
Journal of Theoretical and Applied Information Technology
 31

st
 August 2016. Vol.90. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

67

METADATA AS A SERVICE (METAAS) MODEL FOR
CLOUD COMPUTING

1
AMIR MOHAMED TALIB,

 2
FAHAD OMAR ALOMARY,

3
RUSLI ABDULLAH

1 , 2Asstt Prof., Department of Information Technology, College of Computer and Information Sciences,

Al-Imam Muhammad Ibn Saud Islamic University (IMSIU), SAUDI ARABIA
3Professor., Department of Information System, Faculty of Computer Science and Information

Technology, University Putra Malaysia (UPM), MALAYSIA

E-mail: 1ganawa53@yahoo.com, 2fahd.alomary@gmail.com, 3rusli@fsktm.upm.edu.my

ABSTRACT

Cloud computing has become the most attractive field in industry and research. Metadata as a Service
(MetaaS) is an emerging technique that could help the cloud users, and cloud service providers (CSPs)
according their needs. The increasing of the speed of searching and acquiring against the number of the data
services in cloud computing that has leads the researchers to think about implementing a new technique.
MetaaS model uses to serve as a backbone for providing and searching for data storage in cloud computing.
MetaaS model consists of three main layers as Metadata component, cloud users and CSPs. The Metadata
components consists of six main components as Metadata Entity (ME), Metadata File Information (MFI),
Metadata Catalog Service (MCS), Metadata Management Engine (MME), Metadata Capturing (MC) and
Metadata Analysis (MA). In this paper, an approach for enabling searching, storing, accessing, retrieving,
and capturing the data from Cloud Data Storage (CDS) based on MetaaS model is presented. Taking the
production of CDS service as example, this paper gives formal analysis of system running and compares
with other related work. The results show that the model presents good reference on the construction of
cloud computing applications and services according to the cloud services functionalities and MetaaS
components.

Keywords: Cloud Computing, Cloud Data Storage, Cloud Service Provider, Metadata and Metadata as a

Service

1. INTRODUCTION

Cloud computing has become the most attractive

field in industry and research. The concept of cloud
computing includes the Web 2.0, web
infrastructure, virtualization technologies, and other
emerging technologies. With the cloud computing
technology, users use a variety of devices with
laptops, smart phones, PCs, PDAs to access storage,
and application-services offered by cloud
computing providers. Some advantages of the cloud
computing technology include cost savings, high
availability, and scalability [1].

The architecture of cloud computing are broadly
divided into six categories, which are
Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS), Software-as-a-Service (SaaS),
Communication-as-a-Service (CaaS), Data Storage-
as-a-Service (DaaS), and Hardware-as-a-Service
(HaaS). Currently there are five types of cloud

computing namely: public cloud, private cloud,
hybrid cloud, community cloud, and combination
cloud. Public cloud describes cloud computing in
the traditional main stream sense, where resources
are based on self-service basis over the Internet, via
web applications or web services. In public cloud,
numerous cloud users can share the computing
resources provided by a single service provider.
Cloud users can quickly access these resources and
only pay for the operating resources [2, 3]. Private
cloud is a term to describe computing architecture
that provides hosted services to a limited number of
people behind a firewall. In the private cloud,
computing resources are used and controlled by a
private enterprise [4, 5]. A third type can be hybrid
cloud that is typical combination of public and
private cloud. It enables the enterprise to running
state-steady workload in the private cloud, and
asking the public cloud for intensive computing
resources when peak workload occurs, then return if
no longer needed. Two clouds that have been joined

Journal of Theoretical and Applied Information Technology
 31

st
 August 2016. Vol.90. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

68

together are more correctly called a "combined
cloud". A combined cloud environment consisting
of multiple internal and/or external providers "will
be typical for most enterprises". By integrating
multiple cloud services users may be able to ease
the transition to public cloud services while
avoiding issues.

