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ABSTRACT 

 

We provide a technique for the approximation of a function with an exponential decay rate, using Thiele 

interpolating continued fraction coupled with spline. This new method benefits from computational 

advantages of rational approximation while avoiding alteration caused by pole appearance. We then 

provide an application of this technique in the approximation of the packet loss probability function used as 

a quality of service parameter in communication networks. 
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1. INTRODUCTION 

Exponential decay functions can be found in 

physics and natural sciences. Examples are the 

discharge of a capacitor, amplitude of an oscillator 

subject to linear friction, cooling processes or 

radioactive decays [1]. The evaluation of those 

functions is sometime very tough and requires a lot 

of calculations. It is the case when it comes to 

evaluate the packet loss probability as a function of 

the buffer size in queuing systems. Exact solutions 

of this function are time-consuming for large state 

systems. The CPU time to evaluate this function for 

a set of buffer sizes can take several days using a 

supercomputer [2]. Hence the interest of the use of 

the approximation techniques. 

Due to the asymptotic behavior of a function 

with exponential decay, the approximation by a 

rational function of numerator degree n � 1 and 

denominator degree n is a natural choice.   

Rational approximation techniques are well 

known for their computational advantages. 

However, the pole appearance in denominator 

polynomial of the approximating fraction can ruin 

the quality of the approximation.  

In this paper we propose a new approximation 

technique to approximate functions with 

exponential decays and with known decay rate. The 

technique is based on Thiele interpolating 

continued fractions and spline. The advantage of 

this new method is that it takes benefits from 

computational advantages of rational 

approximation and in the same time avoids the 

alteration that might be caused by pole appearance. 

We propose an application of our method to 

approximate the packet loss rate in queuing 

systems. It is assumed that the packet loss rate is 

known for a number of small capacities and also 

that the exponential asymptote is known for the 

capacity going to infinity [2, 3, 14].  

The problem of the estimation of the packet loss 

rate in queuing systems was treated in literature 

with different approaches. However, the techniques 

introduced in the literature suffered from potential 

introduction of poles [2]. Alternative solutions were 

not satisfactory either; the improved approach 

introduced in [4] avoids pole appearance by the 

artificial choice of denominator polynomial with 

optimal pole placement. This is an artificial rational 

interpolation that is susceptible to spoil the 

performance of the method; in real rational 

interpolation, the numerator and denominator 

polynomials are both unknown, they are sought 

simultaneously [5, 6].  

In order to address the issue of pole appearance 

in Thiele rational approximation, we propose an 

approach based on the following idea: locate poles 

of the Thiele denominator polynomial and combine 

Thiele method with cubic spline interpolation; 

Thiele will be used to extrapolate beyond the area 

that contains poles, and the cubic spline 

interpolation will be used to interpolate within this 
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area. The interest is to benefit from the strengths of 

the two methods. 

2. THIELE RATIONAL APPROXIMATION 

Let f be an exponential decay function, real-

valued of a variable N, known only for a set of 

values N�, i � 0, … ,2n � 1.  

We consider that the decay rate, that we denote ξ, is known:  

f�N� ∼ ξN as N → ∞. (1) 

Due to the asymptotic behavior of the function f�N�, the approximation by a rational function r�����N� of numerator degree n � 1 and 

denominator degree n is a natural choice.  

 r�����N� � p��N�q��N� �
∑ a������ N�
∑ b���� N� . (2) 

The rational approximate r�����N� can be 

obtained as the �2n � 1�"# convergent of a Thiele 

type continued fraction [7].  

 

(3) 

The �2n � 1�"# convergent is written as  

 

(4) 

where the inverse differences φ%N , . . . , N&��' are 

computed recursively from:  

 
(5) 

(6) 

In order that the asymptotic behavior of r�����N� matches that of f�N�, we only compute φ%N , … , N&' with j � 1, … ,2n from equation (6). 

The remaining inverse difference φ%N , … , N����' 
is computed from the decay rate ξ. 

