
Journal of Theoretical and Applied Information Technology
 15

th
September 2016. Vol.91. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

152

IDENTIFYING SIMILAR BUSINESS PROCESS MODELS

1
YEDILKHAN D.,

2
BEKTEMYSSOVA G.U.

1
Institute of information and computation technologies, Almaty, Kazakhstan

2
International information technology university, Almaty, Kazakhstan

E-mail:
1
yedilkhan@gmail.com,

2
g.bektemisova@gmail.com

ABSTRACT

Large organizations experience shows that repositories of business process models contain lots amounts of

duplication. For example, this duplication arises when the repository covers multiple variants of the same

processes. This article studies the problem of identifying similar business process models. The article

proposes technique for detecting clusters of approximate duplications based on well-known clustering

algorithm, such as DBSCAN.

Key words: Business Process Model, Duplication Models, Standardization, BPM

1. INTRODUCTION

A business process is defined as a “group of

tasks that together create a result of value to a

customer” [1]. Its purpose is to offer each customer

the right product or service, i.e., the right

deliverable, with a high degree of performance

measured against cost, longevity, service and

quality [2]. Although increasing business process

performance is an important topic in research and

industry [3]. One of variants is the process of

standardization by identifying similar process

models. Detecting identical process model in

Business Process Management systems allows

modelers to identify opportunities for business

process standardization. For example, consider the

case of multiple variants of an insurance claims

handling process, where each variant is captured as

a separate process model. Given that disbursement

of the insurance payout occurs in every variant

(albeit differently depending on the type of claim),

it is likely that these separate models will contain

identical process models corresponding to

disbursement activities. These models can

potentially be standardized, i.e. replaced by a single

model instance, and refactored as a shared

subprocess. In this way, duplication is reduced and

uniformity across process models is increased, to

the benefit of model maintainability. Current

conceptual BPMSs do not provide explicit tools for

identifying duplications in repositories of process

models and do not provide recommendations about

how to work with them. Furthermore, such tools

need to be integrated into the process execution and

require continuous monitoring.

For a further understanding of the article is

important to introduce two concepts. First one is a

business process management system (BPMS).

BPMS is a generic software system that is driven

by explicit process representations to coordinate

the enactment of business processes. Moreover,

second one is the process model. The business

process model consists of a set of activity models

and execution constraints between them.

2. LITERATURE REVIEW

The problem of process models

duplication detection has been widely studied in the

field of software engineering, primarily in the

context of source code duplication detection [4].

Duplicate code is a computer programming term

for a sequence of source code that occurs more than

once, either within a program or across different

programs owned or maintained by the same entity.

Duplicate code is generally

considered undesirable for a number of reasons. [5]

A minimum requirement is usually applied to the

quantity of code that must appear in a sequence for

it to be considered duplicate rather than

coincidentally similar. Sequences of duplicate

codes are sometimes known as code clones or

just clones, the automated process of finding

duplications in source code is called clone

detection. A number of different algorithms has

been proposed to detect duplicate codes such as

Baker's algorithm [6], Rabin–Karp string search

algorithm, Abstract Syntax Trees [7], Visual clone

detection [8], Count Matrix Clone Detection [9,

10].

However, these techniques cannot detect

process model duplications, which are arguably

Journal of Theoretical and Applied Information Technology
 15

th
September 2016. Vol.91. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

153

likely to emerge in process model repositories

when process modelers copy and paste fragments

across models – thus creating exact duplications –

and later on these exact duplications evolve

separately. Identifying identical business process

models can be divided into two groups. First one is

searching clones in repositories of process models,

second one is discovering identical process model

collections from event logs.

This article presents technique for

identifying approximate duplications in repositories

of process models for the purpose of standardizing.

Approximate duplications is copied fragments with

further modifications such as changed, added or

removed model elements in addition to variations

allowed in syntactically identical fragments.

Technique for identifying approximate duplications

taken from clustering analysis and refers to density-

based clustering algorithms and shortly named

DBSCAN.

Density-based spatial clustering of

applications with noise (DBSCAN) is a data

clustering algorithm proposed by Martin

Ester, Hans-Peter Kriegel, Jörg Sander and

Xiaowei Xu in 1996 [11]. It is a density-based

clustering algorithm that is for a given set of

points in some space, it groups together points that

are closely packed together (points with

many nearby neighbors), marking as outlier points

that lie alone in low-density regions (whose nearest

neighbors are too far away). DBSCAN is one of the

most common clustering algorithms and also most

cited in scientific literature [12]. In 2014, the

algorithm was awarded the test of time award (an

award given to algorithms which have received

substantial attention in theory and practice) at the

leading data mining conference, KDD [13]. Main

purpose of article is the task of grouping a set of

process models in such a way that objects in the

same group (called a cluster) are more similar to

each other than to those in other clusters).