The primary uses of cloud computing is for CDS.
CDS is composed of thousands of storage devices
clustered by network, distributed file systems and
other storage middleware to provide cloud storage
service for users [6, 7]. CDS is a model of
networked computer data storage where data is
stored on multiple virtual servers, generally hosted
by third parties, rather than being hosted on
dedicated servers. In CDS, there are many potential
scenarios where data stored in the cloud is dynamic,
like electronic documents, photos, or log files etc.
Therefore, it is crucial to consider the dynamic case,
where a user may wish to perform various block-
level operations of searching, acquiring, storing,
accessing, and capturing the data [3].

The main benefits of cloud computing are: (1)
Cost of Hardware: In the world of technology
everything costs money –servers, workstations,
software, databases, etc so, cloud computing allows
you to spend less money on these items, especially
hardware. (2) Easy Expansion: Today when you
add an employee, you have to purchase a new
workstation for them, purchase additional software
licenses, etc. (3) Fewer IT Staff: In the cloud, the
hosting provider maintains the applications it is
responsible for.

Metadata is descriptive information about the
data. It is semantics on the basic concepts, basic
relationships and basic constraints of data model.
The metadata can solve problems that model layer
cannot resolve, such as fuzzy semantic of data
model, model integration, and sharing of
information. By using metadata functional strong
coupling relationships into data type weak coupling
relationships is translated. Metadata research is
widely used in data-driving system such as file
system, information system, and so on [8].

There are various types of metadata that are
specialized for particular types of metadata
cataloguing and discovery. In this paper, design of a
Metadata as a Service Model (MetaaS) that
provides a mechanism for storing and accessing
descriptive metadata and allows users to query for
data items based on desired attributes is presented.
CSPs have [the metadata], it’s just a decision about
whether or not they’re going to invest in sharing it

with their cloud users – and that’s not a small
investment,” she says. “It’s easy to share a CSP
that’s far too large and far too old for anybody to
care about. For performance data to be useful, you
need to get it in almost real time, and make accurate
decisions based on it almost immediately.

There are two main examples of metadata: (1)
File Information Metadata: Every file on your
computer contains metadata that tracks things like
where it was saved, when it was last accessed or
modified, etc. Right click on any file in Windows
then look under Properties to see this metadata. In
most cases, this information is not dangerous. (2)
Document Metadata: Metadata allows programs
like Microsoft Word to provide collaboration and
revision tools. When you use track changes,
commenting or any review tool in Word, these
features are stored in metadata. If you don’t turn
them off before you send the document out,
someone else may be able to see this metadata.

The benefits of metadata are: (1) Metadata is not
necessarily a bad thing. (2) The ability to perform
revision and collaboration in Microsoft Word is a
substantial benefit. (3) Microsoft did not develop
these features to put their customers in danger, and
(4) Without metadata, some of Word’s most
powerful features would not exist.

The reason of the danger of metadata because is
that metadata often contains information you don’t
want others to see. For example, when you make a
revision, do you really want someone to know what
you changed if from? When viewed by the wrong
person, metadata can have consequences ranging
from embarrassing to career threatening.

2. LITERATURE REVIEW

Recently a large amount of work is being
pursued in data analytics in cloud data storage
(CDS) [9, 10]. Verma et al, [11] proposed metadata
scheme using Ring File System (RFS). In this
paper, the scheme metadata for a ring file is stored
based on hashing in parent location. Replica is
stored in its successor metadata server Baidu, etc.
The GFS architecture comprises of a single GFS
master server which stores the metadata of the file
system and multiple slaves known as chunk servers
which store the data. Files are divided into chunks
(usually 64 MB in size) and the GFS master
manages the placement and data-layout among the
various chunk servers. The GFS master also stores
the metadata like filenames, size, directory structure
and information about the location and placement
of data in memory. One of the direct implications

Journal of Theoretical and Applied Information Technology
 31

st
 August 2016. Vol.90. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

69

of this design is that the size of metadata is limited
by the memory available at the GFS master. Hua et
al, [12] proposed a scalable and adaptive metadata
management in ultra large scale file systems.
Cammert et al. [9] divided their scheme into two
types: static and dynamic metadata. The author has
suggested publish-subscribe architecture, enabled a
SSPS to provide metadata on demand and handled
metadata dependencies successfully.

Leung et.al. [13] describes the file metadata
search system (Spyglass) that achieves scalability
by exploiting storage system properties. An index
that exploit storage properties is designed, Spyglass
is able to achieve significantly better query
performance than existing solutions, while using
less disk space.