The coefficient of highest degree in the 

numerator of r�����N�, namely, a��� equals  

 a��� � 1∑ φ�&� %N , … , N�&��' . (7) 

For r�����N� to behave asymptotically like ξN, 

we need to require a��� � ξ, in other words, 

φ%N , … , N����' � 1ξ )*φ�+�

&� 
%N , … , N�&��'. (8) 

Thiele rational approximation is very suited to 

approximate functions with exponential decay; 

however, in some cases, the generated denominator 

polynomial could have poles. In such a case, the 

approximation will be altered. 

3. CALCULATION OF THIELE 

DENOMINATOR POLYNOMIAL 

COEFFICIENTS 

In this section we will calculate the Thiele 

denominator polynomial coefficients. Those 

coefficients will be used to calculate the Cauchy 

bound [8] and hence locate Thiele denominator 

polynomial poles. 

The r���� function could be written [9] as  

,p� � φ%N , ⋯ , N����'p�� � �N ) N���p��+�q� � φ%N , ⋯ , N����'q�� � �N ) N���q��+� (9) 

with 

 p+� � 0, 	p � b , 

and q+� � 0, q � 1. 
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Let us denote  

 φ� � φ%N , … , N�'. (10) 

We have deg	q�2 � k and deg	q�2�� � k. 

q�2 can be written as: 

q�2 � φ�2q�2+� � �N ) N�2+��q�2+�� φ�2�b2+���2+��N2+� �⋯� b ��2+��� ��N ) N�2+���b2+���2+��N2+�
 �⋯� b ��2+���� b2+���2+��N2 � �φ�2b2+���2+��
 �b2+���2+�� ) N�2+�b�2+���2+���N2+�
 �⋯� �φ�2b���2+�� � b�+���2+��
 )N�2+�b���2+���N� �⋯
 ��φ�2b ��2+�� ) N�2+�b ��2+���

  

q�2�� can be written as  

q�2�� � φ�2��q�2 � �N ) N�2�q�2+�� φ�2��4b2��2�N2 �⋯� b ��2�5 ��N ) N�2��b2+���2+��N2+�
 �⋯� b ��2+���� �φ�2�� � b2+���2+���N2 � �φ�2��b2+���2�
 �b2+���2+�� ) N�2b2+���2+���N2+� �⋯
 ��φ�2��b���2� � b�+���2+��
 )N�2b���2+���N� �⋯
 ��φ�2��b���2� � b ��2+�� )N�2b���2+���N � �φ�2��b ��2� )N�2b ��2+���

 

with, for i � 1, … , k ) 1  

67
8
79b2

��2� � b2+���2+�� � ⋯ � b���� � 1
b���2� � φ�2b���2+�� � b�+���2+��

)N�2+�b���2+��b ��2� � φ�2b ��2+�� ) N�2+�b ��2+��
 (11) 

By iterative calculation based on the equation 

system in (11) we can get the coefficients b� for i � 0, … , n of Thiele denominator polynomial q�. 

4. COMBINED THIELE AND SPLINE 

APPROXIMATION 

Let r�����N� be the Thiele continued fraction  

r�����N� � p��N�q��N� �
∑ a������ N�
∑ b���� N� , (12) 

whose numerator is of degree n � 1 and 

denominator is of degree n, which interpolates f�N� 
on the support supp where #supp � 2n � 1. 

Henceforth, supp will be indexed by 2n � 1, 

we will note supp � supp����. 

We know that all the roots of the denominator 

polynomial  

q��N� � N� � b�+�N�+� �⋯� b , (13) 

are contained in the disk centered at the origin and 

with radius  

 1 � max >�>�+�|b�|, (14) 

called Cauchy bound [8] that we note C�. 

Thiele method will be accurate as far as we 

move away from C�. 

The idea is to stick the part of the Thiele 

approximation that is not affected by the occurrence 

of poles (beyond C�) with the cubic spline 

approximation of the function f on the interval 

containing the poles. 

