Z. Chen, S. Jagannathan, “Neural Network 

Based Nearly Optimal Hamilton-Jacobi-

Bellman Solution for Affine Nonlinear 

Discrete Time Systems”, Proceedings of the 

44th IEEE Conference On Decision and 

Control & European Control Conference, 

Seville, Spain, 2005, pp. 4123 - 4128.  

[19] Z. Chen, S. Jagannathan, “Generalized 

Hamilton Jacobi Bellman Formulation Based 

on Neural Network Control of Affine 

Nonlinear Discrete Time Systems”, IEEE 

Transactions on Neural networks, Vol. 19, 

No.1, 2008, pp. 90-106. 

[20] E.N. Sanchez, F. Ornelas-tellez, “Discrete-

Time Inverse Optimal Control for Nonlinear 

Systems”, CRC Press, Taylor& Francis. 2013.  

[21] A. Al-tamimi , F. Lewis, “Discrete Time 

Nonlinear HJB Solution Using Approximate 

Dynamic Programming: Convergence Proof”, 

IEEE Transaction on systems, Vol. 38, No. 4 , 

2008, pp. 943-949. 

[22] T. Dierks, S. Jagannathan, “Optimal Tracking 

Control of Affine Nonlinear Discrete Time 

Systems with Unknown Internal Dynamics”, 

The 48th IEEE Conference On Decision and 

Control, Shanghai, P.R China, 2009, pp. 6750 - 

6755. 

[23] F. Ornelas-tellez, E.N. Sanchez, A.G. 

Loukianov, E.M. Navarro-lopez, “Speed 

Gradient Inverse Optimal Control for Discrete 

Time Nonlinear Systems”, Proceeding of The 

50th IEEE Conference On Decision and 

Control & European Control Conference, 

Oriando, FL, USA, 2011, pp. 290-295. 

[24] J. Kennedy and R.C. Eberhart, “Particle Swarm 

Optimization”, IEEE international conference 

on Neural Networks, Perth, Australia, Vol.04, 

1995, pp.1942-1948. 

 