Gammert et.al. [9] produced and analyzed
petabytes and terabytes of data intensive
applications that are distributed in millions of files
or objects. To manage the distribution of the large
data sets, metadata needs to be managed.

Anitha et al. [14] has concluded that the data
retrieval using metadata in cloud environment is
less time consuming when compared to retrieving a
data directly from the cloud data server. Ravi
Kumar et al. [15] shows that third party auditor is
used periodically to verify the data integrity stored
at cloud service provider without retrieving original
data. In this model, the user sends a request to the
cloud service provider and receives the original
data. If data is in encrypted form then it can be
decrypted using his secret key. However, the data
stored in cloud is vulnerable to malicious attacks
and it would bring irretrievable losses to the users,
since their data is stored at an untrusted storage
servers.

Shizuka Kaneko et al. [16] has proposed a query
based hiding schema Information using a Bloom
filter. The query given is processed and the
attributes of the query is used for key generation.
The key generated is used to hide confidential
information from the data administrator. As the
query gets changes every time the key generation
process becomes more complex. Marcos K.
Aguilera et al. [17] has proposed a practical and
efficient method for adding security to network-
attached disks (NADs). The design specifies a
protocol for providing access to the remote block-
based devices. Chirag Modi et al. [18] discussed a
survey paper where they discussed about the factors
affecting cloud computing storage adoption,
vulnerabilities and attacks, and identify relevant
solution directives to strengthen security and

privacy in the cloud environment. They discuss
about the various threats like abusive use of cloud
computing, insecure interfaces, data loss and
leakage, identity theft and metadata spoofing
attack.

The RepMec (Replica Metadata) catalog
developed by the European DataGrid’s Reptor
project [19] is similar in its design and function to
MCS. The RepMec catalog is built upon the
Spitfire database service. The RepMec catalog
stores logical and physical metadata. Among other
functions, this catalog is used within the EDG
project to map from user-provided logical names
for data items to unique identifiers called GUIDs.
RepMec is used in the Reptor system in
cooperation with a replica location service.

3. METHODOLOGY

This research shall be carried out in six steps in
order to formulate the MetaaS model that could
enabling the cloud users and cloud providers to
search, store, access, retrieve, publish, and capture
the data from CDS. These steps summarized as
follow:

3.1 Performing A Review of the Related

Literature

This step is involving the reviewing the MetaaS
and cloud computing to ensure that the proposed
model could achieve its mission statement.

3.2 Conducting the Preliminary Survey

The step of conducting the preliminary survey
has been defined to: Firstly, to assist in formulating
the model. Secondly, to adopt the Metadata
components to be fit in cloud storage. For these
purposes a survey has been done using a
questionnaire to those who are involve in the
project cloud computing integrated Metadata such
as a researchers, cloud providers, cloud users and
Metadata experts. So they were asked to verify the
model components and inputs.

3.3 Model Formulation

This is the process involving the composition of
attributes and its elements based on the previous
steps into a specific format or manner. This step is
the process of formulating the model into its
component-based system with regards on MetaaS
functionality together with cloud storage.

3.4 Model Implementation

MetaaS model is implemented using code to
specify how CSPs should publish metadata.

Journal of Theoretical and Applied Information Technology
 31

st
 August 2016. Vol.90. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

70

3.5 Model Evaluation

This step is the process of evaluation that
involved another round of questionnaire called
post-survey in order not only to verify and validate
the model, but also a part to enhancing of a
comprehensive model specification.

3.6 Conclusion

This step is the process of summarizing the
finding of the pre and post survey that has been
done on in producing the MetaaS model for
enabling search, store, access, retrieve and capture
the data from cloud storage.

4. PROPOSED METADATA AS A SERVICE

MODEL

 The overall model of MetaaS for enabling
searching, storing, accessing, publishing, and
capturing the data from CDS is proposed as shown
in Fig. 1. The model is consists of three layers as
metadata components, cloud users, and CSPs.