It is clear that for all n, the rational function r�����N� as it is constructed verifies  

limB→Cr�����N� � ξN, (15) 

in other terms,  

r�����N� ∼ f�N�, (16) 

in the neighborhood of �∞. 

Let us compare the quantity  
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∥ E�F�� ) E�F+� ∥∥ E�F+� ∥ , (17) 

with a given tolerance G for each iteration H, where 

the uniform norm is taken over the set %max�IF, IF+��, �∞%. 
If the following condition is satisfied  

supJ∈%LMN�OP ,OPQR�,�C%|E�F���S� ) E�F+��S�|
T G supJ∈%LMN�OP ,OPQR�,�C%|E�F+��S�|,  (18) 

then we calculate the following cubic splines which 

interpolate E�F���S� on  

 UVWW�F��⋃YZ, Z ) [,… , Z ) �\ ) 1�[], 
where [ is a step chosen arbitrarily on the interval %IF, Z' and Z is the upper limit of the evaluation 

interval of the function ^. 

We note those cubic splines _�F��,L�S�,\ �1,2, … 

For a given tolerance G, the stop test on the 

calculation of _�F��,L, \ � 1,2, … will be  

∥ _����,L�� ) _�F��,L ∥∥ _�F��,L ∥ T G. (19) 

Our approach consists on approximating the 

function ^ by the resulting cubic spline _�F��,L��. 

The combined Thiele and spline approximation 

technique introduced in this paper is comparable to 

Thiele rational approximation introduced in [2] in 

case the generated Thiele interpolating fraction 

does not have poles, as both rely on Thiele 

interpolating fraction.  

In case the generated Thiele interpolating 

fraction do have poles, the Thiele rational 

approximation method is affected, and the 

combined Thiele and spline technique is far more 

adapted to approximate the function as it avoids 

poles alteration.  

We can consider the combined Thiele and 

spline approximation technique as an alternative to 

the optimally placed pole technique introduced in 

[4]. The optimally placed pole technique is about 

constructing an approximating fraction. This 

construction is done by fixing a denominator 

polynomial with optimally placed poles; i.e. poles 

outside the region of the approximation. The 

numerator polynomial is then sought so that the 

constructed fraction approximates the function. 

This method avoids pole appearance by the 

artificial choice of denominator polynomial with 

optimal pole placement. This is an artificial rational 

interpolation that is susceptible to spoil the 

performance of the method; in real rational 

interpolation, the numerator and denominator 

polynomials are both unknown, they are sought 

simultaneously [5, 6]. The merit of our method, 

combined Thiele and spline approximation 

technique, is that it preserves the Thiele 

interpolating fraction, where the numerator and 

denominator polynomials are sought 

simultaneously. The numerical examples in the 

following section show that the absolute error of 

our method is smaller than that of the optimally 

placed poles method. 

5. NUMERICAL EXAMPLES 

In this section, we consider a packet loss 

probability in queuing systems. We assume that the 

traffic can be described by a discrete time batch 

Markovian Arrival Process (D-BMAP) model of 

M/G/1-type [2, 10, 11, 12, 13]. The packet loss 

probability function, that we denote à�S�, depends 

on the parameters in Table 1. 

Table 1: Parameters of the packet loss probability 

function. 

Parameter Signification 

N Buffer size  

c Number of packets serviced per time unit 

M Number of independent and non identical 

information sources 

p Probability that a source is changing from 

OFF to ON state 

q Probability that a source is changing from 

ON to OFF state 

For large values of buffer size S, the 

computation of the exact values of the packet loss 

probability function is very tough. The Table 2 gives 

an idea about the CPU time to calculate this 

function [2]. The calculus was done using a 

supercomputer with a processing power of 90 

teraFLOPS. 
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We remark that when the buffer size S is 2900, 

the exact value of the packet loss probability is 

computed in about 3 hours 48 minutes of CPU 

time. The computing of the exact values of log à�S� for the buffer size S going from 2100 to 2900 necessitate a very long time and is practically 

impossible using an ordinary computer. 