3. DENSITY-BASED SPATIAL CLUSTERING

OF APPLICATIONS WITH NOISE

(DBSCAN)

Next part of article demonstrate realized

simple example of using a clustering algorithm

DBSCAN in MATLAB. The input information is a

matrix cont with dimension n x 4. The first two

columns are arranged to coordinate considered

points, the other two columns are filled with 0. As

a result of the algorithm filled columns 3 and 4 of

the matrix cont: the third column represents

information on whether the point has been

processed; 4th column in charge of belonging to a

particular class of 1 to-1. If the fourth column is

written -1 it means that this point has been

attributed to noise.

Journal of Theoretical and Applied Information Technology
 15

th
September 2016. Vol.91. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

154

Figure 1: Realization of simple program code in MATLAB

The initial information for the algorithm is

a set of points (see. Figure below), which contains

in addition to 3 clearly evolved groups, points to be

attributed to noise.

Figure 2: Input data under DBSCAN

After the algorithm we get the following

picture of the cluster:

Figure 3: Input data after DBSCAN

As shown, the algorithm identified 3

groups and noise. Also we would like to draw on

the fact that the algorithm is perfectly coped with

the task allocation spaced points along a curve that

allows you, if properly applied, use this algorithm

for many other task.

Journal of Theoretical and Applied Information Technology
 15

th
September 2016. Vol.91. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

155

4. DBSCAN FOR IDENTIFYING SIMILAR

PROCESS MODELS

DBSCAN identifies all core objects of a

given dataset and considers their neighborhoods as

initial clusters. If two core objects are within each

other’s neighborhood, their neighborhoods are

merged into a single cluster. On the other hand, if

an object does not belong to the neighborhood of

any core object, it is marked as noise. Adaptation

of DBSCAN for business process models is

described in Algorithm 1. Given the set of process

fragments G extracted from the RPSDAG (an index

structure designed for efficient and accurate

identification of exact duplications in a collection

of process models), the algorithm repeats the

clustering process (Steps 2–14) until all fragments

in G have been checked whether they are core

objects. At the beginning of each iteration, a

random fragment f is removed from G and marked

as “processed”. The neighborhood Nf of f is

computed (Step 3), and if f is a core object the

fragments in Nf are removed from G and from

Noise (Step 5), and added to a new cluster C (Step

6). Otherwise f is treated as noise and another

fragment is extracted from G. The algorithm then

expands cluster C by checking whether there are

core objects in C whose neighborhoods can be

merged with C. This is done by iterating over all

fragments in Nf except f, via a set MC. For a

fragment m in MC that has not been processed, its

neighborhood Nm is computed (Step 8) to

determine whether m is itself a core object. If so,

before merging its neighborhood with C, we check

whether there is still a medoid s whose distance

with all other fragments of the combined cluster is

within τ (Step 10), otherwise we will create clusters

whose fragments are far apart from each other to be

standardized. In case of merging, the fragments in

Nm are removed from G and added, except m, to MC

(Step 11), so that they can be checked whether they

are core objects. If Nm cannot be merged with C, m

is added back to G so that it can be eventually

processed again (Step 12). In fact, Nm may form a

cluster by itself or be merged with some other

cluster.

Figure 4: Algorithm of DBSCAN for process models

5. RESULTS AND CONCLUSION

The proposed technique that allows

analysts to identify, cluster, analyze and visualize

approximate clones by using DBSCAN algorithm

realized as plugin of the “Apromore” advanced

process model repository [14]. “Apromore” uses an

internal process representation format named

canonical process format, which captures common

features of widely-used process modeling

languages. The duplication detection plugin

operates on this canonical format, thus it can detect

approximate duplications in process models

defined in different modeling languages such as

BPMN and EPC for example.

The Web interface of the approximate

clone detection plugin (shown in Fig. 3) provides

features for creating, browsing and visualizing

fragment clusters. Users can select one or more

process models from the repository and kick off the

clustering. Once the fragments included in the

selected process models have been clustered, users

can apply different filtering criteria (i.e. on the size

of the clusters, on the average size of fragments)

and browse the resulting clusters in a detailed list

view. Another useful feature is the visualization of

clusters in the 2D space. The visualization

component (shown in Fig. 4) displays each

fragment in a cluster as a point in the space and

positions fragments within a cluster according to

their distances to the medoid (distances being

represented as edges between the points).