Figure 3: Metadata as a Service (MetaaS) Model

The layers of our model summarized as follow:

4.1 Metadata Components:

4.1.1 Metadata entity (ME)

The metadata entity in cloud is the core part of
the model basis. The metadata entity is divided into
two categories: descriptive metadata, and
administrative metadata. Descriptive metadata
includes resource description metadata, capability
description metadata and service description
metadata. Resource description metadata is a
summary list of capability and service of the model,
describing available resources of the entire model.
Administrative metadata includes the capability
management metadata, the service management
metadata and the control metadata.

4.1.2 Metadata file information (MFI)

Every file in cloud storage contains metadata that
tracks things like where it was saved, when it was
last accessed or modified, etc.

4.1.3 Metadata catalog service (MCS)

Metadata Catalog Service in the cloud is a
mechanism for storing and accessing descriptive
metadata and allows cloud users to query for data
items based on desired attributes. MCS may be
used for storing and accessing metadata about cloud
logical files.

MCS provides a synchronous java client
application programming interface. The client API
provides the following operations:

o Querying the catalog for logical objects
based on object attributes

o Querying the static attributes of a
logical object

o Querying the user defined attributes of a
logical object

o Querying the contents of a logical view
or a logical collection

o Creating a logical file, collection or a
view

o Modifying the attributes of a logical
object

o Deleting a logical file, view or a
collection

o Annotating a logical object

o Adding logical objects to a view

Journal of Theoretical and Applied Information Technology
 31

st
 August 2016. Vol.90. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

71

Metadata Service is more than simply a database
service that stores metadata attributes. Rather, it is a
specialized service that includes the following
components:

� A data model that includes mechanisms
for aggregation of metadata mappings

� A standard schema for domain-
independent metadata attributes with
extensibility for

� additional user-defined attributes

� A set of standard service behaviors

� Query mechanisms for accessing the
database

� A set of standard interfaces and APIs
for storing and accessing metadata

� A set of policies for consistency, access
control and authorization, and auditing

4.1.4 Metadata management engine (MME)

Metadata management engine is institution of
control and scheduling of model, completes unified
monitoring, management and coordination work of
capability and service and other resources.
Metadata management engine controls the
capability and service through the administrative
metadata.

4.1.5 Metadata capturing (MC)

When cloud data is modified by the provider,
catalog service needed to be changed in such a way
that the data and catalog service remain consistent
with each other. If catalog service is on the cloud,
they are collected in the knowledge base using
cloud tools. In order to speed up the whole change
propagation process, only the catalog service is that
depend on the change are gathered. This
dependency data is obtained from the catalog
service of the cloud that represents the performed
change. Moreover, the output of this step is one list
that makes references between Metadata catalog
service and CDS.

4.1.6 Metadata Analysis (MA)

In this step, automatic translation of the catalog
service is performed according to the changes in the
data in the cloud. In order to avoid overhead of the
cloud storage, which may heavily increase if the
changes are performed every time the cloud storage
has to be modified.

4.1.7 Cloud user

Cloud users, who have data to be stored in the
cloud and rely on the cloud for data computation,
consist of both individual consumers and
organizations. Cloud user that uses the cloud
computing services. A cloud consumer represents a
person or organization that maintains a business
relationship with, and uses the service for a CSP.
Also, the end user that actually uses the services,
whether it is Software, Hardware, Platform or
Infrastructure as a Service.

4.1.8 Cloud service provider (CSP)

CSP, who has significant resources and expertise
in building and managing distributed cloud storage
servers, owns and operates live cloud computing
system. A CSP also defined as a service provider
that offers customers storage or software services
available via a private (private cloud) or public
network (cloud). Usually, it means the storage and
software is available for access via the Internet.

5. METAAS IMPLEMENTATION

Publishing Metadata allows cloud users to
search, store, access, retrieve, and capture the data
from CDS using a WS-Transfer GET request or an
HTTP/GET request using the ?wsdl query string.
To insure that the code is working, a basic cloud
service is created. Our proposed MetaaS model is
implemented using a code. Cloud provides a rich
infrastructure for exporting, publishing, retrieving,
and importing service metadata. Cloud services use
metadata to describe how to interact with the
service's endpoints so that tools, such as svcutil.exe,
can automatically generate cloud user code for
accessing the service. Fig. 2 illustrated the a self-
hosted cloud service code using MetaaS.