Table 2: Total CPU time in seconds with a 

supercomputer of 90 teraflops processing power. 

S log à�S� CPU time (seconds) 

2100 )2.2263 7092.38 

2200 )2.2441 7826.95 

2300 )2.2617 8508.55 

2400 )2.2792 9046.97 

2500 )2.2966 9933.09 

2600 )2.3138 10657.52 

2700 )2.3309 11433.24 

2800 )2.3497 12512.29 

In the examples below, we consider a system 

with the following parameters:  

l � 15, m � 1, W � 2.1900n ) 05,o � 7.0000n ) 06, p � )1.1332n ) 03. (20) 

5.1 Example: Pole Free Thiele Approximation 

In this first example, we suppose that the 

function log à�S� is known in the following 

support points: UVWWq � Y4, 14, 25, 34, 62, 76, 684] 
Thiele continued fraction that approximates log à�S� at support UVWWq is given in equation 

(21). 

Eq�S� � )0.0011332�)1.28266 � S��2770.21 � S��1236.1 ) 37.4744S � S��1�1.80586 � S��1296.5 ) 40.2723S � S��
 (21) 

The denominator of this fraction does not have 

poles on the real axis. We can see in Figure 1 that, 

from a support of only 7 points, the constructed 

Thiele approximate sticks perfectly on the exact 

packet loss probability curve. 

 

Figure 1: Exact vs Thiele approximation without poles 

 

Figure 2: Exact vs Thiele approximation with poles 

5.2 Example: Thiele Approximation with Poles 

Let us consider the same packet loss probability 

function log à�S� as in the first example, but 

known in a different set of support points: 

UVWWr � Y5, 7, 10, 15, 30, 45, 200, 300, 400] 
Thiele continued fraction that approximates log à�S� in support UVWWr is given in equation 

(22). 

Er�S� �)0.001133�)151.322 � S��)2.95715 � S��2765.25 � S��73.9681 � 16.99S � S��1�)150.844 � S��)2.75588 � S�1�246.532 � 14.9041S � S��

 (22) 

The denominator of this fraction has a pole 

nearby S � 150. This pole appears clearly in Figure 
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2. Moreover, we can see clearly that once we move 

away beyond the pole region, the Thiele 

approximation curve stick back to the exact 

function curve. 

The Figure 3 illustrates our approach, combined 

Thiele and cubic spline approximation, in 

comparison with the exact function curve. We 

observe that the curve of our method sticks 

perfectly to the curve of the exact function. 

Finally, the Figure 4 gives the absolute error 

graph of our method compared to the method of 

optimally placed poles cited in [4]. Obviously, the 

absolute error of our method is smaller than that of 

the optimally placed poles method. 

 

 

Figure 3: Exact vs Combined Thiele and cubic spline 

approximation 

 

Figure 4: Absolute error comparison: Combined Thiele 

and cubic spline approximation vs Optimally placed 

poles (R=15) 

 

 

6. CONCLUSION 

We have contributed through this work to 

introduce a new technique to approximate functions 

with exponential decay based on Thiele 

interpolating fraction and spline. The merit of this 

new technique is that it benefits from the 

computational advantages of rational and cubic 

spline approximations and at the same time avoids 

the alteration that might be caused by pole 

appearance. This latter is a major obstacle that 

restricts the use of rational approximation. 

We have applied our technique to approximate 

the packet loss probability as a function of the 

buffer size. Exact solutions of this function are 

time-consuming for large state systems, and 

sometimes are practically impossible. Though, the 

evaluation of the function for small values as well 

as the evaluation of the decay rate is possible. This 

information is sufficient to approximate the whole 

function all thanks to the new technique. The 

success of this latter is confirmed by numerical 

examples.  
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