Journal of Theoretical and Applied Information Technology
 15

th
September 2016. Vol.91. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

156

Figure 5: Web interface of program

Figure 6: Visualization options

For identifying similar process models we

looked at dataset that is taken from an insurance

company under condition of anonymity. It contains

363 models ranging from 4 to 461 nodes (average

27.12). The cluster computation is dominated by

the computation of the distance matrix which took

more than 2 hours for the insurance dataset. The

longer time taken for the insurance dataset is

justified by the size of its fragments (e.g. the largest

fragment in the insurance dataset is a rigid with 461

nodes). For the insurance dataset we retrieved 243

clusters with DBSCAN (sizes between 2 and 6).

This confirms the intuition that real-life process

model repositories contain a large number of

approximate clone clusters, and thus that

copying/pasting of fragments across process

models is a very common practice.

Hence, it can be concluded that the

proposed technique provides a basis for identifying

clusters of approximate duplications that are usable

to standardization. One of direction of future work

is how a detected clusters should be standardized

into a single reference fragment in such a way that

the stakeholders involved in the management and

execution of the process are satisfied with the

standardized process.

One of future research direction is how to

work with identified similar process models.

Interesting question is how process models can be

standardized and how to use one variant of process

model in different business processes. These

changes mean increasing of business process

management performance.

REFERENCES:

[1] Michael Hammer. Beyond Reengineering

How the process-centered organization is

changing our work and our lives. Harper

Collins Publishers, 1996.

[2] Ivar Jacobson, Maria Ericson, and Agneta

Jacobson. The Object Advantage Business

Process Reengineering with Object

Technology. ACM Press, Addison-

Wesley Publishing, 1994.

[3] Fabio Casati. Industry trends in business

process management getting ready for

prime time. In 16th International

Workshop on Database and Expert

Systems Applications (DEXA 2005), First

International Workshop on Business

Process Monitoring and Performance

Management (BPMPM 2005). IEEE

Press, August 2005.

[4] C. K. Roy, J. R. Cordy, R. Koschke,

Comparison and evaluation of code clone

detection techniques and tools: A

qualitative approach, Sci. Comput.

Program. 74 (7) (2009) 470–495.

[5] Stefan Wagner, Asim Abdulkhaleq, Ivan

Bogicevic, Jan-Peter Ostberg, Jasmin

Ramadani. How are functionally similar

code clones syntactically different? An

empirical study and a benchmark PeerJ

Computer

Science 2:e49.doi:10.7717/peerj-cs.49.

[6] Brenda S. Baker. A Program for

Identifying Duplicated Code. Computing

Science and Statistics, 24:49–57, 1992.

[7] Ira D. Baxter, et al. Clone Detection Using

Abstract Syntax Trees.

[8] Visual Detection of Duplicated Code by

Matthias Rieger, Stephane Ducasse.

[9] Yuan, Y. and Guo, Y. CMCD: Count

Matrix Based Code Clone Detection, in

2011 18th Asia-Pacific Software

Engineering Conference. IEEE, Dec.

2011, pp. 250–257.

[10] Chen, X., Wang, A. Y., & Tempero, E. D.

(2014). A Replication and Reproduction

of Code Clone Detection Studies. In

ACSC (pp. 105-114).

[11] Ester, Martin; Kriegel, Hans-Peter;

Sander, Jörg; Xu, Xiaowei (1996).

Simoudis, Evangelos; Han, Jiawei;

Journal of Theoretical and Applied Information Technology
 15

th
September 2016. Vol.91. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

157

Fayyad, Usama M., eds. A density-based

algorithm for discovering clusters in large

spatial databases with noise. Proceedings

of the Second International Conference on

Knowledge Discovery and Data Mining

(KDD-96). AAAI Press. pp. 226–

231. ISBN 1-57735-004-

9. CiteSeerX: 10.1.1.121.9220.

[12] Most cited data mining articles according

to Microsoft academic search; DBSCAN

is on rank 24, when accessed on:

4/18/2010.

[13] "2014 SIGKDD Test of Time

Award". ACM SIGKDD. 2014-08-18.

Retrieved 2014-08-22.

[14] M. La Rosa, H. Reijers, W. Aalst, R.

Dijkman, J. Mendling, M. Dumas, L.

Garcıa-Banuelos, APROMORE: An

Advanced Process Model Repository,

Expert Systems With Applications 38 (6).