Cloud services do not search, store, access,
retrieve, capture, and publish metadata by default.
To publish metadata for cloud service you must
explicitly enable metadata publishing by adding
metadata endpoints to your cloud service. Leaving
metadata publishing disabled reduces the attack
surface for the cloud service and lowers the risk of
unintentional information disclosure. Not all cloud
services must publish metadata. In case of metadata
is not published, consider leaving it turned off.
Note that you can still generate metadata and client
code directly from your cloud service assemblies.

Cloud services publish metadata by exposing one
or more metadata endpoints. Publishing cloud
service metadata makes cloud service metadata
available using standardized protocols, such as

Journal of Theoretical and Applied Information Technology
 31

st
 August 2016. Vol.90. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

72

MEX and HTTP/GET requests. Metadata endpoints
are similar to other service endpoints in that they
have an address, a binding, and a contract.
Metadata endpoints added to a service host in code
as shown in Figure 2.

To search, store, access, retrieve, capture, and
publish metadata endpoints for cloud service, you
must first add an instance of the Cloud Service
Metadata Behavior service behavior to the service
as shown in Figure 2. Adding a System Service
Model Description Cloud Service Metadata
Behavior instance to your service augments your
service with the ability to publish metadata by
exposing one or more metadata endpoints. Once
you add the System Service Model Description
Cloud Service Metadata Behavior service behavior
you can then expose metadata endpoints that
support the MEX protocol or metadata endpoints
that respond to HTTP/GET requests.

Figure 2: Self-Hosted Cloud Service Code using

MetaaS

The following code example shows the
implementation of a basic cloud service that
publishes metadata for the CSP in code as shown in
Fig. 3.

The cloud users and CSPs be able to acquire,
store, search, retrieve, publish and capture the
metadata from the CDS using the code in Fig 3.
The detail of this code in Fig 3 can be summarized
in following steps:

• Within the main method of a console
application, instantiate a CloudService

Host object by passing in the service type
and the base address.
(
CloudServiceHost svcHost = new
CloudServiceHost(typeof(SimpleCloudSer
vice),
newUri("http://localhost:8001/MetadataSa
mple"));

• Create a try block immediately below the
code for step above, this catches any
exceptions that get thrown while the
service is running.
(
try
}
)

• Check to see whether the service host
already contains a Cloud Service Metadata
Behavior, if not, create a new Cloud
Service Metadata Behavior instance
(
// Check to see if the service host already
has a CloudServiceMetadataBehavior
CloudServiceMetadataBehavior smb =
svcHost.Description.Behaviors.Find<Clou
dServiceMetadataBehavior>();
// If not, add one
if (smb == null)
smb = new
CloudServiceMetadataBehavior();
)

• Set the HttpGetEnabled property to true.
(
smb.HttpGetEnabled = true;
)

• The Cloud Service Metadata
Behavior contains a Metadata
Exporter property. The Metadata
Exporter contains a Policy
Version property. Set the value of
the Policy Version property to Policy15.
The Policy Version property can also be
set to Policy12. When set to Policy15 the
metadata exporter generates policy
information with the metadata that”
conforms to WS-Policy 1.5. When set
to Policy12 the metadata exporter
generates policy information that conforms
to WS-Policy 1.2.
(
smb.MetadataExporter.PolicyVersion =
PolicyVersion.Policy15;
)

• Add
the CloudServiceMetadataBehavior instan

using Cloud System;
using Cloud System.Runtime.Serialization;
using Cloud System.ServiceModel;
using Cloud System.ServiceModel.Description;

namespace Metadata.Samples
{
 [CloudServiceContract]
 public interface ISimpleCloudService
 {
 [OperationContract]
 string SimpleMethod(string msg);
 }

 class SimpleCloudService : ISimpleCloudService
 {
 public string SimpleCloudMethod(string msg)
 {
 Console.WriteLine("The caller passed in " + msg);
 return "Hello " + msg;
 }
 }

Journal of Theoretical and Applied Information Technology
 31

st
 August 2016. Vol.90. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

73

ce to the service host's behaviors
collection.
(
svcHost.Description.Behaviors.Add(smb);
)

• Add the metadata exchange endpoint to
the service host.
(
// Add MEX endpoint
svcHost.AddCloudServiceEndpoint(
CloudServiceMetadataBehavior.MexContr
actName,
MetadataExchangeBindings.CreateMexHtt
pBinding(),
"mex"
);
)

• Add an application cloud endpoint to the
service host.
(
// Add application endpoint
svcHost.AddCloudServiceEndpoint(typeof
(ISimpleCloudService), new
WSHttpBinding(), "");
)

• Open the service host and wait for
incoming calls. When the cloud user
presses ENTER, close the service host.
(
// Open the service host to accept
incoming calls
svcHost.Open();
// The service can now be accessed.
Console.WriteLine("The cloud service is
ready.");
Console.WriteLine("Press <ENTER> to
terminate cloud service.");
Console.WriteLine();
Console.ReadLine();
// Close the CloudServiceHostBase to
shutdown the service.
svcHost.Close();
)

• Build and run the console application.
• Use Internet Explorer to browse to the

base address of the service
(http://localhost:8001/MetadataSample in
this sample) and verify that the metadata
publishing is turned on. You should see a
Web page displayed that says "Simple
Service" at the top and immediately below
"You have created a service." If not, a
message at the top of the resulting page
displays: "Metadata publishing for this
service is currently disabled."

Figure 3: MetaaS Code

using Cloud System;
using Cloud System.Runtime.Serialization;
using Cloud System.ServiceModel;
using Cloud System.ServiceModel.Description;

namespace Metadata.Samples
{
 [CloudServiceContract]
 public interface ISimpleCloudService
 {
 [OperationContract]
 string SimpleMethod(string msg);
 }

 class SimpleCloudService : ISimpleCloudService
 {
 public string SimpleCloudMethod(string msg)
 {
 Console.WriteLine("The caller passed in " + msg);
 return "Hello " + msg;
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 CloudServiceHost svcHost = new
CloudServiceHost(typeof(SimpleCloudService), new
Uri("http://localhost:8001/MetadataSample"));
 try
 {
 // Check to see if the service host already has a
CloudServiceMetadataBehavior
 CloudServiceMetadataBehavior smb =
svcHost.Description.Behaviors.Find<ServiceMetadataBehavior>(
);
 // If not, add one
 if (smb == null)
 smb = new CloudServiceMetadataBehavior();
 smb.HttpGetEnabled = true;
 smb.MetadataExporter.PolicyVersion =
PolicyVersion.Policy15;
 svcHost.Description.Behaviors.Add(smb);
 // Add MEX endpoint
 svcHost.AddServiceEndpoint(
 CloudServiceMetadataBehavior.MexContractName,
 MetadataExchangeBindings.CreateMexHttpBinding(),
 "mex"
);
 // Add application endpoint

svcHost.AddCloudServiceEndpoint(typeof(ISimpleCloudService)
, new WSHttpBinding(), "");
 // Open the service host to accept incoming calls
 svcHost.Open();

 // The service can now be accessed.
 Console.WriteLine("The cloud service is ready.");
 Console.WriteLine("Press <ENTER> to terminate cloud
service.");
 Console.WriteLine();
 Console.ReadLine();

 // Close the CloudServiceHostBase to shutdown the
service.
 svcHost.Close();
 }
 catch (CommunicationException commProblem)
 {
 Console.WriteLine("There was a communication
problem. " + commProblem.Message);
 Console.Read();
 }
 }
 }
}

Journal of Theoretical and Applied Information Technology
 31

st
 August 2016. Vol.90. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

74

Our proposed MetaaS model supports the
metadata formats as shown in the Table-1.

Table-1. Metadata Formats

Protocol Specification and usage

WSDL Web Services Description
Language (WSDL)
MetaaS model uses Web
Services Description Language
(WSDL) to describe services.

XML Schema XML Schema
 MetaaS model uses the XML
Schema to describe data types
used in messages.

WS Policy Web Services Policy
MetaaS model uses the WS-
Policy 1.2 or 1.5 specifications
with domain-specific assertions
to describe service requirements
and capabilities.

WS Policy
Attachments

Web Services Policy
Attachment
MetaaS model implements WS-
Policy Attachments to attach
policy expressions at various
scopes in WSDL.

WS Metadata
Exchange

Web Services Metadata
Exchange
MetaaS model implements WS-
MetadataExchange to retrieve
XML Schema, WSDL, and WS-
Policy.

WS
Addressing
Binding for
WSDL

Web Services Addressing
MetaaS model implements WS-
Addressing Binding for WSDL
to attach addressing information
in WSDL.

6. RESULTS AND DISCUSSION

The MetaaS model in cloud computing has been
gone though the steps that has been specified in the
introduction as well as in the model sections. Based
on this, there is a significant result shown that the
MetaaS model should accommodated the following
features or components, in order to become relevant
to serve the cloud user and CSP in cloud computing
environment.

Metadata in cloud computing can be associated
with one representation of cloud entities and cloud
component. The most common is to use is to map
between metadata components and CDS. Examples
of cloud frameworks which use this kind of
mapping are Gaelyk [20] which makes use of

metadata that associated to CDS, metadata
components and cloud services and inject various
cloud services to a cloud user. Objectify which
implement a metadata directly to a CDS without
identifying the default of cloud behavior. The
framework Spring Data also propose the mapping
between interface methods of metadata to database
quires using code conventions. It is important to
state that this solution is not exclusive for mapping
to CDS. For instance, when mapping to a cloud
services, a metadata components could be mapped
to a cloud services and entities.

6.1 MetaaS Based-Cloud Services Functionality

Based on the cloud services functionality
component in terms of level of type of its
requirement at the first place, respondents are
agreed that the MetaaS of DaaS is occupied 100%
due to huge amount of data in cloud storage, PaaS
is occupied 70%, IaaS is occupied 40%, SaaS is
occupied 50%, HaaS is occupied 10%, and CaaS is
occupied 30% as shown in Fig. 4.

Figure 4: The Agreement Level of Cloud Services

Functionality

6.2 MetaaS Components

Based on the MetaaS component in terms of
level of type of its requirement at the first place.
Respondents are agreed that the Metadata Entity
(ME) is occupied 80%, Metadata File Information
(MFI) is occupied 60%, Metadata Catalog Service
(MCS) is occupied 100%, Metadata Management
Engine (MME) is occupied 40%, Metadata
Capturing (MC) is occupied 70% as shown in Fig.
5.

Journal of Theoretical and Applied Information Technology
 31

st
 August 2016. Vol.90. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

75

Figure 5: The Agreement Level of MetaaS

Components

7. CONCLUSION

As a conclusion, this paper proposes a metadata
as a service (MetaaS) model, based on the
discussion and analysis of real needs which exist in
cloud computing currently. The paper has shown
that the MetaaS model is very important features to
assist searching, storing, accessing, publishing, and
capturing the data from cloud storage of PaaS, laaS,
HaaS, CaaS, and SaaS, as indicated as DaaS in a
cloud environment. In this context, the MetaaS
model can be implemented by using three
components which are: MetaaS components, cloud
users, and CSPs. The finding is also shown that the
cloud users can getting the collection of service of
cloud project called MetaaS that has contributed a
significant effect to those who are acquiring,
storing, searching, retrieving, publishing, and
capturing of the cloud data for a future purpose,
which will help to minimize the search time of
cloud user and fast access of the data. This will
guarantee the minimization of the search time of
cloud user, as well as guarantee the fast published
data time of CSPs.

REFERENCES:

[1] S. Anjanadevi and D. Vijayakumar, "An
Efficient Dynamic Indexing and Metadata
Model for Storage in Cloud Environment,"
Networking and Communication

Engineering, vol. 6, pp. 124-129, 2014.
[2] R. Abdullah, Z. D. Eri, and A. M. Talib, "A

model of knowledge management system for
facilitating knowledge as a service (KaaS) in
cloud computing environment," Proceedings

of 2011 International Conference on

Research and Innovation in Information

Systems (ICRIIS 2011), pp. 1-4.
[3] A. M. Talib, R. Atan, R. Abdullah, and M.

Azrifah, "CloudZone: Towards an integrity
layer of cloud data storage based on multi
agent system architecture," Proceedings of

IEEE Conference on Open Systems (ICOS

2011), pp. 127-132.
[4] A. M. Talib, R. Atan, R. Abdullah, and M.

A. A. Murad, "Multi agent system
architecture oriented prometheus
methodology design to facilitate security of
cloud data storage," Journal of Software

Engineering, vol. 5, pp. 78-90, 2011.
[5] J. Yang and Z. Chen, "Cloud computing

research and security issues," Proceedings of

international conference in Computational

intelligence and software engineering (CiSE

2010), pp. 1-3.
[6] A. M. Talib, R. Atan, R. Abdullah, and M.

A. Azmi Murad, "Security framework of
cloud data storage based on Multi Agent
system architecture-A pilot study,"
Proceedings of International Conference on

in Information Retrieval & Knowledge

Management (CAMP 2012), pp. 54-59.
[7] A. M. Talib, R. Atan, R. Abdullah, and M.

A. A. Murad, "Security framework of cloud
data storage based on multi agent system
architecture: Semantic literature review,"
Computer and Information Science, vol. 3,
p. p175, 2010.

[8] Y. Xiao, G. Xu, Y. Liu, and B. Wang, "A
Metadata-driven Cloud Computing
Application Virtualization Model," Journal

of Computers, vol. 8, pp. 1571-1579, 2013.
[9] M. Cammert, J. r. Krأ¤mer, and B. Seeger,

"Dynamic metadata management for
scalable stream processing systems,"
Proceedings of IEEE 23rd International

Conference on in Data Engineering

Workshop, 2007, pp. 644-653.
[10] J.-J. Wu, P. Liu, and Y.-C. Chung,

"Metadata partitioning for large-scale
distributed storage systems," Proceedings of

IEEE 3rd International Conference on

Cloud Computing (CLOUD), 2010, pp. 212-
219.

[11] A. Verma and S. Venkataraman, "Efficient
metadata management for cloud computing
applications," 2010.

[12] Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L.
Tian, "Scalable and adaptive metadata
management in ultra large-scale file
systems," Proceedings of 28th International

Journal of Theoretical and Applied Information Technology
 31

st
 August 2016. Vol.90. No.2

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

76

Conference on Distributed Computing

Systems, ICDCS'08, 2008, pp. 403-410.
[13] A. W. Leung, M. Shao, T. Bisson, S.

Pasupathy, and E. L. Miller, "High-
performance metadata indexing and search
in petascale data storage systems," Journal

of Physics: Conference Series, 2008, p.
012069.

[14] R. Anitha and S. Mukherjee, "A dynamic
semantic metadata model in cloud
computing," Global Trends in Information

Systems and Software Applications:

Springer, 2012, pp. 13-21.
[15] K. Ravi, and Revati, M., "Efficient Data

Storage and Security In Cloud,"
International Journal of Emerging trends In

Engineering And Development, vol. 6, 2012.
[16] K. Shizuka, Toshiyuki, A., and Chiemi W.,

"Performance Improvement of a Privacy-
Preserving Query Method for a DaaS Model
Using a Bloom filter," Proceedings of

International Conference on Parallel and

Distributed Processing Techniques and

Applications, Las Vegas, Nevada, United
States of America, 2011.

[17] M. K. Aguilera, M. Ji, M. Lillibridge, J.
MacCormick, E. Oertli, D. G. Andersen, M.
Burrows, T. Mann, and C. A. Thekkath,
"Block-level security for network-attached
disks," 2003.

[18] C. Modi, D. Patel, B. Borisaniya, A. Patel,
and M. Rajarajan, "A survey on security
issues and solutions at different layers of
Cloud computing," Journal of

Supercomputing, vol. 63, pp. 561-592, 2013.
[19] L. Guy, P. Kunszt, E. Laure, H. Stockinger,

and K. Stockinger, "Replica management in
data grids," Global Grid Forum, 2002, pp.
278-280.

[20] E. M. Guerra and E. Oliveira, "Metadata-
based frameworks in the context of cloud
computing," Computer Communications and

Networks. Cloud Computing: Method and

Practical Approach. Springer, 2013, pp. 3-
24.

